УДК 531.3

МОДЕЛИРОВАНИЕ И ОПТИМИЗАЦИЯ ЦИКЛИЧЕСКИХ АДСОРБЦИОННЫХ ПРОЦЕССОВ ОБОГАЩЕНИЯ ГАЗОВЫХ СМЕСЕЙ ВОДОРОДОМ

© 2019 г. А. А. Ишин¹, С. А. Скворцов¹, В. Г. Матвейкин², Д. С. Дворецкий¹, С. И. Дворецкий^{1, *}

¹Тамбовский государственный технический университет, Тамбов, Россия ²ОАО "Корпорация "Росхимзащита", Тамбов, Россия

**E-mail: sdvoretsky@mail.tstu.ru* Поступила в редакцию 16.10.2017 г. После доработки 12.10.2018 г. Принята к публикации 04.12.2018 г.

Разработана математическая модель динамики процесса короткоцикловой безнагревной адсорбции, осуществляемого в четырехадсорберной установке с цеолитовым адсорбентом СаА при разделении многокомпонентных газовых смесей с целью концентрирования водорода. Предложено оригинальное описание процесса массопереноса адсорбтива (H₂, CO₂, CO) из газовой фазы в твердую фазу адсорбента для смешанно-диффузионной области в зависимости от скорости газовой фазы в слое адсорбента. Проведено численное исследование влияния нагрузки по сырью и управляющих переменных на динамику циклического адсорбционного процесса обогащения газовой смеси водородом. Сформулирована и методом имитационного моделирования исследована задача адаптивной оптимизации режимных переменных этого процесса.

Ключевые слова: короткоцикловая безнагревная адсорбция, цеолитовый адсорбент, изотерма адсорбции, кинетика, математическая модель, вычислительный эксперимент, оптимизация, адаптивное управление

DOI: 10.1134/S0040357119040043

введение

В последние десятилетия все более распространенным становится использование циклических адсорбционных процессов для разделения газовых смесей и концентрирования целевых продуктов (в русскоязычной литературе **КБА** – короткоцикловая безнагревная адсорбция, в англоязычной **PSA** – pressure swing adsorption), которые не предполагают наличия внешнего источника тепла.

Короткоцикловые процессы адсорбционного разделения смесей газов широко применяют в промышленности для выделения водорода, обогащения воздуха кислородом, безнагревной осушки газов, разделения углеводородов, концентрирования диоксида углерода, извлечения метана и т.п. Одной из актуальных задач в области адсорбционного разделения является извлечение водорода из водородсодержащих технологических потоков (газы конверсии и окисления углеводородов, нефтезаводские газы, синтез-газ и др.). Типичными веществами, сопутствующими водороду, являются азот, оксид и диоксид углерода, метан. Особенностью адсорбционного концентрирования водорода является тот факт, что в смесях водородсодержащих газов сопутствующие водороду компоненты имеют более высокие значения адсорбционной селективности [1].

Анализ многочисленных работ зарубежных и российских ученых в области адсорбционного разделения многокомпонентных газовых смесей и концентрирования целевого продукта (водорода, кислорода, углекислого газа и др.) позволил определить место данной статьи среди других работ, ее актуальность и перспективность [2–11].

Так, в работах [2–8] представлены результаты численных исследований влияния режимных переменных (давления, температуры, расхода исходной смеси) на динамику и эффективность адсорбционного разделения двух- (H_2 –CO₂), трех- (H_2 –CO₂–CO), четырех- (H_2 –CO₂–CO–CH₄), пяти- (H_2 –CO₂–CO–CH₄–N₂) и шестикомпонентных (H_2 –CO₂–CO–CH₄–N₂) и шестикомпонентных (H_2 –CO₂–CO–H₂O–Ar–N₂) смесей и концентрирования водорода с использованием активного угля и металлоорганических соединений в качестве адсорбентов. В работах [2, 3] при расчете условий равновесия многокомпонентной смеси используются изотермы сорбции индиви-

Таблица 1. Стадии адсорбционного процесса концентрирования водорода в четырехадсорберной установке КБА (A₁-A₄ – адсорберы, АД – адсорбция, ВД – выравнивание давления, СБ – сброс (уменьшение) давления, РГ – регенерация, ПД – подъем давления)

A ₁		АД		ВД1	B,	Ц2	СБ РГ ВДЗ		ВД4	ПД		
A ₂	ВД4	П	Д	АД		ВД1	B	Д2	СБ	РΓ	ВДЗ	
A ₃	СБ	РΓ	ВДЗ	ВД4	ПД АД		ВД1	ВД2				
A ₄	ВД1	B	Ц2	СБ	РΓ	ВДЗ	ВД4	П	Д		АД	

дуальных веществ, методом вычислительного эксперимента изучены особенности функционирования десятиадсорберной установки с вакуумной регенерацией (в английской литературе -VPSA) и четырехадсорберной установки PSA с металлоорганическим адсорбентом нового типа, установлена возможность извлечения водорода с чистотой 99.981 об. % при степени извлечения 81.6% [2] и 99.9 об. % при степени извлечения 48.05% [4]. В работах [6, 7] представлены результаты численных исследований влияния количества стадий выравнивания давлений, их последовательности и использования комбинаций различных слоев адсорбентов на чистоту и степень извлечения водорода из двухкомпонентной смеси (H_2 -C H_4) в установке PSA с использованием изотермы равновесия Ленгмюра-Фрейндлиха. Установлено, что использование шестиадсорберной установки с двумя операциями выравнивания лавлений обеспечивает наилучшее сочетание чистоты продукционного водорода (~99 об. %) при достижении степени извлечения ~83%.

В работе [9] методом вычислительного эксперимента исследованы зависимости чистоты извлекаемого углекислого газа из девятикомпонентной газовой смеси с использованием активного угля и установлено, что использование 7 адсорберов установки КБА (вместо 3 или 4 адсорберов) позволяет повысить чистоту продукционного углекислого газа с 95.1 до 98.9 об. % при снижении степени извлечения от 90.2 до 86.1%. В работах [10, 11] исследуются математические модели динамики циклического адсорбционного процесса извлечения СО2 из двухкомпонентной газовой смеси (СО2-N2) на цеолите 13Х с использованием изотермы Ленгмюра, сформулирована и исследована задача оптимального проектирования PSA-установок (вакуум-напорного типа – VPSA и фракционного вакуум-напорного типа — FVPSA) по комплексному критерию – отношение энергозатрат установки PSA к чистоте продукционного диоксида углерода. Установлено, что установки, реализованные по схемам FVPSA и VPSA, обеспечивают извлечение диоксида углерода с чистотой ~90 и ~72 об. % соответственно, причем удельная мощность установки по схеме FVPSA в среднем в 2.5 раза выше.

