УДК 541.11

ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ТАНТАЛ-ВОЛЬФРАМОВЫХ СПЛАВОВ ЗАМЕЩЕНИЯ И СПЛАВА ВНЕДРЕНИЯ В ДИАПАЗОНЕ ТЕМПЕРАТУР 1000—2500 К

© 2023 г. А. В. Румянцев*

ФГАОУ ВО "Балтийский федеральный университет имени Иммануила Канта", Калининград, Россия *E-mail: albert37@list.ru Поступила в редакцию 02.12.2021 г. После доработки 09.07.2022 г. Принята к публикации 13.10.2022 г.

Приводятся результаты экспериментального исследования десяти теплофизических свойств сплавов замещения Ta10W, Ta15W, Ta20W и сплава внедрения Ta10W0.25C с помощью замкнутого метода радиальных температурных волн: температуро-, тепло- и электропроводности, удельной и объемной теплоемкости, плотности, коэффициента объемного теплового расширения, тепловой активности, интегральной и спектральной степени черноты. Показано, что в исследуемой области температур политермы свойств сплавов, кроме политерм удельной теплоемкости и термодинамических потенциалов, лежат внутри области, ограниченной политермами свойств компонент, и мало отличаются от политерм свойств основы – чистого тантала, а политермы свойств сплава внедрения в области $T \ge 1900$ K этой закономерности не подчиняются и демонстрируют аномальный характер.

DOI: 10.31857/S004036442301012X

ВВЕДЕНИЕ

Исследованию теплофизических свойств металлических сплавов замещения и внедрения (карбидов) посвящена довольно обширная литература, начиная с середины прошлого века и до настоящего времени: например, с 2000 по 2021 гг. в журнале "Теплофизика высоких температур" опубликовано более 24 работ, многие из которых посвящены изучению карбидов. Исследования сверхтугоплавких карбидов с температурой плавления выше 3000 К (карбиды металлов IV, V групп) представляют научный и практический интерес. Актуальность исследования карбидов определяется потребностями авиации, ракетной техники и космонавтики. В частности, сопла современных ракет должны выдерживать температуры порядка 3000-4000 К. При скоростях полета летательных аппаратов с числами Маха порядка 10 высокие требования предъявляются также к покрытиям аэродинамических поверхностей. Интерес к сплавам замещения вызван тем, что в ряде отраслей машиностроения, приборостроения и особенно космической техники необходимо применение материалов со строго регламентированными значениями теплофизических свойств в определенных температурных интервалах, таких, например, как теплоемкость, теплопроводность, электропроводность, плотность, коэффициент теплового расширения, степень черноты и другие. Поэтому все более широкое применение находят композиционные материалы. состоящие из сильно различающихся по свойствам компонент, что позволяет использовать преимущества каждого из них. В частности, такими компонентами выступают тантал и вольфрам, обладающие сильно различающимися значениями температуро-, тепло- и электропроводности, плотности и коэффициента объемного теплового расширения. Изменением процентного содержания одного из компонентов можно получить композиционный материал с нужными теплофизическими свойствами. Как высокотемпературный конструкционный материал тантал-вольфрамовые сплавы замещения применяются для производства ответственных частей ракет и самолетов. Из сплава Ta10W, например, производят сопловые детали ракет-носителей, форсажные камеры и т.д.

Подчеркнем, что теплофизические свойства композитных материалов и их температурные зависимости должны определяться экспериментально. Это относится как к сплавам замещения, поскольку аномальное поведение их свойств не исключается [1, 2], так и (особенно) к сплавам внедрения карбидам, представляющим собой неупорядоченные твердые растворы внедрения ограниченной растворимости, с учетом возможного аномального поведения их свойств по достижении некоторой температуры, значение которой заранее неизвестно. Сплавы замещения тантал—вольфрам представляют собой однофазные двухкомпонентные упорядоченные твердые растворы неограниченной растворимости, поскольку имеют [3] близкие атомные объемы – $V_{\rm Ta}/V_{\rm W} = 1.14$; кристаллические решетки одного типа – ОЦК с близкими периодами решеток $a_{\rm Ta} = 3.3074 \times 10^{-10}$ м, $a_{\rm W} = 3.16534 \times 10^{-10}$ м, в узлах которой часть атомов тантала замещается атомами вольфрама; близкие температуры плавления – 3270 и 3695 К. В сплавах внедрения атомы углерода не замещают в решетке атомы компонент.

При исследованиях металлов и сплавов в области высоких температур определяются, как правило, одно, например, температуропроводность, или два свойства – температуро- и электропроводность, или только коэффициент линейного теплового расширения, а также концентрационные зависимости этих свойств. То же относится и к сплаву замещения Ta10W, для которого приводятся данные только по коэффициенту теплового расширения – [4], удельной электропроводности – [5], интегральной и спектральной степеням черноты — [5— 7]. И только в одной работе [8] изучен весь комплекс теплофизических свойств сплавов замещения – Та (12, 15, 22W) и сплава внедрения Ta17W0.25C - комплексным методом. Можно сделать вывод, что уровень изученности теплофизических свойств этих сплавов явно недостаточен.

Цель работы — изучение всего комплекса свойств тантал-вольфрамовых сплавов замещения — Ta10W, Ta15W, Ta20W и сплава внедрения — Ta10W0.25C замкнутым бесконтактным методом в диапазоне температур 1000—2500 K, а также выяснение вопроса о влиянии концентрации вольфрама и структуры сплава на его теплофизические характеристики.

