УДК 66.01

ИЗУЧЕНИЕ ФАЗОВОГО РАВНОВЕСИЯ В ТРЕХКОМПОНЕНТНЫХ СИСТЕМАХ, ОБРАЗОВАННЫХ 2,2,2-ТРИФТОРЭТАНОЛОМ, ВОДОЙ И ОРГАНИЧЕСКИМИ СПИРТАМИ

© 2019 г. Е. В. Лупачев^{1, *}, А. В. Полковниченко^{1, 2}, С. Я. Квашнин¹, В. А. Лотхов¹, Н. Н. Кулов¹

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, 119071 Россия ²МИРЭА – Российский технологический университет (Институт тонких химических технологий),

> Москва, 119571 Россия *E-mail: egorlu91@gmail.com Поступила в редакцию 21.12.2018 г. После доработки 14.01.2019 г. Принята к публикации 17.01.2019 г.

Экспериментально изучено фазовое равновесие бинарных составляющих трехкомпонентных систем, образованных 2,2,2-трифторэтанолом, водой и органическим спиртом (метанолом, этанолом или изопропанолом). Показано, что системы метанол–2,2,2-трифторэтанол, 2,2,2-трифторэтанол– этанол и 2,2,2-трифторэтанол–изопропанол при атмосферном давлении характеризуются наличием бинарных азеотропов с максимумом температуры кипения. С помощью программного комплекса Aspen Plus[®] V. 9.0 рассчитано фазовое равновесие следующих трехкомпонентных систем: 2,2,2-трифторэтанол–метанол–вода, 2,2,2-трифторэтанол–этанол–вода, 2,2,2-трифторэтанол– изопропанол–вода.

Ключевые слова: 2,2,2-трифторэтанол, фторорганические соединения, парожидкостное равновесие (ПЖР), математическое моделирование

DOI: 10.1134/S0040357119030060

введение

Одним из способов, используемых в настоящее время для получения фторорганических спиртов, является восстановление эфира соответствующей фторорганической кислоты гидроборатом натрия или алюмогидридами [1]. В результате синтеза образуется смесь, состоящая из фторированного и органического спиртов и побочные неорганические соединения. Для выделения неорганических продуктов реакции смесь разбавляют водой, в результате чего образуется две фазы. После отделения водной фазы, оставшаяся органическая фаза содержит фторорганический спирт, воду и органический спирт. Следующая стадия очистки, предполагает выделение из образованной смеси фторорганического спирта требуемой чистоты. Однако, технологические аспекты этого этапа выделения фторорганических спиртов, освещены в литературе недостаточно полно. Для разработки технологии выделения и очистки фторорганического спирта, требуется наличие исчерпывающей информации о фазовом равновесии жидкость-пар в изучаемых системах.

В зависимости от способа используемого при получении 2,2,2-трифторэтанола сырья, на финальную стадию очистки поступает смесь 2,2,2-трифторэтанола, воды и одного из перечисленных далее спиртов: метанола, этанола или изопропанола. Данных по фазовому равновесию исследуемых трехкомпонентных систем в литературе нет, а данные по парожидкостному равновесию (ПЖР) их бинарных составляющих, включающих 2,2,2-трифторэтанол, весьма ограничены.

В работах [2–5] приведены данные ПЖР для бинарной системы 2,2,2-трифторэтанол—вода. К сожалению, в работе [5] отсутствует информация о составе паровой фазы, а изотермические данные работ [3, 4] не соответствуют рабочему диапазону давлений. Изобарические данные по ПЖР, приведенные в работе [2] для системы 2,2,2-трифторэтанол—вода при давлении 101 кПа, ограничены диапазонами от 0.15 до 0.9 мол. д. по составу жидкой фазы и от 0.55 до 0.93 мол. д. по составу паровой фазы и не охватывают весь диапазон концентраций.

В работе [6] приведены данные по фазовому равновесию системы 2,2,2-трифторэтанол—этанол. Материалы этой работы представляют собой локализо-

Рис. 1. Эбулиометр Свентославского, снабженный трубкой Коттреля: *1* – куб, *2* – насос Коттреля, *3* – карман для термометра, *4* – стеклянная спираль, *5* – сепарационное пространство, *6* – холодильник, *7* – счетчик капель, *8* – переточная трубка.

ванную точку азеотропа, а приведенные в статье [6] зависимости равновесной температуры от состава паровой и жидкой фаз не позволяют использовать полученные данные из-за возникающей погрешности при интерпретации графических данных.

Цель настоящей работы — экспериментальное и вычислительное исследование фазового равновесия жидкость-пар в трехкомпонентных системах 2,2,2-трифторэтанол—метанол—вода, 2,2,2трифторэтанол—этанол—вода, 2,2,2-трифторэтанол—изопропанол—вода в широком диапазоне концентраций.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы. В качестве реактивов использовали 2,2,2-трифторэтанол (CF₃CH₂OH), дополнитель-

Таблица 1. Данные по чистым веществам, представленные в программном комплексе Aspen Plus[®] V.9.0

i	М, г/моль	<i>T</i> _{кип} , °С при 760 мм рт.ст.	р, г/см ³ при 20°С
CF ₃ CH ₂ OH	100.04	73.81	1.3912
CH ₃ OH	32.04	64.53	0.7943
CH ₃ CH ₂ OH	46.069	78.31	0.7903
CH ₃ CHOHCH ₃	60.095	82.05	0.7867
Вода	18.015	100.02	0.9965

но очищенный в лаборатории путем ректификации. Содержание основного вещества составило 99.4 мас. %, содержание воды было не более 0.05 мас. %; метанол и этанол имели чистоту 99.5 мас. %, а изопропанол (СН₃СНОНСН₃) категории ОСЧ 99.9 мас. %. Содержание воды не более 0.09 мас. %. Чистоту используемых веществ определяли на газовом хроматографе GC2010 Plus Shimadzu с пламенноионизационным детектором, газ-носитель – азот. Содержание воды определяли по методу Фишера.