Целью данной работы является разработка математической модели динамики циклического процесса адсорбционного разделения многокомпонентной газовой смеси и применение метода математического моделирования для исследования системных связей и закономерностей этого процесса и повышения эффективности функционирования установок КБА при концентрировании водорода.

МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ДИНАМИКИ ПРОЦЕССА ОБОГАЩЕНИЯ ГАЗОВОЙ СМЕСИ ВОДОРОДОМ

Технологический процесс концентрирования водорода методом адсорбционного разделения газовой смеси с циклически изменяющимся давлением осуществляется в четырехадсорберной установке КБА (рис. 1) [12].

Установка предназначена для концентрирования водорода до 99.99 об. % из газовой смеси, содержащей водород в количестве 65 ± 2 об. %, диоксид углерода — 34 ± 2 об. % и оксид углерода — 1 ± 0.5 об. %. Исходная газовая смесь подается в установку после предварительной осушки (стадия осушки в данной работе не рассматривается) с избыточным давлением 2.1 МПа и температурой 30° С. Подъем давления в адсорберах $A_1 - A_4$ производится открытием управляемых клапанов К_{1.1}, K_{21}, K_{31} и K_{41} соответственно, через которые газовая смесь подводится к слою адсорбента. Продукционный водород выводится из адсорберов через управляемые клапаны K_{1,2}, K_{2,2}, K_{3,2} и K_{4,2} и направляется к потребителям через ресивер Р. Противоточная регенерация слоя адсорбента в колоннах осуществляется путем пропускания продувочной (обогащенной водородом) газовой смеси через клапаны K_{12} , K_{13} , K_{14} , K_{23} , K_{24} и K_{34} , а через клапаны $K_{1.3}$, $K_{2.3}$, $K_{3.3}$ и $K_{4.3}$ осуществляется отвод продувочного газа на этапе регенерации адсорбента.

Согласованная работа клапанов установки КБА обеспечивает последовательное осуществление в каждом адсорбере всех стадий циклического адсорбционного процесса, представленных в табл. 1.

В качестве адсорбентов в циклических адсорбционных процессах широко используются гранулированные активные угли и цеолит CaA, обладающие наибольшей емкостью и селективностью

Рис. 1. Технологическая схема четырехадсорберной установки КБА для концентрирования водорода: A₁-A₄ – адсорберы, К – управляемые клапаны, Р – ресивер.

по СО₂ и СО [1, 13]. При адсорбции (десорбции) Н2, СО2 и СО цеолитовым адсорбентом в адсорберах А1-А4 установки КБА протекают следующие массо- и теплообменные процессы: а) диффузия Н₂, СО₂ и СО в потоке газовой смеси; б) массообмен Н2, СО2, СО и теплообмен между газовой фазой и адсорбентом; в) адсорбция H₂, CO₂, CO на поверхности и в микропорах гранул цеолитового адсорбента с выделением тепла и десорбция Н₂, СО₂, СО из микропор и с поверхности гранул с поглощением тепла. Анализ результатов физического моделирования показал, что диффузия H₂, СО2, СО и распространение тепла в газовом потоке и гранулированном адсорбенте осуществляются в основном в продольном направлении относительно движения потока газовой смеси в адсорбере (по высоте слоя адсорбента). При этом процесс обогащения газовой смеси водородом при адсорбции преимущественно СО2 и СО гранулированным цеолитовым адсорбентом осуществляется в смешанно-диффузионной области и определяется коэффициентами внешней массоотдачи и внутренней диффузии, скоростью газовой смеси в слое адсорбента, а также равновесными соотношениями концентраций H₂, CO₂ и CO в фазах.

При математическом описании процесса обогащения газовой смеси водородом в установке КБА принимали следующие допущения: 1) исходная газовая смесь является трехкомпонентной (содержит 1 – H_2 с концентрацией 65 ± 2 об. %, $2 - CO_2$ с концентрацией 34 ± 2 об. % и 3 - CO с концентрацией 1 ± 0.5 об. %) и рассматривается как идеальный газ, что вполне допустимо при давлении в адсорбере до 200 × 10⁵ Па [14]; 2) диаметр и высота насыпного слоя цеолитового адсорбента СаА составляли 0.26 и 1.9 м соответственно; диаметр гранул – 3.2 мм, коэффициент пористости гранул ~0.394 и диаметр транспортных пор ~ 0.5×10^{-3} м; 3) геометрические размеры адсорбционного слоя считали постоянными в течение заданного срока эксплуатации ~10⁵ ч [15]; 4) слой адсорбента представляет собой сплошную среду с коэффициентом порозности є, учитывающим пористость гранул; 5) десорбционная ветвь изотерм сорбции Н2, СО2 и СО на гранулированном цеолите СаА совпадает с адсорбционной и носит нелинейный характер [16].

В соответствии с принятыми допущениями математическое описание циклического процесса адсорбционного разделения многокомпонентной газовой смеси и концентрирования водорода в установке КБА включает следующие уравнения [17].

Рис. 2. Описание непрерывного перехода из области внешнего массообмена к области внутридиффузионного процесса адсорбции H₂, CO₂ и CO цеолитовым адсорбентом CaA в зависимости от переходной ско-

рости v_{g}^{*} газовой фазы: $1 - при \theta = \theta_{1}, 2 - при \theta = \theta_{2},$ $3 - при \theta = \theta_{3}, \theta_{1} < \theta_{2} < \theta_{3}.$

1. Уравнение покомпонентного ($k = 1 - H_2$, 2 – CO₂, 3 – CO) материального баланса в потоке газовой смеси по высоте слоя адсорбента:

$$\frac{\partial c_k(x,t)}{\partial t} + \frac{(1-\varepsilon)}{\varepsilon} \frac{\partial a_k}{\partial t} + \frac{\partial (v_g c_k(x,t))}{\partial x} = = \frac{\partial}{\partial x} \left(D_g^k(x) \frac{\partial}{\partial x} c_k(x,t) \right),$$
(1)

где $v_{\rm g}$ – скорость газовой смеси, м/с; c_k – мольная концентрация k-го компонента газовой смеси, моль/м³; a_k – величина сорбции k-го компонента в адсорбенте, моль/м³; ε –коэффициент порозности адсорбента с учетом пористости гранул, м³/м³; $D_{\rm g}^k$ – эффективный коэффициент продольного перемешивания k-го компонента в газовой смеси, м²/с; x – пространственная координата по длине (высоте) слоя адсорбента, м; t – время, с.