МЕТОД ОПРЕДЕЛЕНИЯ ТЕПЛОВЫХ СВОЙСТВ МЕТАЛЛОВ И СПЛАВОВ

Основным недостатком современных методов, рассмотренных в обзоре [9], является их незамкнутость – определяются температуропроводность или температуропроводность и удельная теплоемкость. Незамкнутость метода означает, что при обработке результатов эксперимента необходимо использовать внешние данные, взятые из справочников или журнальных статей. Замкнутым методом является метод, в котором при обработке результатов эксперимента не прибегают к внешним данным, вся нужная информация содержится в данных, полученных в ходе эксперимента. Очевидно, что замкнутый метод является комплексным. Наконец, различают контактный и бесконтактный методы. В области высоких температур предпочтителен последний, так как в этом случае отпадает необходимость внесения поправок на теплоотвод по токоподводам, потенциальным выводам, термопарам.

Определение тепловых свойств тантал-вольфрамовых сплавов проведено методом регулярного теплового режима третьего рода (метод температурных волн (МТВ по [9]), в частности, радиальных температурных волн, возбуждаемых в образце цилиндрической формы.

Температурная волна создается путем нагрева исследуемого металлического образца цилиндрической формы в индукторе высокочастотного индукционного генератора при работе в режиме "включено—выключено". В результате в образце возникает радиальная температурная волна, при этом амплитуда ϑ и фаза φ первой гармоники колебаний температуры поверхности образца около ее установившегося значения θ зависят от теплофизических свойств материала образца.

Теория метода, подробно изложенная в работах [10, 11], построена путем решения уравнения теплопроводности при условии $\theta/\vartheta \ll 1$, и нагрев — чисто поверхностный (как при электронном и радиационном нагреве, потом вводится поправка на конечность толщины скинслоя η). Введенная в образец мощность W при индукционном нагреве находится решением уравнений Максвелла. В итоге получены расчетные соотношения, позволяющие определить следующие характеристики исследуемого материала [10–15]:

температуропроводность

$$a=R^2\Omega a^{-2}$$

где \mathfrak{Z}^2 находится по зависимости отношения амплитуд первой гармоники колебаний температуры $\mathfrak{Z}^2 = f[\vartheta(\Omega_i)/\vartheta(\Omega_j)]$ при разных частотах Ω модуляции генератора; R – радиус образца;

удельную теплоемкость

$$C_{p} = W(M\Omega\vartheta)^{-1}F_{1}(\mathfrak{a}^{2},\eta),$$

где M — масса единицы длины образца; $F_1(a^2, \eta)$ — табулированная функция, учитывающая конечность толщины скин-слоя;

теплопроводность

$$\lambda = W(2\pi\vartheta)^{-1}F_2(\boldsymbol{a}^2,\boldsymbol{\eta}),$$

где $F_2(x^2, \eta)$ – табулированная функция, учитывающая конечность толщины скин-слоя;

удельное электросопротивление

$$\rho = \pi d^2 f \mu_0 \eta^2, \qquad (1)$$

где d – диаметр образца; f – линейная частота генератора; μ_0 – магнитная постоянная; η – безразмерная толщина скин-слоя, определяемая по отношению экспериментально измеренных электродвижущих сил индукции (ЭДС), наведенных в контурах разных диаметров – $\eta = \psi(\overline{\epsilon}_1/\overline{\epsilon}_2)$ [13], $\overline{\epsilon}_i$ – среднее значение ЭДС с одного витка; мощность $W_i = F(\overline{\varepsilon}_i, \rho, \eta)$, введенная в образец за период колебания (i = 1, 2). Установка для реализации метода подробно описана в работе [12].

Для реализации метода радиальных температурных волн собрана установка на основе высокочастотного генератора ВЧУ-15/440 (мощность -15 кВт, частота – 440 кГц). Подключенный к генератору водоохлаждаемый индуктор размешается в вакуумной камере, верхняя часть которой – стеклянный колпак, шлиф которого через вакуумную смазку соединялся с водоохлаждаемым шлифом нижней металлической частью камеры. В камере обеспечивался вакуум на уровне 10⁻⁵ мм рт.ст. В индуктор коаксиально помещался исследуемый образец в виде цилиндра (диаметр – 10 мм, длина – 100 мм), в центре которого выполнено отверстие диаметром 0.7 мм и глубиной 5 мм, представляющее собой модель абсолютно черного тела (с коэффициентом не хуже 0.95). Абсолютная температура Tобразца определяется по излучению данной модели оптическим пирометром ЛОП-72 ($\lambda = 0.65$ мкм). Этим же пирометром определяется и температура поверхности образца — яркостная температура T_s .

Периодические изменения вводимой в образец мощности осуществлялись в режиме "включено-выключено" путем подачи на высокочастотный генератор прямоугольных импульсов частотой Ω_i (*i* = 1-4) скважностью 1/2. Частота модуляции лежит в диапазоне 0.1-0.4 Гц, что расширяет возможности внутренней проверки результатов. Колебания температуры регистрировались с небольшого участка поверхности образца вблизи его середины тремя фотодиодами ФД-263, размещенными на водоохлаждаемой пластине, на которые подается напряжение +30 В, и имеющими общую нагрузку 200 кОм. Постоянная составляющая сигнала, соответствующая средней температуре θ образца, компенсировалась схемой деления напряжения, а переменная составляющая ϑ , обусловленная колебаниями температуры, подавалась с нагрузки фотодиодов на осциллограф USB АКИП (серия 75000), позволяющий измерить амплитуду первой гармоники колебания температуры. Судить о полноте компенсации постоянного сигнала можно по расположению кривой на экране осциллографа относительно средней линии – кривая должна располагаться симметрично относительно этой линии (рис. 1).