Исследуемые системы. В настоящей работе проведено исследование фазового равновесия жидкость-пар трех трехкомпонентных систем: $CF_3CH_2OH-CH_3OH-H_2O$, $CF_3CH_2OH-CH_3OH-H_2OH-CH_3CHOHCH_3-H_2O$.

Оборудование. Эксперименты проводили на модифицированном эбулиометре Свентославского с объемом загрузки 50 мл, снабженном насосом Коттреля. Схема установки представлена на рис. 1. Давление измеряли аналоговым барометром с точностью 0.5 мм рт. ст., равновесную температуру измеряли ртутным термометром с точностью 0.1°С.

Масса навесок измерялась на аналитических весах с точностью 0.0001 г. Пробы кубовой жидкости и парового конденсата анализировали на рефрактометре ИРФ-454 Б2М; диапазон показателей преломления n_D от 1.2 до 1.7 с точностью измерения 1 × 10⁻⁴.

Методика проведения эксперимента. Все эксперименты проводили при атмосферном давлении. Чтобы убедиться, что фазовое равновесие достигнуто, после установления температуры систему выдерживали в течение 30 мин и более, после чего проводили отбор кубовой жидкости и парового конденсата.

ОБРАБОТКА РЕЗУЛЬТАТОВ

Использованные в расчетах физико-химические свойства чистых веществ взяты из базы программного комплекса Aspen Plus[®] V.9.0 (табл. 1).

При моделирование ПЖР изучаемых систем давления чистых компонентов метанола, этанола, изопропанола и воды рассчитывались по уравнению Антуана:

$$\ln p_i = C_{1i} + \frac{C_{2i}}{T + C_{3i}} + C_{4i}T + C_{5i}\ln T + C_{6i}T^{C_{7i}}.$$
 (1)

Параметры уравнения Антуана, взятые из программного комплекса Aspen Plus[®] V.9.0 для диапазона температур $C_{8i} \leq T \leq C_{9i}$, приведены в табл. 2.

Парциальное давление 2,2,2-трифторэтанола рассчитывалось по уравнению Вагнера:

Таблица 2. Коэффициенты уравнения Антуана

i	Метанол	Этанол	Изопропанол	Вода
C_{1i}	77.8252	68.4112	105.8272	68.7562
C_{2i}	-6904.5	-7122.3	-9040	-7258.2
C_{3i}	0	0	0	0
C_{4i}	0	0	0	0
C_{5i}	-8.8622	-7.1424	-12.6760	-7.3037
C_{6i}	7.47×10^{-6}	2.89×10^{-6}	5.54×10^{-6}	4.17×10^{-6}
C_{7i}	2	2	2	2
C_{8i}	-97.68	-114.10	-87.89	0.01
C_{9i}	239.35	240.85	235.15	373.95

$$\ln p_{i} = \ln p_{ci} + \frac{C_{1i} \left(1 - T_{ri}\right) + C_{2i} \left(1 - T_{ri}\right)^{1.5} + C_{3i} \left(1 - T_{ri}\right)^{2.5} + C_{4i} \left(1 - T_{ri}\right)^{5}}{T_{ri}},$$
(2)

где $T_{ri} = T/T_{ci}$.

Параметры уравнения Вагнера, взятые из программного комплекса Aspen Plus[®] V.9.0 для диапазона температур $T_{\text{low}} \le T \le T_{\text{up}}$, приведены в табл. 3.

Проверка полученных экспериментальных данных на термодинамическую сходимость была выполнена по методу, предложенному в работе [7], с помощью уравнения Дюгема—Маргулеса и в программном комплексе Aspen Plus[®] V.9.0 по методу Херингтона и Редлиха—Кистера [7–9].

Анализа взаимного расположения графических зависимостей коэффициентов активности от состава смеси $\gamma_1 = f(x_1)$ и $\gamma_2 = f(x_2)$ показал, что экспериментальные данные не противоречат условию, выраженному уравнением Дюгема–Маргулеса и, следовательно, все четыре изученные системы качественно удовлетворяют термодинамическим требованиям.

Количественная проверка адекватности экспериментальных данных путем вычисления интеграла

i 2,2,2-трифторэтанол C_{1i} -8.85513 C_{2i} 2.02666 C_{3i} -6.3807 C_{4i} -2.93655lnp_{ci} 10.4929 T_{ci} 225.42 $T_{\rm low}$ -44.05225.42 $T_{\rm up}$

Таблица 3. Коэффициенты уравнения Вагнера

Херингтона и Редлиха–Кистера дала следующие результаты: 2,2,2-трифторэтанол–вода 8.51%, метанол–2,2,2-трифторэтанол 3.77%, 2,2,2-трифторэтанол–этанол 3.60% и 2,2,2-трифторэтанол–олазопропанол – 0.35%. Для системы 2,2,2-трифторэтанол–вода величина интеграла Херингтона и Редлиха–Кистера принимает кратно большее значение, которое, однако, близко к значению полученному для данных работы [2] – 10.29%, для остальных систем, полученные результаты позволяют утверждать, что погрешность в определении состава паровой фазы не превышает 1% [7].