В уравнении (1) первое слагаемое описывает скорость накопления *k*-го компонента смеси в газовой фазе; второе слагаемое — скорость накопления *k*-го компонента в адсорбенте; третье слагаемое — конвективный перенос вещества в слое адсорбента; четвертое слагаемое — продольное перемешивание *k*-го компонента в слое адсорбента.

2. Уравнение массопереноса адсорбтива (H₂, CO₂, CO) из газовой фазы в твердую фазу адсорбента (через границу раздела фаз):

$$\frac{\partial a_k}{\partial t} = \frac{F_k^2 - F_k^1}{2} (\operatorname{tgh}(\theta(v_g - v_g^*)) + 1) + F_k^1, \qquad (2)$$

$$k = 1, 2, 3,$$

где F_k^1 – правая часть уравнения кинетики нестационарного конвективного (внешнего) массообмена, $F_k^1 = \beta_k^1 \left(c_k - c_k^* \right); \beta_k^1 -$ коэффициент массоотдачи, отнесенный к концентрации адсорбтива на поверхности раздела фаз или равновесная текущей величине адсорбции $a_k; F_k^2$ – правая часть уравнения кинетики внутридиффузионного процесса адсорбции, $F_k^2 = \beta_k^2 \left(a_k^* - a_k \right); \beta_k^2$ – кинетический коэффициент; a_k^* – величина адсорбции, равновесная текущей концентрации адсорбтива

равновесная текущей концентрации адсорбтива c_k в потоке газовой смеси на внешней поверхности гранул; θ – формальный коэффициент, устанавливающий размеры смешанно-диффузионной области; v_g^* – скорость газовой смеси, определяющая переход из диффузионной области в кинетическую область переноса адсорбтива (H₂, CO₂, CO).

Уравнение (2) представляет собой описание кинетики адсорбции для смешанно-диффузионной области переноса адсорбтива (H₂, CO₂, CO) через границу раздела фаз (рис. 2): при скорости газовой смеси ниже переходной скорости v_g^* процесс адсорбции лимитируется процессом внешней массоотдачи с коэффициентом β_k^1 , в противном случае — процессом внутренней диффузии в гранулах адсорбента с кинетическим коэффициентом β_k^2 . Гиперболический тангенс и формальный коэффициент θ наряду с v_g^* описывают непрерывный переход из области внешнего массообмена в область внутридиффузионного процесса адсорбции H₂, CO₂ и CO цеолитовым адсорбентом CaA.

Кинетические коэффициенты массоотдачи β_k^l , β_k^2 , граничная скорость v_g^* и формальный параметр θ определялись путем решения регуляризованной экстремальной задачи идентификации кинетических параметров математической модели адсорбционного процесса концентрирования водорода с использованием экспериментальных данных, полученных методом физического моделирования установки КБА в лабораторных и опытно-промышленных условиях: $v_g^* = 0.022 \text{ м/c}$; $\beta_{H_2}^l = 0.816 \text{ 1/c}$; $\beta_{CO_2}^l = 0.021 \text{ 1/c}$; $\beta_{CO}^l = 0.084 \text{ 1/c}$; $\beta_{H_2}^2 = 0.73 \text{ 1/c}$;

$$\beta_{CO_2}^2 = 0.012 \ 1/c; \ \beta_{CO}^2 = 0.059 \ 1/c, \ \theta = 18.2.$$

Величина адсорбции a_k^* , равновесная текущей концентрации адсорбтива c_k в потоке на внешней поверхности гранул, рассчитывается по уравнению изотермы Ленгмюра—Фрейндлиха [18].

562

3. Уравнение, описывающее распространение тепла в потоке газовой смеси по высоте адсорбента:

$$c_{p}^{g}\rho_{g}\frac{\partial T_{g}(x,t)}{\partial t} + c_{p}^{g}\rho_{g}v_{g}\frac{\partial T_{g}(x,t)}{\partial x} - \frac{\alpha}{\varepsilon}S_{ud} \times \\ \times [T_{a}(x,t) - T_{g}(x,t)] - \frac{4K_{env}}{\varepsilon d_{A}}[T_{env} - T_{g}(x,t)] = (3)$$
$$= \lambda_{g}\frac{\partial^{2}T_{g}}{\partial x^{2}}, \ 0 < x < L,$$

где $c_p^{\rm g}$, $\rho_{\rm g}$ — удельная теплоемкость и мольная плотность газовой смеси, Дж/(моль K) и моль/м³ соответственно; $T_{\rm g}$ – температура газовой смеси, K; $\lambda_{\rm g}$ — коэффициент теплопроводности газовой смеси, Вт/(м K); α – коэффициент теплоотдачи от поверхности гранул адсорбента к потоку газовой смеси, Вт/(K м²); $S_{\rm ud} = (1 - \varepsilon) \frac{3}{r_{\rm gr}}$ – коэффициент удельной поверхности гранул адсорбента, M^2/M^3 ; $K_{\rm env}$ – коэффициент теплопередачи от потока газовой смеси к окружающей среде, Вт/(K м²); $d_{\rm A}$ – диаметр адсорбера, м; $T_{\rm env}$ – температура окружающей среды, K.

В уравнении (3) первое слагаемое описывает накопление тепла в газовой фазе; второе слагаемое — конвективную составляющую переноса тепла; третье слагаемое — теплоотдачу от газовой фазы к твердой фазе (адсорбенту); четвертое слагаемое — теплопередачу от газовой фазы к окружающей среде через стенку адсорбера; пятое слагаемое — продольную теплопроводность газовой фазы по высоте слоя адсорбента.

4. Уравнение, описывающее изменение температуры в адсорбенте:

$$c_{p}^{a}\rho_{a}\frac{\partial T_{a}(x,t)}{\partial t} + \alpha S_{ud}\left[T_{a}(x,t) - T_{g}(x,t)\right] - \sum_{k}h_{k}^{ads}\frac{\partial a_{k}(x,t)}{\partial t} = \lambda_{a}\frac{\partial^{2}T_{a}(x,t)}{\partial x^{2}},$$
(4)

где $c_p^{\rm a}$ — удельная теплоемкость адсорбента, Дж/(кг K); $\rho_{\rm a}$ — плотность адсорбента, кг/м³; $h_k^{\rm ads}$ теплота адсорбции *k*-го компонента газовой смеси, Дж/моль; $\lambda_{\rm a}$ — коэффициент теплопроводности адсорбента, Вт/(м K).