Коаксиально с образцом симметрично относительно отверстия размещены две керамические катушки разного диаметра с навитой на них вольфрамовой проволокой диаметром 0.05 мм. Катушки имеют три вывода, соединенных через шестипозиционный переключатель с вольтметром DS01002A, что позволяет измерять наведенную ЭДС индукции с двух, трех и пяти витков – ε_2 , ε_3 и ε_5 . Так как в формулах фигурирует ЭДС с одного витка, находится среднее значение $\overline{\varepsilon}_i = (\varepsilon_2/2 + \varepsilon_3/3 + \varepsilon_5/5)_i/3$ (i = 1, 2) с целью уменьшения погреш-

Рис. 1. Типичная осциллограмма колебаний температуры: *1* – запись колебаний температуры, *2* – запись колебаний мощности, *3* – средняя линия.

ности. Значение безразмерной толщины скинслоя η находится по предварительно построенной функции $\eta = \psi(\overline{\epsilon}_i/\overline{\epsilon}_2)$, где $\overline{\epsilon}_i$ и $\overline{\epsilon}_2 - \Im ДС$ с одного витка, рассчитанные по измеренным ϵ_i (i = 1, 2). По найденной η вычисляется значение удельного электросопротивления (1). По ЭДС с одного витка и найденным значениям η и ρ вычисляются мощности – $W_i = f(\overline{\epsilon}_i, \rho, \eta)$ (i = 1, 2) [12], значения которых затем осредняются с целью уменьшения погрешности.

Непосредственными результатами эксперимента являются амплитуда $\vartheta(\Omega_i)$ первой гармоники колебаний температуры, измеряемая с помощью осциллографа, шесть величин электродвижущих сил индукции ε_i , наводимых в проволочных контурах разного диаметра, линейная частота генератора f (показывается на дисплее генератора), частота его модуляции Ω_i (i = 1-4); абсолютная T и яркостная T_S температуры образца.

Значения a, C_p, λ, ρ, W и температуры T и T_S находятся по данным, полученным в одном эксперименте, на одном и том же образце, в одних и тех же условиях, что обеспечивает его замкнутость, и позволяет по известным соотношениям, не прибегая к внешним источникам, вычислить значения плотности d, коэффициента объемного теплового расширения В, объемной теплоемкости C_{υ} , тепловой активности A, компонентов теплопроводности λ_{ϕ} и λ_{e} , монохроматической и интегральной степеней черноты (последняя используется также для нахождения значения критерия Ві, необходимого для введения поправки амплитуды первой гармоники колебания температуры на теплообмен излучением), термодинамических потенциалов – энтальпии *H*, энтропии *S*, энергии Гиббса G. По найденному значению β вводится поправка на тепловое расширение, строится диаграмма Грюнайзена $\beta(C_n)$.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ ТЕПЛОВЫХ СВОЙСТВ СПЛАВОВ И ИХ ОБСУЖДЕНИЕ

Исследованные сплавы замещения и сплав внедрения незначительно отличаются по процентному содержанию вольфрама от сплавов, изученных в работе [8]. В частности, содержание

2023

W в сплавах Ta10W и Ta10W0.25C намеренно одинаковое, что позволило сопоставить свойства этих сплавов при одинаковом процентном содержании в них W. Данные по теплофизическим свойствам компонент Та и W взяты из работ [14, 15], в которых использовался этот же метод, и они, следовательно, имеют приведенные ниже погрешности. Погрешности метода модулированного инлукционного нагрева, использованного и в настояшей работе, приведены в [11, 12, 14, 15]: температуропроводность – (3.5–4)% (систематическая ~2%); теплоемкость – 5% (систематическая ~4%); теплопроводность – (5-6)% (систематическая ~5%); электросопротивление ~ 1%; мощности – 3%; степени черноты интегральная ~5%, монохроматическая ~12% (средняя в диапазоне температур). Полученные данные по a(T), $C_p(T)$ сплавов замещения в пределах указанных погрешностей практически совпадают с данными [8]. Химический состав образцов приведен в табл. 1.

На графиках приведены сглаженные экспериментальные данные с учетом поправок на тепловое расширение, величины амплитуды первой гармоники колебания температуры, на теплообмен излучением. Для сплава внедрения на графиках сохранены маркеры, чтобы показать, что в ходе эксперимента изменения температуры были малы, и это позволило достаточно подробно построить политермы свойств и показать температуру начала их аномального поведения. На приведенных рисунках приняты следующие обозначения: для экспериментальных данных: если свойства сплавов замещения практически неразличимы (одна политерма) — 1; если различимы: Ta10W – 1, Ta15W – 2, Ta20W – 3, Ta10W0.25C – 4.

Температуропроводность a(T) сплавов и компонент представлена на рис. 2а. Экспериментальные данные, несмотря на разное содержание вольфрама, практически неотличимы, и лежат между данными для Та и W. Отличие $a(T)_{3\kappaсп.}$ для сплавов замещения составляет ~5.3% от таковой тантала и имеет почти одинаковый температурный ход, несмотря на то, что температуропроводность вольфрама превышает и ту, и другую на ~50%. Температуропроводность сплава внедрения не подчиняется данной закономерности и лежит ниже политермы тантала, а при $T \ge 1900$ K наблюдается резкое ее уменьшение — с 22.2 × 10⁻⁶ м²/с до 13.9 × 10⁻⁶ м²/с при 2300 K, т.е. падение на ~44%.

Рис. 2. Зависимости температуропроводности (а), теплопроводности сплавов (б): *l*e, 4e – электронная компонента $\lambda_e(T)$.