При выборе модели к ним предъявлялись следующие требования: применимость для условий эксперимента, возможность моделирования многокомпонентных систем, наличие необходимых для расчета данных о физико-химических свойствах чистых компонентов, наличие параметров выбранных моделей для систем метанол—вода, этанол—вода, изопропанол—вода. Из предложенных программным комплексом Aspen Plus® V.9.0 были выбраны модели локальных составов Non-Random Two-Liquid (NRTL) (3) и Wilson (4) для описания отклонения от идеального поведения жидкой фазы. В процессе расчета ПЖР паровую фазу считали идеальной:

$$\ln \gamma_{i} = \frac{\sum_{j} x_{j} \tau_{ji} G_{ji}}{\sum_{k} x_{k} G_{ki}} + \sum_{j} \frac{x_{j} G_{ij}}{\sum_{k} x_{k} G_{kj}} \left(\tau_{ij} - \frac{\sum_{m} x_{m} \tau_{mj} G_{mj}}{\sum_{k} x_{k} G_{kj}} \right),$$
(3)

где $G_{ij} = \exp(-\alpha_{ij}\tau_{ij}); \tau_{ij} = \alpha_{ij} + b_{ij}/T; \alpha_{ij} = c_{ij}; \tau_{ii} = 0;$ $G_{ii} = 1.$

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 53 № 3 2019

Характеристики азеотропа	[12]	NRTL	Wilson
<i>х</i> ₁ , мол. д.	0.891	0.8952	0.8722
T, °C	78.17	78.15	77.98

Таблица 4. Характеристики азеотропа в системе этанол(1)–2,2,2-трифторэтанол(2) при 101.3 кПа

$$\ln \gamma_i = 1 - \ln \left(\sum_j A_{ij} x_j \right) - \sum_j \frac{A_{ji} x_j}{\sum_k A_{jk} x_k}, \quad (4)$$

где $\ln A_{ii} = a_{ii} + b_{ii}/T + c_{ii}\ln T + d_{ii}T + e_{ii}/T^2$.

Параметры бинарного взаимодействия уравнений NRTL и Wilson для систем органический спирт – вода были взяты для случая идеальной паровой фазы из программного комплекса Aspen Plus[®] V.9.0 – набор коэффициентов APV90 VLE-IG. Для систем 2,2,2-трифторэтанол-вода, метанол-2,2,2-трифторэтанол, 2,2,2-трифторэтанол-этанол, 2,2,2-трифторэтанол-изопропанол параметры бинарного взаимодействия в программном комплексе Aspen Plus[®] V.9.0 отсутствуют. В случае описания системы метанол-вода модели NRTL и Wilson коррелируют как между собой, так и с экспериментальными данными [10, 11]. В случае описания системы этанол-вода модели NRTL и Wilson дают различные характеристики азеотропа. Данные по составу азеотропа работы [12] и полученные по моделям NRTL и Wilson представлены в табл. 4.

Анализ экспериментальных данных работ [13, 14] показал различие равновесных данных по температуре и составу паровой фазы в системе изопропанол—вода при давлении 101.32 кПа. В случае моделирования ПЖР в системе изопропанол—вода также наблюдается существенное различие в описании фазового равновесия доступными в программном комплексе Aspen Plus[®] V.9.0 параметрами бинарного взаимодействия моделей NRTL и Wilson. При этом, уравнение NRTL дает меньшую погрешность по температуре, а уравнение Wilson дает меньшую погрешность по составу фаз. Так как целью настоящей работы является качественное изучение и анализ концентрационного симплекса рассматриваемых трехкомпонентных систем, описание фазового равновесия бинарных составляющих спирт вода можно считать удовлетворительным.

Для оценки адекватности модели был проведен расчет состава паровой фазы и равновесной температуры для каждой отдельно взятой точки при ее экспериментальном значении давления и составе жидкой фазы. Коэффициенты бинарного взаимодействия уравнений NRTL и Wilson для систем 2,2,2-трифторэтанол—вода, метанол— 2,2,2-трифторэтанол, 2,2,2-трифторэтанол—этанол, 2,2,2-трифторэтанол—изопропанол приведены в табл. 5 и 6 соответственно. Приведенные в табл. 5 и 6 параметры бинарного взаимодействия рекомендуется использовать в исследуемом диапазоне давлений.

Экспериментальные и расчетные данные по фазовому равновесию жидкость-пар в системе 2,2,2-трифторэтанол—вода приведены в табл. 7. При оценке параметров бинарного взаимодействия уравнений Wilson и NRTL использовались два набора экспериментальных данных: приведенные в табл. 7 и данные работы [2]. На рис. 2 представлены зависимости x = f(y) и T = f(x, y) в системе 2,2,2-трифторэтанол—вода по данным табл. 7 и работы [2], а также модели NRTL и Wilson при давлении 755 мм рт. ст. Из приведенных зависимостей следует, что полученные в настоящей работе экспериментальные результаты и данные работы [2] согласуются.