В уравнении (4) первое слагаемое описывает энтальпию твердой фазы (адсорбента); второе слагаемое – теплоотдачу от твердой фазы (адсорбента) к газовой фазе; третье слагаемое – выделение теплоты сорбции компонентов газовой смеси; четвертое слагаемое – теплопроводность в адсорбенте вдоль вертикальной оси адсорбера.

5. Уравнение Эргуна, связывающее изменение давления и скорости газовой смеси по высоте адсорбента [19]:

$$\frac{\partial P}{\partial x} = -\left(\frac{150(1-\varepsilon_0)^2}{(2r_{\rm gr}\psi)^2\varepsilon_0^2}\mu_{\rm g}v_{\rm g} + 1.75M_{\rm g}\rho_{\rm g}\frac{(1-\varepsilon_0)}{2r_{\rm gr}\psi\varepsilon_0}v_{\rm g}^2\right),\tag{5}$$

где ε_0 — порозность слоя адсорбента без учета пористости частиц, м³/м³; ψ — коэффициент сферичности гранул адсорбента; μ_g — динамическая вязкость газовой смеси, Па с; M_g — молярная масса газовой смеси, кг/моль; уравнение состояния идеального газа имеет вид: P(x,t) = $= RT_g(x,t) \sum_k c_k(x,t), R$ — универсальная газовая постоянная, Дж/(моль K).

Начальные и граничные условия для уравнений (1)–(5) приведены в табл. 2.

Формулы для расчета коэффициентов математической модели представлены в работе [17] и здесь не приводятся.

Объемный расход потока, направляемого в ресивер Р (рис. 1), определялся как $G^{\text{out}} = G_{\text{ads}}^{\text{out}} - G_{\text{des}}^{\text{in}}$, где $G_{\text{des}}^{\text{in}} = \chi G_{\text{ads}}^{\text{out}} \frac{P_{\text{des}}}{P_{\text{ads}}}$ – объемный расход потока, обогащенного водородом, направляемого на десорбцию преимущественно CO₂, CO и отвод в атмосферу, χ – коэффициент обратного потока.

Таким образом, уравнения (1)—(5) с начальными и граничными условиями (6)—(8) представляют собой математическое описание циклических процессов адсорбции—десорбции, осуществляемых в адсорберах A_1 — A_4 установки КБА (рис. 1).

Для численного решения системы нелинейных дифференциальных уравнений с частными производными (1)–(5) применяли метод прямых, в соответствии с которым производилась аппроксимация производных по пространственной переменной х конечно-разностными формулами. При этом производная по времени остается в непрерывной форме. В результате получается система обыкновенных дифференциальных уравнений вдоль заданного семейства прямых с начальными и граничными условиями, которая решалась методом Рунге-Кутты 4-го порядка с автоматическим выбором шага. Метод прямых обладает приемлемыми для практики точностью и скоростью сходимости, что делает его наиболее предпочтительным при решении уравнений математической модели (1)-(5) с начальными (6) и граничными (7), (8) условиями.

Далее концентрации водорода, диоксида и оксида углерода будем обозначать через $\mathbf{y} = (y_1, y_2, y_3)$ об. %.

Проверка адекватности математической модели производилась по результатам независимых экспе-

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 53 № 5 2019

Таблица 2. Начальные и граничные условия для уравнений (1)–(5)

	in ypublic		
Адсорбция		Десорбция	
Начал	ьные усло	рвия ($0 \le x \le L$)	
$t = 0: c_k(x, 0) = c_k^0(x), a_k(0) = 0,$			
$T_{\rm g}(x,0) = T_{\rm g}^0(x), T_{\rm a}(x,0) = T_{\rm a}^0(x),$	(6)		
$k = (1 - H_2, 2 - CO_2, 3 - CO).$		$t = t_{\text{ads}} : c_k^{\text{des}}(x,t) = c_k^{\text{ads}}(x,t_{\text{ads}}),$	
$t = (n-1)4t_{ads}, n = 1, 2,$		$a_k^{\text{des}}(t) = a_k^{\text{ads}}(t_{\text{ads}}),$	(6')
$c_k^{\rm ads}(x,t) = c_k^{\rm des}(x,t_{\rm des}),$		$T_{\rm g}^{\rm des}(x,t) = T_{\rm g}^{\rm ads}(x,t_{\rm ads}), T_{\rm a}^{\rm des}(x,t) = T_{\rm a}^{\rm ads}(x,t_{\rm ads}).$	
$a_k^{\rm ads}\left(t\right) = a_k^{\rm des}(t_{\rm des}),$			
$T_{\rm g}^{\rm ads}(t) = T_{\rm g}^{\rm des}(x,t_{\rm des}), \ T_{\rm a}^{\rm ads}(t) = T_{\rm a}^{\rm des}(x,t_{\rm des}).$			
Гранич	ные усло	вия: $x = 0, x = L$	
$c_k(0,t) = c_k^{\text{in}}(t), T_g(0,t) = T_g^{\text{in}}(t),$ $\frac{\partial T_a(0,t)}{\partial x} = \alpha S_{\text{ud}}(T_a(0,t) - T_g^{\text{in}}(t))$	(7)	$\frac{\frac{\partial c_k(0,t)}{\partial x} = 0, \frac{\partial T_g(0,t)}{\partial x} = 0,}{\frac{\partial T_a(0,t)}{\partial x} = \alpha S_{ud}(T_a(0,t) - T_g(0,t)),}$ $\frac{\frac{\partial V_g(0,t)}{\partial x} = 0$	(7')
$\begin{aligned} \frac{\partial c_k(L,t)}{\partial x} &= 0, \ \frac{\partial T_g(L,t)}{\partial x} = 0, \\ \frac{\partial T_a(L,t)}{\partial x} &= \alpha S_{ud}(T_a(L,t) - T_g(L,t)), \\ \frac{\partial v_g(L,t)}{\partial x} &= 0 \end{aligned}$	(8)	$c_k(L, t) = c_k^{\text{ads}}(L, t),$ $T_g(L, t) = T_g^{\text{ads}}(L, t),$ $\frac{\partial T_a(L, t)}{\partial x} = \alpha S_{\text{ud}}(T_a(L, t) - T_g^{\text{ads}}(L, t))$	(8')

риментов, т.е. отличных от экспериментальных данных, использованных для идентификации модели. Рассогласование расчетных по модели (1)— (8) и экспериментальных данных оценивали по формуле

$$\delta_{\max} = \max_{i=\overline{\mathbf{I},d}} \frac{\left| y_{\mathbf{I},i}^{\text{out},e} - y_{\mathbf{I}}^{\text{out}}(t_{\text{ads},i}) \right|}{y_{\mathbf{I},i}^{\text{out},e}}$$

где $y_{1,i}^{\text{out},e}$, $y_1^{\text{out}}(t_{\text{ads},i})$ — экспериментальное и расчетное значения концентрации водорода в продукционном потоке на выходе установки КБА в *i*-м опыте, об. %, $i = \overline{1,d}$, d — число экспериментальных точек; $t_{\text{ads},i}$ — продолжительность стадии адсорбции в *i*-м опыте, с.