Политермы теплопроводности представлены на рис. 26. Экспериментальные политермы теплопроводности сплавов замещения различаются между собой в пределах 1%, поэтому приведена одна кривая – 1. Политермы $\lambda(T)_{3$ ксп. сплавов за-

Таблица 1. Химический состав сплавов замещения и внедрения

Состав	Та	W	C	Мо	Nb	Ti/Si	Fe/Al	0	Ν
Ta10W	89.60	10.03	0.01	0.005	0.02	0.01	0.01	0.01	0.007
Ta15W	84.48	15.2	0.01	0.005	0.02	0.01	0.01	0.014	0.005
Ta20W	79.22	20.3	0.03	0.012	0.308	0.01	0.01	0.007	0.008
Ta10W0.25C	89.41	10.15	0.25	0.04	0.015	0.01	0.01	0.01	0.005

мещения и тантала линейно возрастают с температурой, несмотря на то, что λ вольфрама с температурой падает на ~27%, и лежат между таковыми для Та и W. Изменение концентрации вольфрама с 10 до 20% не приводит к заметному расщеплению политерм теплопроводности сплавов замещения, но влияние высокой теплопроводности вольфрама λ_W (почти в два раза больше λ_{Ta}) приводит к росту теплопроводности сплавов замещения в сравнении с таковой для тантала — увеличение составляет на концах температурного диапазона ~12% и 17% соответственно. Зависимость $\lambda(T)_4$ сплава внедрения от температуры аналогична таковой для температуропроводности — значения $\lambda(T)_4$ в диапазоне 1900—2300 К уменьшаются на ~47%.

Электронная компонента теплопроводности сплавов замещения показана на рис. 26 — кривая *le*. Как и у тантала, $\lambda_e(T)$ сплавов замещения растет с температурой и превышает теплопроводность тантала в среднем на 10%. Фононная компонента изменяется от 9.7 до 3.1 на концах температурного диапазона. Для сплава внедрения результат показан только в диапазоне 1000—1900 К — кривая *4e*.

Удельная теплоемкость $C_p(T)_{3\kappa cn.}$ сплавов и компонентов представлена на рис. За.

Теплоемкость сплавов замещения превышает на ~5.3% теплоемкость Та, имеет с ней одинаковый температурный коэффициент, и она больше теплоемкости Та из-за вклада теплоемкости W, незначительно превышающей теплоемкость Та. Теплоемкость компонентов и сплавов линейно возрастает с температурой. Теплоемкость сплавов замещения, вычисленная по процентам компонентов, практически совпадает с теплоемкостью Ta – кривая 1, так как теплоемкости Ta и W мало отличаются друг от друга. Значения $C_p(T)_4$ сплава внедрения лежат выше остальных и линейно растут только в диапазоне 1000-1900 К, после чего в диапазоне 1900-2300 К резко возрастают с температурой, увеличиваясь на ~30%, вследствие увеличения влияния ангармонизма колебаний решетки и вклада углеродных вакансий [18, 19].

Удельное электросопротивление $\rho(T)_{3KCII}$, представлено на рис. 36. Оно линейно возрастает с температурой у сплавов замещения (политерма 1), и компонентов, при этом значения р сплавов мало отличаются друг от друга и лежат между значениями для Та и W в полном соответствии с правилом Нордгейма для упорядоченного сплава [20]. Увеличение концентрации W приводит лишь к незначительному уменьшению удельного сопротивления сплавов замещения по сравнению с сопротивлением для Та вследствие того, что р_w почти в два раза меньше ρ_{Ta} . Для сплавов уменьшение составляет: 1 - 1.5%, 2 - 2%, 3 - 2.5%. Значения ρ(T) сплавов замещения имеют одинаковый температурный коэффициент, незначительно отличающийся по величине от коэффициентов для Та и W. Полученные данные для сплава Ta10W отли-

Рис. 3. Зависимости удельной теплоемкости (экспериментальная и по процентам -1%) (а), удельного электросопротивления (б).

чаются от данных [4] на 2%. Значения $\rho(T)$ сплава внедрения до T = 1900 К близки к значениям для тантала и сплавов замещения, и лишь после этой температуры начинают нелинейно возрастать, увеличиваясь на 11% при T = 2400 K. Возрастание $\rho(T)_4$ обусловлено тем, что в неоднородном поле твердого раствора внедрения с искаженной кристаллической решеткой длина свободного пробега электрона меньше, чем в однородном поле чистого металла, как показано в [18-20]. Там же сделан вывод, что определяющая роль в формировании сечения рассеяния электронов принадлежит термической деформации решетки атомов и вкладу углеродных вакансий. Этот эффект наиболее проявляется в $\rho(T)_4$ сплава внедрения и особенно заметен в области температур T > 1900 К.

17.30

17.05

16.80

16.55

16.30

16.05

15.80

15.55

15.30

Рис. 4. Зависимости плотности (а), объемного коэффициента теплового расширения (б) по экспериментальным данным и данным [5].

Теплопроводность определялась по экспериментальным данным, поэтому использование связи $d = [\lambda/(aC_p)]_{3\kappa c \pi}$ позволило найти плотность исследуемых образцов и ее температурную зависимость. Полученные результаты представлены на рис. 4а (данные по плотности Та и W взяты из справочника [3]). Данные по вольфраму не приведены, так как они лежат много выше (более 19×10^3 кг/м³). Видно, что значения плотностей сплавов замещения лежат между данными для Та и W. Увеличение концентрации W, обладающего большей плотностью, приводит к следующему увеличению плотностей сплавов замещения в сравнении с плотностью Та на концах температурного диапазона 1000-2500 К: 1 – (3.6–5.0)%, 2 – (5.3– 6.7)%, 3 - (6.3-7.8)%. Отметим, что плотности

сплавов замещения, рассчитанные по процентному содержанию основ, меньше рассчитанных по экспериментальным данным на 2%. Плотность сплава внедрения до температуры ~1600 К совпадает с 1, и это является свидетельством того, что политермы, по которым рассчитывались плотности, экспериментально найдены правильно. При T > 1900 К плотность $d(T)_4$ падает на ~8.6%. Подчеркнем, что метод позволяет определять плотность при использовании массивных образцов, и это особенно важно именно в области высоких температур, так как практически исключается влияние распыления материала при измерениях в вакууме в экспериментах с образцами малой геометрии и массы. Измерения в вакууме исключают и влияние инертной среды типа марки "аргон чистый" или – реже – гелий, используемых, как правило, при измерениях на образцах малых размеров [9].