Для полученных в настоящей работе экспериментальных данных (табл. 7) абсолютная ошибка по температуре составляет: для модели NRTL – 0.3°C, для модели Wilson – 0.3°C; абсолютная ошибка по составу паровой фазы составляет: для модели NRTL – 0.0282 мол. д., для модели Wilson – 0.0288 мол. д.; относительная ошибка по составу паровой фазы составляет: для модели NRTL – 5.32%, для модели Wilson – 5.47%. В системе

i	2,2,2-трифторэтанол	Метанол	2,2,2-трифторэтанол	2,2,2-трифторэтанол	
j	Вода	2,2,2-трифторэтанол	Этанол	Изопропанол	
A_{ij}	1.84590	0	7.93865	0	
A_{ji}	22.4979	0	-3.35524	0	
B _{ij}	-804.298	-17.5675	-2974.84	-219.124	
B_{ji}	-7059.07	-263.043	1051.80	-140.609	
C _{ij}	0.3	0.3	0.3	0.3	

Таблица 5. Коэффициенты бинарного взаимодействия уравнения NRTL

ИЗУЧЕНИЕ ФАЗОВОГО РАВНОВЕСИЯ

i	2,2,2-трифторэтанол	Метанол	2,2,2-трифторэтанол	2,2,2-трифторэтанол	
j	Вода 2,2,2-трифторэтан		Этанол	Изопропанол	
A _{ij}	-2.10336	0	1.60211	0	
A_{ji}	-13.0978	0	45.2462	0	
B _{ij}	-103.616	204.951	-2976.38	151.138	
B_{ji}	4632.42	71.5644	2480.64	194.851	
C_{ij}	0	0	1.23366	0	
C_{ji}	0	0	-8.83805	0	

Таблица 6. Коэффициенты бинарного взаимодействия уравнения Wilson

Таблица 7. Экспериментальные и расчетные данные по фазовому равновесию жидкость пар в системе 2,2,2-трифторэтанол(1)-вода(2)

	<i>T</i> , °C				<i>у</i> ₁ , мол. д.		
<i>P</i> , мм рт. ст.	Эксп	модель		<i>x</i> ₁ , мол. д.	Эксп	модель	
	OKCII.	NRTL	Wilson		OKCII.	NRTL	Wilson
746	89.9	89.5	89.6	0.0157	0.3502	0.3190	0.3147
746	87.4	87.0	86.9	0.0269	0.4330	0.3855	0.3865
737.1	87.5	85.9	85.7	0.0333	0.4352	0.4084	0.4106
745	86.3	85.6	85.5	0.0369	0.4632	0.4221	0.4235
750	83.8	84.2	84.1	0.0527	0.5517	0.4616	0.4606
748.5	82.2	82.4	82.5	0.0853	0.5665	0.5062	0.5005
753	82.6	82.5	82.6	0.0860	0.5447	0.5077	0.5018
745	81.18	81.0	81.2	0.1351	0.5880	0.5408	0.5320
753	80.8	80.5	80.7	0.1837	0.5855	0.5618	0.5546
752	79.4	79.6	79.5	0.2807	0.6287	0.5924	0.5912
752	78.8	78.7	78.5	0.3834	0.6426	0.6284	0.6323
753.3	77.81	77.9	77.7	0.4799	0.6919	0.6705	0.6762
753	76.9	77.0	76.9	0.5781	0.7358	0.7218	0.7270
747.1	75.6	75.8	75.7	0.7004	0.8052	0.7960	0.7993
747.5	74.82	74.9	74.9	0.8070	0.8641	0.8664	0.8680
736.5	74	74.2	74.2	0.8521	0.9003	0.8979	0.8993
750	74.2	74.3	74.3	0.8971	0.9315	0.9283	0.9289
749	74.2	74.2	74.2	0.9056	0.9348	0.9343	0.9349

2,2,2-трифторэтанол—вода следует отметить низкие значения коэффициента относительной летучести компонентов при высоких концентрациях 2,2,2-трифторэтанола, а S образный ход кривой равновесного пара на графике зависимости T = f(x, y) может быть вызван проявлением поверхностно активных свойств 2,2,2-трифторэтанола в водном растворе и, как следствие, наличием градиента концентраций в растворе.

Экспериментальные и расчетные данные по фазовому равновесию жидкость-пар в системе метанол—2,2,2-трифторэтанол приведены в табл. 8. Для системы метанол—2,2,2-трифторэтанол данные ПЖР были получены в настоящей работе впервые. Оценка параметров бинарного взаимодействия уравнений Wilson и NRTL проводилась по полному набору экспериментальных данных табл. 8. На рис. 3 представлены зависимости x = f(y)и T = f(x, y) в системе метанол—2,2,2-трифторэтанол для данных табл. 8, а также модели NRTL и Wilson при давлении 754 мм рт. ст.

Для полученных в настоящей работе экспериментальных данных (табл. 8) абсолютная ошибка по температуре составляет: для модели NRTL – ЛУПАЧЕВ и др.

*у*₁, мол. д. (a) (б) T, °C a 1.0 100° б 0.9 95 0.8 Пар 0.7 2 90 0.6 1 2 0.5 85 0.480 0.3 0.2 75 0.1 Жидкость 700 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.8 0.9 1.0 *x*₁, мол. д. *x*₁, *y*₁, мол. д.

Рис. 2. Система 2,2,2-трифторэтанол(1)–вода(2): (а) – зависимость состава паровой фазы от состава жидкой фазы; (б) – зависимость температуры кипения смеси от составов жидкой и паровой фаз. *a*, *б* – экспериментальные данные; *в*, *е* – литературные данные [2]; *1* – модель NRTL 755 мм рт. ст.; *2* – модель Wilson 755 мм рт. ст.