Максимальная относительная погрешность δ_{max} рассогласования расчетных y_1^{out} и экспериментальных данных $y_1^{\text{out,e}}$ на стадии адсорбции не превышает 11.4% (рис. 3), что позволяет с приемлемой для практики точностью использовать модель для целей технологического расчета, оптимизации и управления процессом концентрирования

водорода методом адсорбционного разделения газовой смеси.

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ПРОЦЕССА ОБОГАЩЕНИЯ ГАЗОВОЙ СМЕСИ ВОДОРОДОМ

Анализ КБА-процесса обогащения газовой смеси водородом как объекта управления позволил определить: входные переменные (состав $\mathbf{y}^{\text{in}} = (y_1^{\text{in}}, y_2^{\text{in}}, y_3^{\text{in}})$, температуру T_g^{in} и давление P^{in} исходной газовой смеси); режимные (управляющие) переменные (давление P_{ads} на стадии адсорбции и ее длительность t_{ads} , аналогично и для стадии десорбции); выходные переменные – состав $\mathbf{y}^{\text{out}} = (y_1^{\text{out}}, y_2^{\text{out}}, y_3^{\text{out}})$, расход G^{out} и температуру T_g^{out} продукционной газовой смеси на выходе из установки КБА, степень извлечения η водорода и производительность Q установки.

С целью исследования системных связей, закономерностей и повышения эффективности функционирования установки КБА проводился численный анализ влияния входных переменных и управляющих воздействий на выходные переменные процесса адсорбционного разделения газовой смеси и концентрирования водорода. Варьируемые переменные и диапазоны их изменения представлены в табл. 3.

Проведена серия вычислительных экспериментов по исследованию влияния длительности стадии адсорбции t_{ads} (от 50 до 175 с), производительности установки (от 70 до 850 нл/мин), давления исходной газовой смеси (от 0.5 до 3 МПа), концентрации y_2^{in} диоксида углерода (от 25 до 45 об. %) в исходной газовой смеси, температуры T_g^{in} (от 10 до 50°С) и отношения $\gamma = t_{des}/t_{ads}$ (от 0.2 до 0.8) на концентрацию y_1^{out} и степень извлечения η продукционного водорода.

На рис. 4 и 5 представлены графики зависимостей концентрации y_1^{out} и степени извлечения η водорода от продолжительности t_{ads} стадии адсорбции и производительности Q установки КБА при $\gamma = t_{des}/t_{ads} = 0.5$, $T_g^{in} = 30^{\circ}$ С и $y_2^{in} = 25$ об. % (кривые *1*, *4*), 34 об. % (кривые *2*, *5*), 45 об. % (кривые *3*, *6*).

Анализ графиков на рис. 4 показывает, что максимальные значения $y_2^{out} \approx 99.7$ об. % и $\eta = 65\%$ достигаются при $y_2^{in} = 25$ об. %, $\gamma = 0.5$, $t_{ads} = 50$ и 100 с соответственно. При этом температура T_g^{out} газовой смеси, обогащенной водородом, повышается в среднем на 10°С. При $y_2^{in} = 34$ об. % на отрезке времени адсорбции $50 \le t_{ads} \le 125$ с концентрация продукционного водорода y_1^{out} уменьшается с 98 до 80 об. %.

Зависимости концентрации продукционного водорода y_1^{out} от давления исходной смеси носят

Рис. 3. Динамика концентрации продукционного во-

дорода y_1^{out} в зависимости от концентрации CO₂ в исходной смеси: 1 - 10; 2 - 40; 3 - 50 об. %; точки – эксперимент, сплошная линия – расчет по модели.

экстремальный характер при всех рассматриваемых значениях температуры и содержания диоксида углерода в исходной газовой смеси (на рисунке не показаны). Максимальное значение y_1^{out} продукционного водорода наблюдается в интервале давлений $P^{in} = 0.5-1$ МПа, а при $y_2^{in} = 45$ об. % – при $P^{in} \approx 0.75$ МПа. С уменьшением доли СО₂ в исходной смеси максимум смещается вправо; при $y_2^{in} = 25$ об. % график практически приобретает вид кривой насыщения. При этом температура T_g^{out} газовой смеси, обогащенной водородом, повышается от 295 до 330 К.

Из анализа графиков на рис. 5 следует, что концентрация y_1^{out} продукционного водорода обратно пропорциональна производительности при всех рассматриваемых температурах и концентрациях CO₂ в исходной газовой смеси. Повыше-

Таблица 3. Исходные данные для вычислительного эксперимента

Наименование параметра	Диапазон изменения
Длительность стадии адсорбции <i>t</i> _{ads} , с	25-200
Отношение длительности стадии десорбции к длительности стадии адсорбции	0.2-0.8
$\gamma = t_{\rm des}/t_{\rm ads}$	
Состав исходной газовой смеси:	
концентрация диоксида углерода $y_2^{ m in}$, об. $\%$	25-45
концентрация оксида углерода $y_3^{ m in}$, об. $\%$	1
Температура исходной смеси T_{g}^{in} , °С	10-50
Давление исходной газовой смеси <i>P</i> ⁱⁿ , МПа	0.5–3

Рис. 4. Зависимости концентрации y_1^{out} и степени извлечения η водорода от продолжительности t_{ads} стадии адсорбции при y_2^{in} : *1*, *4* – 25; *2*, *5* – 34; *3*, *6* – 45 об. %.

Рис. 5. Зависимости концентрации y_1^{out} и степени извлечения η водорода от производительности Q установки КБА при y_2^{in} : 1, 4 – 25; 2, 5 – 34; 3, 6 – 45 об. %.