Найденные значения плотности d(T) позволяют вычислить коэффициент объемного теплового расширения как функцию температуры $\beta(T)$. Результаты расчета $\beta(T)$ для сплавов и компонентов представлены на рис. 4б. Отметим линейный характер зависимости $\beta(T)$ у сплавов замещения (у сплава внедрения до T = 1900 K). Политерма 1 сплавов замещения лежит ниже таковой Та на концах диапазона соответственно на 15 и 11%, вследствие влияния вклада W, политерма которого $\beta(T)_{W}$ лежит ниже – плотность W существенно превышает плотности и Та, и сплавов. На рисунке приведена политерма $\beta(T)$ из работы [5] для Ta10W. Авторские данные отличаются от нее: при T = 1200 K - меньше на 11.8%, при T = 2200 K - 100 Kбольше на 6.5%, а температурные коэффициенты различаются в два раза. Политерма 4 для сплава внедрения в диапазоне 1000-2000 К практически совпадает с политермой 1 сплавов замещения, но в диапазоне 2000-2300 К происходит резкое увеличение до $\beta(2300) = 55.19 \times 10^{-6}$, т.е. возрастание более чем в 2 раза в конце температурного диапазона. Температурный ход $\beta(T)$ подобен температурному ходу удельной теплоемкости. Но, в отличие от политерм теплоемкости, политермы $\beta(T)$ сплавов лежат между кривыми для Та и W. C ростом температуры начинается процесс возникновения термических вакансий, сопровождающийся увеличением объема, и следовательно, уменьшением плотности, приводящим к росту $\beta(T)$, согласно выводам [21].

Следует отметить, что экспериментальное измерение коэффициента теплового расширения требует очень сложной аппаратуры, а сам эксперимент — больших временных затрат для обеспечения малых приращений температуры [22]. В настоящем методе плотность вычисляется, поэтому отпадает необходимость проведения отдельного эксперимента, что делает метод уникальным.

По экспериментальным значениям удельной теплоемкости и вычисленным величинам плот-

ности рассчитана важная характеристика свойства вещества — удельная объемная теплоемкость $C_{v}(T) = d(T)C_{n}(T)$, входящая в дифференциальное уравнение теплопроводности. Результаты ее расчета представлены на рис. 5а. Отличие в значениях $C_{v}(T)$ от таковой для Та и W больше, чем в значениях $C_p(T)$. Оно обусловлено бо́льшими различиями по плотности (рис. 4а). Увеличение концентрации W приводит к почти пропорциональному росту значений объемной теплоемкости у сплавов замешения. Политермы свойств сплавов замешения 1-3 мало отличаются друг от друга, и лежат выше таковой для Та в среднем на 10%. Изменение $C_{\rm p}(T)$ носит линейный характер у всех рассматриваемых веществ, в том числе, и у сплава внедрения до температуры 1900 К, после которой наблюдается увеличение C_{v} , доходящее до 22%при T = 2300 K, обусловленное ростом удельной теплоемкости в диапазоне 1900-2300 К, не компенсируемое падением плотности в этом же диапазоне температур. Отметим, что, в отличие от политерм удельной теплоемкости, политермы $C_{v}(T)$ сплавов лежат между политермами для Та и W (у сплава внедрения только до $T \sim 1900$ K).

Коэффициент теплоусвоения (тепловая активность) $A(T)_1 = [\lambda(T)C_v(T)]^{1/2}$ сплавов замещения линейно возрастает с температурой (рис. 56). Их политермы отличаются друг от друга не более чем на 1%, и лежат между таковыми для Та и W. У сплава внедрения $A(T)_4$ слабо меняется до T = 2100 K, после которой падает на ~7.6% при T = 2300 K – падение политермы теплопроводности не компенсируется подъемом политермы удельной объемной теплоемкости (рис. 26, 5а).

Излучательные характеристики всех сплавов практически одинаковы и не зависят от процентного содержания компонентов, что отмечено и в работе [23] при изучении других сплавов. Данные для интегральной степени черноты $\varepsilon_T(T)$ сплавов растут с 0.138 до 0.269 на концах диапазона, мало отличаясь от значений для компонентов, и весьма близки к данным работ [5] – отличие ~4.3%, [8] – отличие ~1.7%. Спектральные степени черноты $\varepsilon_{\lambda T}(T)$ ($\lambda = 0.65$ мкм) сплавов и компонентов падают на концах диапазона с 0.48 до 0.41. В пределах погрешности измерений (в среднем ~12%) их можно считать совпадающими между собой, а также с данными [5] – Та10W и [6] – Та10W и Та30W.

В работе [5] делается попытка провести взаимную корреляцию между объемными – $\rho(T)$ и поверхностными $\varepsilon_T(T)$ и $\varepsilon_{\lambda T}(T)$ свойствами, опираясь на теорию Друде и Планка.

Можно согласиться с автором [23] в том, что проводить такую корреляцию не следует, поскольку в теории отсутствует фактор, зависящий от механи-ко-химической обработки поверхности образца.

Рис. 5. Зависимости удельной объемной теплоемкости (а), тепловой активности (б) от температуры.

Известно, что путем такой обработки поверхности ее излучательные свойства можно сделать как угодно далекими или близкими к излучению абсолютно черного тела.