0.1°С, для модели Wilson — 0.1°С; абсолютная ошибка по составу паровой фазы составляет: для модели NRTL — 0.0047 мол. д., для модели Wilson — 0.0047 мол. д.; относительная ошибка по составу паровой фазы составляет: для модели NRTL — 1.59%, для модели Wilson — 1.60%. Результаты эксперимента показали наличие в системе метанол(1)—2,2,2-трифторэтанол(2) азеотропа с максимумом температуры кипения. Характеристики азеотропа, полученные по моделям NRTL и Wilson при давлении 755 мм рт. ст.: $x_1 = 0.3185$ мол. д.,

T = 75.53°С и $x_1 = 0.3160$ мол. д., T = 75.54°С соответственно.

Экспериментальные и расчетные данные по фазовому равновесию жидкость-пар в системе 2,2,2-трифторэтанол—этанол приведены в табл. 9. При оценке параметров бинарного взаимодействия уравнений Wilson и NRTL использовали данные приведенные в табл. 9 с учетом данных по составу азеотропа работы [6]. На рис. 4 представлены зависимости x = f(y) и T = f(x, y) в системе 2,2,2-трифторэтанол—этанол для данных табл. 9,

Таблица 8. Экспериментальные и расчетные данные по фазовому равновесию жидкость пар в системе метанол(1)–2,2,2-трифторэтанол(2)

<i>Р</i> , мм рт. ст.	<i>T</i> , °C				<i>у</i> ₁ , мол. д.			
	2	модель		<i>х</i> ₁ , мол. д.	Эксп	МОД	модель	
	OKCII.	NRTL	Wilson	-	OKCII.	NRTL	Wilson	
754	74.6	74.6	74.6	0.1146	0.0906	0.0874	0.0873	
754	75.2	75.3	75.3	0.2210	0.1816	0.1965	0.1969	
757	75.7	75.6	75.6	0.3108	0.3099	0.3082	0.3090	
754	75.7	75.5	75.5	0.3578	0.3724	0.3723	0.3733	
757	75.6	75.4	75.4	0.3932	0.4300	0.4222	0.4232	
757	74.8	74.6	74.6	0.5041	0.5734	0.5813	0.5817	
750	73.2	73.1	73.1	0.5927	0.7064	0.7011	0.7010	
750	71.2	71.2	71.2	0.6912	0.8106	0.8149	0.8145	
751	69	69.0	69.0	0.7898	0.8956	0.9018	0.9014	
734	66	66.0	66.0	0.8918	0.9619	0.9627	0.9627	
733.5	64.8	64.6	64.6	0.9505	0.9858	0.9859	0.9860	

Рис. 3. Система метанол(1)–2,2,2-трифторэтанол(2): (а) – зависимость состава паровой фазы от состава жидкой фазы; (б) – зависимость температуры кипения смеси от составов жидкой и паровой фаз. *a*, *б* – экспериментальные данные; *I* – модель NRTL 754 мм рт. ст.; *2* – модель Wilson 754 мм рт. ст.

а также модели NRTL и Wilson при давлении 750 мм рт. ст.

Для полученных в настоящей работе экспериментальных данных (табл. 9) абсолютная ошибка по температуре составляет: для модели NRTL -0.1°С, для модели Wilson – 0.1°С; абсолютная ошибка по составу паровой фазы составляет: для модели NRTL – 0.0036 мол. д., для модели Wilson – 0.0040 мол. д.; относительная ошибка по составу паровой фазы составляет: для модели NRTL -1.17%, для модели Wilson - 1.28%. Результаты эксперимента показали наличие в системе 2,2,2трифторэтанол(1)-этанол(2) азеотропа с максимумом температуры кипения. Характеристики азеотропа, полученные по моделям NRTL и Wilson при давлении 750 мм рт. ст.: $x_1 = 0.4001$ мол. д., T = 81.68°С и $x_1 = 0.4070$ мол. д., T = 81.60°С соответственно.

Экспериментальные и расчетные данные по фазовому равновесию жидкость-пар в системе 2,2,2-трифторэтанол—изопропанол приведены в табл. 10. Для системы 2,2,2-трифторэтанол—изопропанол данные ПЖР были получены впервые. Оценка параметров бинарного взаимодействия уравнений Wilson и NRTL проводили по полному набору экспериментальных данных табл. 10. На рис. 5 представлены зависимости x = f(y) и T = f(x, y)в системе 2,2,2-трифторэтанол—изопропанол для данных табл. 10, а также модели NRTL и Wilson при давлении 763 мм рт. ст.

Для полученных в настоящей работе экспериментальных данных (табл. 10) абсолютная ошибка по температуре составляет: для модели NRTL – 0.1°C, для модели Wilson – 0.1°C; абсолютная ошибка по составу паровой фазы составляет: для модели NRTL – 0.0047 мол. д., для модели Wilson – 0.0050 мол. д.; относительная ошибка по составу паровой фазы составляет: для модели NRTL – 3.16%, для модели Wilson – 3.32%. Результаты эксперимента показали наличие в системе 2,2,2-трифторэтанол(1)—изопропанол(2) азеотропа с максимумом температуры кипения. Характеристики азеотропа, полученные по моделям NRTL и Wilson при давлении 763 мм рт. ст.: $x_1 = 0.3496$ мол. д., $T = 85.71^{\circ}$ С и $x_1 = 0.3479$ мол. д., $T = 85.71^{\circ}$ С соответственно.

Согласно данным работ [6, 15] неидеальность фазового равновесия жидкость-пар в рассмотренных выше системах можно объяснить образованием межмолекулярных комплексов.