ние производительности Q установки КБА приводит к тому, что на стадии регенерации десорбция адсорбата производится недостаточно полно и наблюдается некоторое снижение поглотительной способности адсорбента и чистоты получаемого продукта. При малых значениях производительности Q чистота продукта y_1^{out} практически постоянна и равна ее предельному значению для данных условий, кривые стремятся к насыщению, а для значений производительности Q выше некоторого порога y_1^{out} начинает заметно уменьшаться практически линейно, причем величина этого порога зависит от температуры T_g^{in} исходной газовой смеси: при $T_g^{\text{in}} = 50^{\circ}$ С пороговое значение расхода продукционного водорода равно

566

Рис. 6. Динамика концентрации продукционного водорода *y*^{out} в зависимости от времения функционирования установки КБА при различных значениях t_{ads} : 1 - 70 с, 2 - 100 с, 3 - 150 с.

 $G^{\text{out}} = 550 \times 10^{-5} \,\text{м}^3/\text{с}$, а при $T_{\text{g}}^{\text{in}} = 10, \, 30^{\circ}\text{C} - G^{\text{out}} =$ $= 250 \times 10^{-5} \,\mathrm{m^3/c}.$

0

Наибольшая чувствительность y_1^{out} к измене-нию производительности Q установки КБА наблюдается при $y_2^{\text{in}} = 45$ об. %, а при $y_2^{\text{in}} = 25$ об. % уменьшение y₁^{out} незначительно. Это означает, что повышение $T_{\rm g}^{\rm in}$ в некоторых пределах или уменьшение y_2^{in} до 25 об. % позволяет существенно повысить производительность установки Q практически без снижения чистоты продукционного водорода.

Температура $T_{\rm g}^{\rm out}$ продукционного водорода пропорциональна производительности Q установки при всех рассматриваемых значениях y_2^{in} . Наибольшее значение температуры $T_{\rm g}^{\rm out} = 323~{\rm K}$ продукционного потока газовой смеси наблюдается при $y_2^{\text{in}} = 45$ об. %, что объясняется высокими значениями концентрации CO₂ в адсорбенте и, как следствие, большим тепловым эффектом процесса адсорбции. С уменьшением доли примеси в исходном газе $T_{\rm g}^{\rm out}$ падает, а при $y_2^{\rm in} = 25$ об. % наблюдается наименьшая чувствительность T_{s}^{out} к производительности Q установки КБА.

На рис. 6 представлены графики изменения концентрации водорода y₁^{out} в зависимости от времени функционирования установки КБА при отношении $\gamma = t_{des}/t_{ads} = 0.5$, температуре $T_g^{in} = 30^{\circ}$ C для различных значений времени стадии адсорбции $t_{ads} = 70, 100$ и 150 с. Из анализа графиков следует, что с увеличением времени функционирования установки происходит некоторое снижение концентрации y₁^{out} продукционного водорода, что объясняется соответствующим ростом температуры адсорбента.

t. c

Методом вычислительного эксперимента также исследованы профили температуры по длине слоя адсорбента для ряда значений времени адсорбции 20, 40, 60, 80 и 100 с (на рисунке не показаны). Анализ результатов дает основание утверждать, что в результате теплового эффекта сорбции СО₂ и СО происходит рост температуры слоя адсорбента и возникает тепловой фронт, движущийся в аксиальном направлении вместе с сорбционным. Следует отметить также существенный рост температуры в "лобовом" слое адсорбента, что связано со значительным содержанием адсорбтива (главным образом СО₂ и СО) в газовой смеси и теплотой сорбции на цеолите СаА. Тепловые потери для данного режима минимальны, что способствует проведению десорбции сорбата (преимущественно СО₂ и СО) на стадии регенерации адсорбента без затрат энергии для дополнительного нагрева адсорбента.

ИШИН и др.

Возмущающее воздействие – ступенчатое увеличение	<i>I</i> *, об. % (+)	I, об. % (—)	$\Delta I,$ об. $\%$
у ⁱⁿ от 34 до 45 об. %	95.76	89.46	6.3
$T_{ m g}^{ m in}$ от 30 до 50°C	98.92	94.13	4.79
<i>Р</i> ^{out} от 0.2 до 0.3 МПа	98.92	95.09	3.83
$P_{\rm l}^{ m out}$ от 0 до 0.1 МПа	96.51	90.22	6.29

Таблица 4. К анализу эффективности работы установки КБА (*I**, *I* – значения целевой функции при наличии и без адаптивной оптимизации в системе управления соответственно)

ОПТИМИЗАЦИЯ ПРОЦЕССА ОБОГАЩЕНИЯ ГАЗОВОЙ СМЕСИ ВОДОРОДОМ

Численные исследования процесса концентрирования водорода методом короткоцикловой безнагревной адсорбции при разделении многокомпонентной газовой смеси позволили определить наиболее опасные возмущения (состав \mathbf{y}^{in} = = $(y_1^{\text{in}}, y_2^{\text{in}}, y_3^{\text{in}})$, температуру T_{g}^{in} и давления P^{in} газовой смеси на входе в адсорберы установки КБА, на продукционном P^{out} и сбросном P_1^{out} выходах установки) и эффективные управляющие воздействия (давление P_{ads} газовой смеси на стадии адсорбции и длительность t_{ads} стадии адсорбции). Задача оптимизации технологического процесса концентрирования водорода по технологии КБА может быть сформулирована следующим образом: при заданных диапазонах изменения возмущающих воздействий $\mathbf{x} = \left\{ y^{\text{in}}, T_{\text{g}}^{\text{in}}, G^{\text{in}}, P^{\text{in}}, P^{\text{out}}, P_{1}^{\text{out}} \right\}$ требуется найти вектор допустимых управлений **u** = $= (P_{ads}, t_{ads}),$ при котором целевая функция – среднее значение концентрации y_1^{out} продукци-онного водорода на отрезке времени $[0, t_{\text{pr}}]$, соответствующем выходу установки КБА на стационарный периодический режим работы, – достигает максимального значения, т.е.

$$I(\mathbf{u}^*) = \left(\frac{1}{t_{\rm pr}} \int_{0}^{t_{\rm pr}} y_1^{\rm out}(\mathbf{u}^*) dt\right) =$$

$$= \max_{\mathbf{u} = \{P_{\rm ads}, t_{\rm ads}\}} \left(\frac{1}{t_{\rm pr}} \int_{0}^{t_{\rm pr}} y_1^{\rm out}(\mathbf{u}) dt\right),$$
(9)

выполняются связи в форме уравнений математической модели (1)-(8) и ограничения на:

– чистоту продукционного водорода y_1^{out}

$$y_1^{\text{out}}(\mathbf{u}) \ge \underline{y}_1^{\text{out}},\tag{10}$$

- производительность Q установки КБА

$$Q(\mathbf{u}) \ge \underline{Q},\tag{11}$$

 – скорость газовой смеси в "лобовом" слое адсорбента

$$\max_{t \in t_{\mathfrak{u}}} \left| v_{\mathfrak{g}}(\mathbf{u}) \right| \le v_{\mathfrak{g}}^{+},\tag{12}$$