По полученным данным для $C_p(T)$ и $\beta(T)$ построена диаграмма Грюнайзена $\beta(C_p)$, представленная на рис. 6а (у сплава внедрения $\beta(C_p)$ достигает значения >55, поэтому оно на графике не показано). Зависимость $\beta(C_p)$ сплавов замещения представлена одной кривой 1 вследствие их неразличимости. Как и у компонентов, зависимость линейная, и данные для сплавов замещения лежат между таковыми для компонентов. Они очень близки к данным W, но сильно отличаются (на 22%) от данных для Та. Зависимость $\beta(C_p)$ сплавов замещения и компонентов описывается линейными урав-

Рис. 6. Диаграмма Грюнейзена (а) и постоянная Грюнейзена как функция теплоемкости (б).

нениями с коэффициентом достоверности аппроксимации $R^2 = 0.9998$ (множитель 10⁶ опущен):

$$\beta(C_p)_{Ta} = 1.1145C_p - 8.4723, \beta(C_p)_1 = 1.1723C_p - 14.899, \beta(C_p)_W = 1.0771C_p - 12.447.$$
(2)

Для сплава внедрения эта зависимость описывается многочленом пятой степени, т.е. носит явно аномальный характер (рис. 56). При значениях $C_p > 36.5$ величина $\beta(C_p)$ сплава внедрения нелинейно возрастает, достигая значения 55.19 × 10⁻⁶ K⁻¹.

Согласно второму закону Грюнайзена, отношение $\gamma = \beta/C_p$ должно быть постоянным [22]. Однако на рис. 6б видно, что этот закон нарушается для всех сплавов и компонентов (множитель 10⁶ опущен):

$$\gamma_{Ta} = 0.5288 + 0.0102C_p,$$

 $\gamma_1 = 0.2629 + 0.0138C_p, \quad \gamma_W = 0.2731 + 0.0129C_p.$

У сплава внедрения пропорциональность наблюдается в трех разных диапазонах C_p , при этом коэффициенты различаются по величине и знаку (рис. 6б).

Среднее значение константы $\overline{\gamma} = \beta(C_p)/C_p$ во втором законе Грюнейзена у сплавов замещения $\overline{\gamma}_1 = 0.706 \times 10^{-6}$, у сплава внедрения в области значений 29.94 < C_p < 33.49 $\overline{\gamma}_4 = 0.694 \times 10^{-6}$ и лежат между таковыми для компонентов – $\overline{\gamma}_{Ta} = 0.834 \times 10^{-6}$, $\overline{\gamma}_W = 0.674 \times 10^{-6}$ При расчете $\overline{\gamma}_4$ сплава внедрения в диапазоне 33.541 < C_p < 37.932 получаем величину 0.507 × 10⁻⁶, а в диапазоне 39.272 < C_p < 41.95 уже 9.44 × 10⁻⁶.

Дифференциальный параметр Грюнайзена $\gamma' \sim d\beta/dC_p$ находится дифференцированием выражения (2):

$$\begin{split} \gamma_{Ta}' &= 1.1145 \times 10^{-6}, \ \gamma_1' &= 1.1723 \times 10^{-6}, \\ \gamma_4' &= 6.7144 \times 10^{-6}, \ \gamma_W' &= 1.0771 \times 10^{-6}. \end{split}$$

Самый большой γ' у сплава внедрения: растет от 6.7 × 10⁻⁶ и достигает в конце диапазона величины 9.44 × 10⁻⁶.

Знание плотности сплавов позволяет найти мольный и избыточный объем (см³/моль) и плотность сплава с использованием аддитивного объема [24]. Значения мольного и аддитивного объемов сплава Ta10W приведены в табл. 2.

Мольный и аддитивный объемы находились по формулам [24]:

$$V(T) = (C_{Ta}M_{Ta} + C_{W}M_{W})/d(T)_{cn\pi},$$

$$V_{a\pi}(T) = (C_{Ta}M_{Ta})/d(T)_{Ta} + (C_{W}M_{W})/d(T)_{W},$$

где C – процент компонента в сплаве, M – мольная масса, d – плотность компонентов. Видно, что аддитивный объем больше мольного, т.е., $\Delta V = (V - V_{ag}) < 0$. У остальных сплавов эта разница больше нуля. Приведенные формулы позволяют в случае, если плотность исследуемого сплава замещения неизвестна, оценить ее по следующему соотношению в предположении, что $\Delta V = 0$:

$$d(T)_{c_{\Pi\Pi}} = (C_{Ta}M_{Ta} + C_{W}M_{W})/V_{ag}(T).$$

Т, К	1000	1200	1400	1600	1800	2000	2200	2400
<i>V</i> , см ³ /моль	10.757	10.796	10.834	10.872	10.910	10.948	10.985	11.023
$V_{\rm ad}$, см ³ /моль	10.942	11.018	11.086	11.146	11.198	11.242	11.278	11.306

Таблица 2. Мольный и аддитивный объемы сплава замещения Та10W

Отличие на концах температурного диапазона плотности сплава Ta10W, вычисленной по данной формуле, от найденной по экспериментальным данным, лежит в диапазоне 1.8–2.8%.

Примерно такие же результаты получаются и для остальных сплавов замещения. Несмотря на столь малые различия экспериментальной и расчетной плотностей, последнюю можно лишь оценивать до проведения эксперимента, потому что только экспериментально можно обнаружить аномалии в поведении политермы плотности как при исследовании сплавов замещения, так и сплавов внедрения – карбидов, где аномалии ожидаемы. В работе [25] предлагается находить коэффициент объемного расширения по соотношению $\beta(T) = (1/d)(dd/dT)$. Вычисления по данному соотношению дают отличия на концах температурного диапазона от значений β , найденных по стандартной формуле, на (-6-41)%.