Моделирование фазового равновесия жидкость пар при давлении 760 мм рт. ст. указывает на отсутствие трехкомпонентного азеотропа в системе метанол-2,2,2-трифторэтанол—вода. На рис. 6 приведен ход сепаратрисы и дистилляционных линий и положение бинарного азеотропа метанол—2,2,2трифторэтанол построенные по модели Wilson. Для сравнения на графике представлен состав азеотропа по модели NRTL.

В случае описания фазового равновесия в системе метанол—2,2,2-трифторэтанол—вода моделями NRTL и Wilson различий практически нет. Из анализа рисунка следует, что система разделена на две подобласти дистилляции, границей

ЛУПАЧЕВ и др.

	<i>T</i> , °C				<i>у</i> ₁ , мол. д.			
<i>Р</i> , мм рт. ст.	Экон	МОД	ель	<i>х</i> ₁ , мол. д.	Экон	МОД	модель	
	GKCII.	NRTL	Wilson		Skell.	NRTL	Wilson	
747.9	78.7	78.4	78.7	0.0524	0.0278	0.0270	0.0268	
747	78.7	78.6	78.6	0.0528	0.0285	0.0273	0.0270	
740	79.2	79.2	79.2	0.1091	0.0660	0.0652	0.0651	
740	79.9	79.8	79.8	0.1606	0.1118	0.1084	0.1088	
753	80.9	80.8	80.7	0.2081	0.1590	0.1558	0.1564	
754	81.3	81.2	81.2	0.2596	0.2143	0.2137	0.2138	
754	81.3	81.5	81.4	0.3030	0.2660	0.2675	0.2667	
744.5	81.6	81.4	81.3	0.3500	0.3269	0.3298	0.3282	
747	81.6	81.6	81.5	0.4013	0.4000	0.4018	0.3991	
747	81.6	81.5	81.5	0.4501	0.4709	0.4723	0.4688	
752	81.5	81.4	81.4	0.5055	0.5556	0.5523	0.5485	
753	81.2	81.1	81.1	0.5512	0.6215	0.6169	0.6134	
742	80.2	80.1	80.2	0.6055	0.6912	0.6905	0.6884	
743	79.6	79.7	79.7	0.6447	0.7482	0.7397	0.7384	
748	79.0	79.0	79.0	0.7011	0.8161	0.8037	0.8033	
751	78.4	78.5	78.5	0.7356	0.8491	0.8386	0.8387	
748.2	76.5	76.6	76.6	0.8287	0.9228	0.9163	0.9166	
751	75.4	75.5	75.5	0.8908	0.9579	0.9546	0.9546	
753	74.6	74.6	74.5	0.9457	0.9790	0.9805	0.9804	

Таблица 9. Экспериментальные и расчетные данные по фазовому равновесию жидкость пар в системе 2,2,2-трифторэтанол(1)—этанол(2)

между ними выступает криволинейное разделяющее многообразие азеотроп—вода. Для каждой из подобластей дистилляции I и II имеется свой набор продуктовых потоков. Неустойчивым узлом N^- (фракция с минимальной температурой кипения) подобласти I (метанол—азеотроп—вода) является метанол, а подобласти II — 2,2,2-трифторэтанол. Устойчивым узлом N^+ , т. е. фракцией с максимальной температурой кипения, для обеих подобластей дистилляции I и II, является вода.

Моделирование фазового равновесия жидкость пар при давлении 760 мм рт. ст. указывает на наличие трехкомпонентного азеотропа в системе 2,2,2-трифторэтанол—этанол—вода. На рис. 7 приведен ход сепаратрис и дистилляционных линий и положение бинарных и трехкомпонентного азеотропов построенные по модели Wilson. Для сравнения на графике представлены составы азеотропов по модели NRTL.

Согласно табл. 4 описание характеристик азеотропа этанол—вода моделью NRTL лучше согласуется с экспериментальными данными. Из анализа рисунка следует, что система разделена на четыре подобласти дистилляции. Для каждой из подобластей дистилляции I, II, III, и IV имеется свой набор продуктовых потоков. Неустойчивым узлом N⁻ (фракция с минимальной температурой кипения) подобластей I, II является 2,2,2-трифторэтанол, подобластей III и IV – бинарный азеотроп этанол—вода. Устойчивым узлом N⁺, т. е. фракцией с максимальной температурой кипения, подобластей дистилляции I и IV, является бинарный азеотроп 2,2,2-трифторэтанол—этанол, а подобластей II и III – вода.

Рис. 4. Система 2,2,2-трифторэтанол(1)—этанол(2): (а) — зависимость состава паровой фазы от состава жидкой фазы; (б) — зависимость температуры кипения смеси от составов жидкой и паровой фаз. *a*, *б* — экспериментальные данные; *I* — модель NRTL 750 мм рт. ст.; *2* — модель Wilson 750 мм рт. ст.

Моделирование фазового равновесия жидкость пар при давлении 760 мм рт. ст. указывает на наличие трехкомпонентного азеотропа в системе 2,2,2-трифторэтанол—изопропанол—вода. На рис. 8 приведен ход сепаратрис и дистилляционных линий и положение бинарных и трехкомпонентного азеотропов построенные по модели Wilson. Для сравнения на графике представлены составы азеотропов по модели NRTL.