 перепад давления в слое адсорбента на стадиях адсорбции и десорбции

$$\Delta P_{\text{ads}} = \max_{t \in [0, t_u/2]} P_{\text{ads}}^{\text{out}}(\mathbf{u}, L) - P_{\text{ads}}^{\text{in}}(\mathbf{u}, 0) \le \Delta P_{\text{ads}}^+,$$

$$\Delta P_{\text{des}} = \max_{t \in [t_u/2, t_u]} P_{\text{des}}^{\text{out}}(u, 0) - P_{\text{des}}^{\text{in}}(u, L) \le \Delta P_{\text{des}}^+,$$
(13)

где $\underline{y}_{1}^{\text{out}}$ – заданное значение концентрации кислорода в продукционном потоке воздуха; \underline{Q} – заданное значение производительности (расхода продукционного потока воздуха при заданной концентрации $\underline{y}_{1}^{\text{out}}$ кислорода) установки КБА; v_{g}^{+} – максимально допустимое значение скорости газовой смеси в слое адсорбента; $\Delta P_{\text{ads}}^{+}$, $\Delta P_{\text{des}}^{+}$ – максимально допустимые значения перепада давления в адсорбционном слое адсорбера на стадиях адсорбции и десорбции.

Сформулированная аргументная задача оптимизации (9)—(13) относится к классу задач нелинейного программирования, для решения которой задачу условной оптимизации (9)—(13) преобразовывали в задачу безусловной оптимизации методом штрафной функции, а для поиска экстремума целевой функции $I(\mathbf{u}^*)$ использовали высокоэффективный метод последовательного квадратичного программирования [20].

Для оперативного решения задачи оптимизации (9)–(13) и управления процессом концентрирования водорода разработана двухуровневая система управления, в которой осуществляется непрерывный контроль за текущими значениями возмущающих воздействий, и при их отклонении от номинальных значений на верхнем уровне системы управления оперативно решается задача (9)–(13) и определяются текущие оптимальные

значения режимных переменных $\mathbf{u}^* = (P_{ads}^*, t_{ads}^*)$, поступающие в качестве заданий ПИД-регулятору давления и программному задатчику циклограммы переключения отсечных клапанов.

Результаты сравнительного анализа работы установки КБА при наличии адаптивной оптимизации (+) и без адаптивной оптимизации (-) в системе управления представлены в табл. 4.

ЗАКЛЮЧЕНИЕ

Разработанная математическая модель циклического процесса адсорбционного разделения газовой смеси и концентрирования водорода может быть использована: 1) для исследования динамики циклических адсорбционных процессов разделения многокомпонентных газовых смесей; 2) для оптимизации и повышения эффективности функционирования установок КБА с циклически изменяющимся давлением; 3) для разработки алгоритма и системы адаптивного управления циклическими процессами адсорбционного разделения многокомпонентных газовых смесей.

Новые научные результаты, математическое, информационное и алгоритмическое обеспечение системы адаптивной оптимизации и управления четырехадсорберной установкой КБА, представленные в данной работе, могут быть использованы при проектировании новых автоматизированных процессов и адсорбционных технологических установок с циклически изменяющимся давлением для разделения и очистки многокомпонентных газовых смесей.

Работа выполнена в рамках проектной части государственного задания № 10.3533.2017/ПЧ.

ОБОЗН.	АЧЕНИЯ
--------	--------

a_k	величина сорбции <i>k</i> -го компонента в
	адсорбенте, моль/м ³
a_k^*	величина адсорбции, равновесная теку- щей концентрации адсорбтива в потоке
	гранул, моль/м ³
c_k	мольная концентрация <i>k</i> -го компонента газовой смеси, моль/м ³
c_k^*	концентрация адсорбтива на поверхно- сти раздела фаз или равновесная текущей

величине адсорбции, моль/м³

$c_p^{\mathrm{g}}, c_p^{\mathrm{a}}$	удельные теплоемкости газовой смеси и адсорбента соответственно. Дж/(моль K)
$D_{ m g}^k$	эффективный коэффициент продольного перемешивания <i>k</i> -го компонента в газо-
	вой смеси, м ² /с
G^{in}	объемный расход газовой смеси на входе в
	установку КБА, м ³ /с
G^{out}	объемный расход потребляемой продук-
	ционной газовой смеси, м ³ /с
$G_{ m ads}^{ m out}$	объемный расход газовой смеси, обога- щенной водородом, на выходе из адсор- бера, м ³ /с
$G_{ m des}^{ m in}$	объемный расход потока, обогащенного водородом, направляемого на десорбцию, м ³ /с
h_k^{a}	теплота адсорбции <i>k</i> -го компонента газовой смеси, Дж/моль
Keny	коэффициент теплопередачи от потока газо-
env	вой смеси к окружающей среде, Вт/(К м ²)
L	высота насыпного слоя адсорбента, м
$M_{\rm g}$	молярная масса газовой смеси, кг/моль
P ⁱⁿ	давление газовой смеси на входе в уста- новку КБА, Па
$P_{\rm ads}, P_{\rm des}$	давления на стадиях адсорбции и десорб- ции соответственно, Па
$P^{\text{out}}, P_1^{\text{out}}$	давления на продукционном и отводном выходах установки КБА, Па
$\Delta P_{\rm ads}^+, \ \Delta P_{\rm des}^+$	максимально допустимые значения пере- пада давления в адсорбционном слое адсорбера на стадиях адсорбции и десорбции
Q, <u>Q</u>	текущее и заданное значение производи- тельности (расхода продукционного потока
	воздуха при заданной концентрации y_1^{out}
	кислорода) установки КБА, нл/мин
<i>r</i> _{gr}	радиус гранулы адсорбента, м
S S	плошаль поперечного сечения алсорбера, м ²
S .	коэффициент улельной поверхности гра-
Jud	нул адсорбента, M^2/M^3
T.	температура адсорбента, К
T	температура газовой смеси, К
r g	температура окружающей среды К
t env	BDEMS C
• •	ллительности стадий адсорбнии и лесорб-
^{<i>i</i>} ads, ^{<i>i</i>} des	ции, с
t _{pr}	период времени, соответствующий уста- новившемуся режиму работы установки КБА, с

ИШИН и др.