Экспериментально найденные значения теплоемкости позволяют по известным из термодинамики формулам найти термодинамические потенциалы: энтальпию H, энтропию S и G – энергию Гиббса. Для этого достаточно найти уравнение, описывающее ее температурную зависимость с коэффициентом достоверности аппроксимации $R^2 \approx 1$:

$$C_p(T)_1 \times 10^{-2} = 1.37 + 2 \times 10^{-4} T$$

с последующим его интегрированием. Как показали расчеты, термодинамические потенциалы Та и W лежат несколько ниже соответствующих потенциалов сплавов замещения, т.е. отмеченная выше закономерность — политермы свойств сплавов лежат между политермами свойств основ — нарушается, как и для удельной теплоемкости $C_n(T)$.

В статье результаты экспериментов для наглядности представлены в графическом виде, что позволяет судить о характере их зависимости от температуры и других переменных, но это затрудняет получение количественных данных. Поэтому для сплавов замещения приводятся уравнения, с помощью которых можно найти количественные значения основных параметров в температурном диапазоне 1000–2500 К с коэффициентом достоверности аппроксимации $R^2 = 0.9995-1.0$:

$$\begin{split} a(T)_{1} \times 10^{6} &= 25.472 - 1.3 \times 10^{-3}T, \\ \lambda(T)_{1} &= 59.723 + 5.1 \times 10^{-3}T - 6 \times 10^{-7}T^{2}, \\ C_{p}(T)_{1} \times 10^{-2} &= 1.37 + 2 \times 10^{-4}T, \\ C_{p}(T)_{1, \text{ мольн}} &= 24.747 + 4.2 \times 10^{-3}T, \\ \rho(T)_{1} \times 10^{8} &= 13.264 + 3.23 \times 10^{-2}T, \\ \rho(T)_{3} \times 10^{8} &= 12.497 + 3.19 \times 10^{-2}T, \\ d(T)_{1} \times 10^{-3} &= 17.134 - 3 \times 10^{-4}T, \\ d(T)_{2} \times 10^{-3} &= 17.503 - 3 \times 10^{-4}T, \\ \beta(T)_{1} \times 10^{6} &= 14.296 + 4.8 \times 10^{-3}T, \\ (C_{p})_{1} \times 10^{6} &= -14.899 + 1.1723C_{p}(T)_{1, \text{мольн}} \end{split}$$

<i>Т</i> , К	$a(T) \times 10^{6},$ m^{2}/c	$C_p(T) imes 10^{-2},$ Дж/(кг К)	λ(<i>T</i>), Вт/(м К)	$ \rho(T) \times 10^8, \\ Ом м $	$d(T) \times 10^{-3},$ kg/m ³	$\frac{\beta(T) \times 10^6}{1/\mathrm{K}},$
1000	22.30	1.656	62.5	49.50	16.924	19.00
1300	21.60	1.707	62.0	59.75	16.815	20.48
1600	20.6	1.761	61.4	69.90	16.715	21.91
1900	20.20	1.807	60.5	80.20	16.585	23.43
2000	19.74	1.830	59.7	82.05	16.536	24.01
2075	19.30	1.853	59.0	85.30	16.495	24.55
2150	18.48	1.911	58.0	88.70	16.424	25.16
2200	17.46	1.969	56.7	92.20	16.326	25.74
2250	15.73	2.099	53.5	93.60	16.203	26.81
2275	14.86	2.173	52.0	94.80	16.102	29.89
2300	14.03	2.321	49.7	96.41	15.355	55.19

β

Таблица 3. Численные значения теплофизических свойств сплава внедрения Ta10W0.25C

$$\begin{split} C_{\upsilon}(T)_{1} \times 10^{-6} &= 2.34 + 3 \times 10^{-4}T, \\ C_{\upsilon}(T)_{2} \times 10^{-6} &= 2.376 + 3 \times 10^{-4}T, \\ C_{\upsilon}(T)_{3} \times 10^{-6} &= 2.393 + 3 \times 10^{-4}T, \\ A(T)_{1} \times 10^{-3} &= 11.905 + 10^{-3}T, \\ A(T)_{2} \times 10^{-3} &= 12.059 + 10^{-3}T, \\ A(T)_{3} \times 10^{-3} &= 12.153 + 10^{-3}T, \\ \varepsilon_{T}(T)_{1-4} &= -0.0319 + 2 \times 10^{-4}T - 3 \times 10^{-8}T^{2}. \end{split}$$

В связи с аномальным характером поведения всех свойств сплава внедрения, подобрать уравнения, описывающие его свойства с близким к единице коэффициентом достоверности аппроксимации не удается, так как свойства до 1900 К близки к линейным, но после ведут себя аномально. Поэтому в табл. 3 приведены экспериментальные результаты, поскольку они могут оказаться полезными для занимающихся созданием новых композитных материалов. Остальные свойства можно рассчитать по приведенным в таблице данным.

ЗАКЛЮЧЕНИЕ

В статье на конкретном материале показаны преимущества замкнутого метода исследования теплофизических свойств в области высоких температур. На основании приведенных данных можно сформулировать выводы, базирующиеся на экспериментальных результатах и правомерные для исследованного диапазона температур в пределах указанных погрешностей.

1) У сплавов замещения экспериментально выявлена линейная зависимость почти всех теплофизических свойств от температуры в диапазоне 1000–2500 К, характерная и для чистых металлов; подчиненность закономерности — политермы всех свойств, кроме политерм удельной теплоемкости и термодинамических потенциалов, лежат между политермами свойств основ — тантала и вольфрама.

2) Выявлены особенности поведения всех свойств сплава внедрения, наблюдаемые в области температур T > 1900 K, и определена температура – 1900 K – выше которой наблюдается аномальность в поведении этих свойств. Только данный сплав обладает действительно новыми свойствами, сильно отличающимися от свойств основных компонентов, и в диапазоне температур 1900–2300 K ведущими себя аномально.