Из рис. 8 следует, что обе модели имеют сходимость в описании бинарного азеотропа 2,2,2-трифторэтанол—изопропанол, но дают существен-

<i>Р</i> , мм рт. ст.	<i>T</i> , °C				<i>у</i> ₁ , мол. д.		
	Экон	МОД	ель	<i>х</i> ₁ , мол. д.	Экон	МОД	цель
	OKCII.	NRTL	Wilson		OKCII.	NRTL	Wilson
763	83	82.8	82.9	0.0489	0.0306	0.0249	0.0247
728.5	82.2	82.1	82.1	0.0787	0.0479	0.0437	0.0434
729	82.6	82.5	82.5	0.1068	0.0676	0.0640	0.0639
763	84.8	84.8	84.8	0.1980	0.1510	0.1491	0.1495
763	85.4	85.6	85.6	0.2965	0.2721	0.2724	0.2733
759	85.4	85.5	85.6	0.3251	0.3234	0.3133	0.3142
752.5	85.2	85.3	85.3	0.3289	0.3137	0.3189	0.3198
755	85.2	85.4	85.4	0.3337	0.3243	0.3260	0.3269
763	85.5	85.6	85.6	0.3958	0.4152	0.4205	0.4212
763	84.8	84.9	84.9	0.4852	0.5678	0.5595	0.5595
763	83.2	83.2	83.2	0.5930	0.7183	0.7131	0.7125
755	80.8	80.8	80.8	0.6911	0.8297	0.8257	0.8250
753.5	78.2	78.4	78.4	0.7882	0.9152	0.9070	0.9068
753	75.8	75.9	75.9	0.8898	0.9620	0.9636	0.9637

Таблица 10. Экспериментальные и расчетные данные по фазовому равновесию жидкость пар в системе 2,2,2трифторэтанол(1)—изопропанол(2)

ЛУПАЧЕВ и др.

Рис. 5. Система 2,2,2-трифторэтанол(1)–изопропанол(2): (а) – зависимость состава паровой фазы от состава жидкой фазы; (б) – зависимость температуры кипения смеси от составов жидкой и паровой фаз. *a*, *б* – экспериментальные данные; *1* – модель NRTL 763 мм рт. ст.; *2* – модель Wilson 763 мм рт. ст.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 Вода

Рис. 6. Фазовое равновесие в системе метанол-2,2,2-трифторэтанол-вода по модели Wilson при давлении 760 мм рт. ст.; о – точка азеотропа по модели NRTL.

ное различие в описании трехкомпонентного азеотропа. Данный факт вызван противоречиями в описании ПЖР системы изопропанол—вода используемыми в настоящей работе моделями. В связи с упомянутым ранее отличием приведенных в работах [13, 14] данных о фазовом равновесии жидкость-пар системы изопропанол—вода, дать качественную оценку параметрам бинарного взаимодействия уравнений NRTL и Wilson, приведенным в программном комплексе Aspen Plus[®] V.9.0, не представляется возможным.

Отметим, что концентрационный симплекс системы 2,2,2-трифторэтанол—изопропанол—

Рис. 7. Фазовое равновесие в системе 2,2,2-трифторэтанол—этанол—вода по модели Wilson при давлении 760 мм рт. ст.; о — точки азеотропов по модели NRTL.

вода разделен на четыре подобласти дистилляции. По аналогии с системой 2,2,2-трифторэтанол—этанол—вода, для каждой из подобластей дистилляции I, II, III, и IV имеется свой набор продуктовых потоков. Неустойчивым узлом N⁻ (фракция с минимальной температурой кипения) подобластей I, II является 2,2,2-трифторэтанол, подобластей III и IV – бинарный азеотроп изопропанол-вода. Устойчивым узлом N⁺, т.е. фракцией с максимальной температурой кипения, подобластей дистилляции I и IV, является бинарный азеотроп 2,2,2-трифторэтанол—изопропанол, а подобластей II и III – вода.

ЗАКЛЮЧЕНИЕ

В настоящей работе получены экспериментальные данные по фазовому равновесию жидкость—пар в системах 2,2,2-трифторэтанол—вода, метанол—2,2,2-трифторэтанол, 2,2,2-трифторэтанол—этанол и 2,2,2-трифторэтанол—изопропанол. Проведена оценка параметров бинарного взаимодействия уравнений NRTL и Wilson. Результаты математического моделирования показали удовлетворительное соответствие между расчетными и опытными данными. Рассчитано ПЖР в трехкомпонентных системах, приведены области дистилляции и соответствующие им составы возможных продуктов.

Таким образом, проведенный анализ указывает на сложную топологию фазового равновесия рассматриваемых систем с множеством областей дистилляции. Система метанол-2,2,2-трифторэтанол-вода в рабочем диапазоне давлений осложнена наличием бинарного азеотропа, что приводит к разбиению концентрационного симплекса на две подобласти дистилляции. Системы 2,2,2-трифторэтанол—этанол—вода и 2,2,2-трифторэтанол-изопропанол-вода осложнены в рабочем диапазоне давлений наличием двух бинарных и одного трехкомпонентного азеотропов, что приводит к формированию четырех подобластей дистилляции. Подобная структура фазовой диаграммы характерна и для других трехкомпонентных систем, типа фторорганический спирт-органический спирт-вода [16, 17].

Качественный анализ фазового равновесия исследуемых трехкомпонентных систем позволяет выделить следующие наиболее перспективные методы очистки 2,2,2-трифторэтанола, такие как:

Рис. 8. Фазовое равновесие в системе 2,2,2-трифторэтанол—изопропанол—вода по модели Wilson при давлении 760 мм рт. ст.; о — точки азеотропов по модели NRTL.

 y_i

Υį

экстрактивная или реэкстрактивная ректификация, реализация принципа перераспределения полей концентрации, для разработки которых необходимы исследования в области фазового равновесию.

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 18-33-00984 мол_а.