p

$v_{\rm g}, v_{\rm g}^*, v_{\rm g}^+$	линейная, переходная и максимально допустимая скорости газовой смеси в слое
	адсорбента соответственно, м/с
X	пространственная координата по верти-
	кальной оси адсорбера (высоте слоя
	адсороента), м
y_k	объемная концентрации <i>k</i> -го компонента газовой смеси, об. %
$\underline{y}_1^{\text{out}}$	заданное значение концентрации кисло- рода в продукционном потоке воздуха
α	коэффициент теплоотдачи от поверхно- сти гранул адсорбента к потоку газовой
	смеси, Вт/(К м ²)
β_k^1	коэффициент массоотдачи, 1/с
β_k^2	кинетический коэффициент внутренней диффузии, 1/с
γ	отношение длительности стадии десорб-
	ции <i>t</i> _{des} к длительности стадии адсорб-
	ции t _{ads}
δ	относительная погрешность рассогласо-
	вания расчетных по модели и экспери-
	ментальных данных, %
$\varepsilon, \varepsilon_0$	коэффициенты порозности слоя адсор-
	бента с учетом и без учета пористости гра-
	нул соответственно, м ³ /м ³
η	степень извлечения (концентрирования) водорода, %
θ	формальный коэффициент, устанавлива-
	ющий размеры смешанно-диффузион- ной области
λ_{g}, λ_{a}	коэффициенты теплопроводности газо-
8 -	вой смеси и адсорбента соответственно, Вт/(м К)
μ_{g}	динамическая вязкость газовой смеси, Па с
$ ho_g$	мольная плотность газовой смеси, моль/м ³
$ ho_{a}$	плотность адсорбента, кг/м ³
χ	коэффициент обратного потока, отн. ед.
ψ	коэффициент сферичности гранул адсор-
	бента, отн. ед.

ИНДЕКСЫ

1, 2, 3, 4	номер адсорбционной колонны в техноло- гической схеме установки КБА;
a	адсорбент
ads	относящийся к стадии адсорбции
des	относящийся к стадии десорбции
e	эксперимент

env	относящийся к окружающей среде
g	газовая смесь
gr	гранула
in	ВХОД
k	номер компонента газовой смеси
out	ВЫХОД

относящийся к удельной теплоемкости

pr относящийся к стационарному периодическому режиму

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ruthven D.M., Farooq S., Knaebel K.S.* Pressure Swing Adsorption. N.Y.: VCH, 1993.
- Lopes F.V.S., Grande C.A., Rodrigues A.E. Activated carbon for hydrogen purification by pressure swing adsorption: Multicomponent breakthrough curves and PSA performance // Chemical Engineering Science. 2011. V. 66. P. 303.
- 3. Xiao J., Li R., Benard P., Chahine R. Heat and mass transfer model of multicomponent adsorption system for hydrogen purification // International Journal of Hydrogen Energy. 2015. V. 30. P. 1.
- Silva B., Solomon I., Ribeiro A.M., Lee U.-H., Hwang Y.K., Chang J.-S., Loureiro J.M., Rodrigues A.E. H₂ purification by pressure swing adsorption using CuBTC // Separation and Purification Technology. 2013. V. 118. P. 744.
- Yavary M., Ebrahim H.A., Falamaki C. The effect of number of pressure equalization steps on the performance of pressure swing adsorption process // Chemical Engineering and Processing. 2015. V. 87. P. 35.
- Papadias D.D., Lee S.H.D., Ahmed S. Facilitating analysis of trace impurities in hydrogen: Enrichment based on the principles of pressure swing adsorption // Int. J. Hydrogen Energy. 2012. V. 37. P. 14413.
- Kim Y.J., Nam Y.S., Kang Y.T. Study on a numerical model and PSA (pressure swing adsorption) process experiment for CH₄/CO₂ separation from biogas // Energy. 2015. V. 91. P. 732.
- Boon J., Cobden P.D., van Dijk H.A.J., van Sint Annaland M. High-temperature pressure swing adsorption cycle design for sorption-enhanced water-gas shift // Chemical Engineering Science. 2015. V. 122. P. 219.
- Riboldi L., Bolland O. Evaluating pressure swing adsorption as a CO₂ separation technique in coal-fired power plants // International J. Greenhouse Gas Control. 2015. V. 39. P. 1.
- Ko D., Siriwardane R., Biegler L.T. Optimization of a pressure-swing adsorption process using zeolite 13X for CO₂ sequestration // Ind. Eng. Chem. Res. 2003. V. 42. № 2. P. 339.
- Ko D., Siriwardane R., Biegler L.T. Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO₂ capture // Ind. Eng. Chem. Res. 2005. V. 44. № 21. P. 8084.
- 12. *Baksh M.S.A., Ackley M.W.* Pressure swing adsorption process for the production of hydrogen. Pat. 6340382 USA. 2002.

570

- 13. Шумяцкий Ю.И. Промышленные адсорбционные процессы. М.: КолосС, 2009.
- 14. *Кириллин В.А.* Техническая термодинамика. М.: Изд. дом МЭИ, 2008.
- Акулов А.К. Моделирование разделения бинарных газовых смесей методом адсорбции с колеблющимся давлением. Дис. ... докт. техн. наук. СПб.: СПбГТИ, 1996.
- Кельцев Н.В. Основы адсорбционной техники. М.: Химия, 1976.
- Akulinin Y.I., Ishin A.A., Skvortsov S.A., Dvoretskiy D.S. Mathematical modeling of hydrogen production process by pressure swing adsorption method // Advanced Materials and Technologies. 2017. V. 2. P. 38.

- Jee J.G., Kim M.B., Lee C.H. Adsorption characteristics of hydrogen mixtures in a layered bed: Binary, ternary, and five-component mixtures // Ind. Eng. Chem. Res. 2001. V. 40. № 3. P. 868.
- 19. Белоглазов И.Н., Голубев В.О. Основы расчета фильтрационных процессов. М.: Издательский дом "Руда и Металлы", 2002.
- 20. Реклейтис Г., Рейвиндран А., Рэгсдел К. Оптимизация в технике: в 2-х кн. Кн. 2. М.: Мир, 1986.
- 21. *Dvoretsky D.S., Dvoretsky S.I.* Integrated design of flexible chemical processes, devices, and control systems // Theor. Found. Chem. Eng. 2014. V. 48. № 5. Р. 614. [*Дворецкий Д.С., Дворецкий С.И.* Интегрированное проектирование гибких химико-технологических процессов, аппаратов и систем управления // Теорет. основы хим. технологии. 2014. Т. 48. № 5. С. 557.]