СПИСОК ЛИТЕРАТУРЫ

1. Андрианова В.Г., Жук А.З., Зайченко В.Н., Зарецкий Е.Б., Петухов В.А., Чеховской В.Я. Аномальные концентрационные зависимости некоторых сплавов системы вольфрам-рений // ТВТ. 1983. Т. 21. № 1. С. 80.

- 2. Сидоров В.Е., Упоров С.А., Ягодин Д.А., Грушевский К.И., Упорова Н.С., Самохвалов Д.В. Плотность, удельное электросопротивление и магнитная восприимчивость сплавов олово-висмут при высоких температурах // ТВТ. 2011. Т. 49. № 3. С. 371.
- 3. Свойства элементов. В 2-х ч. Ч. 1. Физические свойства. Спр. 2-е изд. М.: Металлургия, 1976. 600 с.
- 4. Петухов В.А., Чеховской В.Я., Мостовой А.Г. Экспериментальное исследование теплового расширения ряда конструкционных материалов. Тантал и тантал-вольфрамовый сплав ТВ-10 // ТВТ. 1977. Т. 15. № 3. С. 534.
- 5. *Жоров Г.А.* О связи между излучательной способности и удельного электросопротивления в металлах // ТВТ. 1967. Т. 5. № 6. С. 987.
- 6. *Мазаев А.А*. Определение коэффициентов излучения сплавов тантал–вольфрам // ТВТ. 1970. Т. 8. № 1. С. 216.
- Taylor R.E., Kimbrough W.D., Powell R.W. Thermophysical Properties of Tantalum, Tungsten, and Tantalum-10 wt. per cent Tungsten at High Temperatures // J. Less Common Metals. 1971. V. 24. № 4. P. 369.
- 8. *Арутюнов А.В., Банчила С.Н.* Тепловые свойства тантал-вольфрамовых сплавов в области высоких температур // ТВТ. 1972. Т. 10. № 1. С. 190.
- 9. Ивлиев А.Д. Метод температурных волн в теплофизических исследованиях (анализ советского и российского опыта) // ТВТ. 2009. Т. 47. № 5. С. 771.
- Филиппов Л.П. Измерение тепловых свойств твердых и жидких металлов при высоких температурах. М.: Изд-во Московского университета, 1967. 325 с.
- Макаренко И.Н. Исследование теплопроводности и теплоемкости металлов в области температур 1000–2500 К. Дисс. ... канд. физ.-мат. наук. М.: Институт кристаллографии, 1970. 162 с.
- 12. Макаренко И.Н., Арутюнов А.В., Филиппов Л.П. Установка для измерения тепловых характеристик металлов при высоких температурах // Заводская лаборатория. 1969. № 9. С. 1129.
- Румянцев А.В., Никишин М.А., Харюков В.Г. Бесконтактный метод измерения удельного электросопротивления металлов в области высоких температур // ПТЭ. 2019. № 3. С. 143.
- Арутюнов А.В., Макаренко И.Н., Труханова Л.Н., Филиппов Л.П. Тепловые свойства тантала в области высоких температур // Вестник МГУ. Серия: физика–астрономия. 1970. № 3. С. 21.
- Арутюнов А.В., Филиппов Л.П. Тепловые свойства вольфрама при высоких температурах. В кн.: Теплофизические свойства веществ и материалов. М.: Издательство стандартов, 1972. Вып. 5. С. 97.
- Ганиев И.Н., Муллоева Н.М., Низомов З., Обидов Ф.У., Ибрагимов Н.Ф. Температурная зависимость теплоемкости и термодинамических функций сплавов системы Pb-Ca // TBT. 2014. Т. 52. № 1. С. 147.
- 17. Ивлиев А.Д., Черноскутов М.Ю., Мешков В.В., Куриченко А.А. Теплофизические свойства твердых растворов иттрий—гольмий в интервале температур от комнатной до 1400 К // ТВТ. 2020. Т. 58. № 3. С. 336.

- Мурлиева Ж.Х., Исхаков М.Э., Палчаев Д.К., Фараджева М.П., Черных Д.Г. Температурная зависимость электросопротивления сплавов, обусловленная динамическим и статическим беспорядком // ТВТ. 2012. Т. 50. № 5. С. 644.
- 19. Палчаев Д.К., Мурлиева Ж.Х., Казбеков К.К. Связь удельного сопротивления металлов с термической деформацией // ТВТ. 2007. Т. 45. № 5. С. 700.
- Займан Дж. Электроны и фононы. М.: Изд-во ИЛ, 1962. 488 с.
- Ковалихин С.В., Ковалев Д.Ю., Пономарев В.И. Определение коэффициента теплового расширения карбида бора состава B₁₃C₂ // ТВТ. 2018. Т. 56. № 5. С. 694.

- 22. Новикова С.И. Тепловое расширение твердых тел. М.: Наука, 1974. 294.
- 23. Бельская Э.А. Излучательная способность и электросопротивление сплавов титана с алюминием и ванадием // ТВТ. 2012. Т. 50. № 4. С. 509.
- 24. *Станкус С.В., Хайрулин Р.А.* Свойства сплавов Sn-Pb в твердом и жидком состояниях // ТВТ. 2006. Т. 44. № 3. С. 393.
- 25. Станкус С.В., Хайрулин Р.А., Мозговой А.Г. Экспериментальное исследование плотности и коэффициента термического расширения перспективных материалов и теплоносителей жидкометаллических систем термоядерного реактора. Свинец-литиевая эвтектика // ТВТ. 2006. Т. 44. № 6. С. 838.