ОБОЗНАЧЕНИЯ

- *C*_{1*i}</sub>-<i>C*_{9*i*} коэффициенты уравнения Антуана (Вагнера)</sub>
- *a_{ij}*, *b_{ij}*, *c_{ij}* коэффициенты бинарного взаимодействия уравнения NRTL (Wilson)
- М молекулярная масса, г/моль
- *n*_D показатель преломления
- Р давление, мм рт. ст.
- *p_i* давление пара чистого компонента, мм рт. ст.
- T температура, °C
- *x_i* концентрация компонента в жидкой фазе, мол. д.

- концентрация компонента в паровой фазе, мол. д.
- коэффициент активности

ρ плотность, г/см³

ИНДЕКСЫ

i, *j* номер компонента
 c критический параметр
 low минимальное значение
 up максимальное значение

СПИСОК ЛИТЕРАТУРЫ

- 1. Игумнов С.М., Игумнова Э.В. Синтезы фторорганических соединений. М.: ЗАО НПО "ПиМ-Инвест", 2005.
- 2. *Jadot R., Fraiha M.J.* Isobaric Vapor-liquid equilibrium of 2,2,2-trifluoroethanol with water and 1-propanol binary systems // Chem. Eng. Data. 1988. V. 33. P. 237.
- 3. *Rochester C.H., Symonds J.R.* Thermodynamic studies of fluoroalcohols: III the thermodynamics of transfer of five fluoroalcohols from the gas-phase to aqueous

solution // J. Chem. Soc., Faraday Trans. 1. 1973. V. 69. P. 1577.

- Cooney A., Morcom K.W. Thermodynamic behaviour of mixtures containing fluoroalcohols 1. (water + 2,2,2trifluoroethanol) // J. Chem. Thermodyn. 1988. V. 20. P. 735.
- Kabata Y., Takada M., Sonobe R., Sugiura I., Uematsu M. Properties of {x(2,2,2-trifluoroethanol) + (1 - x)water} at temperatures from 310 K to 420 K. I. Bubble pressures and saturated-liquid densities // J. Chem. Thermodyn. 1993. V. 25. P. 649.
- Mukherjee L.M., Grunwald E. Physical properties and hydrogen bonding in the system ethanol – 2,2,2-trifluoroethanol // J. Phys. Chem. 1958. V. 62. P. 1311.
- Коган В.Б., Фридман В.М., Кафаров В.В. Равновесие между жидкостью и паром // Справочное пособие. Книга первая. М.: Наука, 1966.
- Gmehling J., Onken U. Vapor-liquid equilibrium data collection (DECHEMA Chemistry Data Series. V. I. Part 1)/ Eds. Behrens D., Eckermann R. Frankfurt/Main: DE-CHEMA, Deutsche Gesellschaft für Chemisches Apparatewesen, 1977.
- 9. Voutsas E., Vasiliki L., Boukouvalas C., Magoulas K., Tassios D. Thermodynamic property calculations with the universal mixing rule for EoS/GE models: Results with the Peng-Robinson EoS and a UNIFAC model // Fluid Phase Equilib. 2006. V. 241. P. 216.
- Alvarez V.H., Mattedi S., Iglesias M., Gonzalez-Olmos R., Resa J.M. Phase equilibria of binary mixtures containing methyl acetate, water, methanol or ethanol at 101.3 kPa // Phys. Chem. Liq. 2011. V. 49. P. 52.
- 11. *Yang C., Ma S., Yin X.J.* Organic salt effect of tetramethylammonium bicarbonate on the vapor liquid equilibrium of the methanol water system // Chem. Eng. Data. 2011. V. 56. № 10. P. 3747.

- Lai H.-S., Lin Y.-F., Tu C.-H. Isobaric (vapor + liquid) equilibria for the ternary system of (ethanol + water + + 1,3-propanediol) and three constituent binary systems at P = 101.3 kPa // J. Chem. Thermodyn. 2014. V. 68. P. 13.
- Arce A., Arce A., Martinez-Ageitos J., Rodil E., Soto A. (Vapour + liquid) equilibrium of (DIPE + IPA + water) at 101.32 kPa // J. Chem. Thermodyn. 2003. V. 35. № 6. P. 871.
- Yorizane M., Yoshimura S., Yamamoto T. Measurement of the ternary vapor-liquid equilibrium (isopropyl alcohol-water-isopropyl ether system) // Kagaku Kogaku. 1967. V. 31. P. 451.
- 15. *Chitra R., Smith P.E.* Properties of 2,2,2-trifluoroethanol and water mixtures // Journal of Chemical Physics. 2001. V. 114. № 1. P. 426.
- 16. Лупачев Е.В., Полковниченко А.В., Квашнин С.Я., Кулов Н.Н. Исследование очистки фторорганических спиртов // Тез. докл. Химическая технология и биотехнология новых материалов и продуктов. IX Международная конференция Российского химического общества имени Д. И. Менделеева, посвященная 150-летию Российского химического общества имени Д.И. Менделеева М.: РХО им. Д.И. Менделеева: РХТУ им. Д.И. Менделеева, 2018. С. 34.
- 17. Полковниченко А.В., Лупачев Е.В., Квашнин С.Я., Кулов Н.Н. Основы технологии выделения фторорганических спиртов из промышленных смесей // Наука молодых – будущее России: сборник научных статей 3-й Международной научной конференции перспективных разработок молодых ученых (11–12 декабря 2018 года), в 6-х томах, Т. 5. Юго-Зап. гос. ун-т., Курск: ЗАО Университетская книга, 2018. С. 244.