УДК 661.7

СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ ВЫДЕЛЕНИЯ БУТАН-БУТИЛЕНОВОЙ ФРАКЦИИ МЕТОДОМ ХЕМОСОРБЦИИ С ИСПОЛЬЗОВАНИЕМ ТРУБЧАТОГО ТУРБУЛЕНТНОГО АППАРАТА

© 2019 г. Ф. Б. Шевляков^{1,} *, Т. Г. Умергалин¹, О. К. Шурупов¹, В. П. Захаров², И. Ш. Насыров³

¹Уфимский государственный нефтяной технический университет, Уфа, Россия
 ²Башкирский государственный университет, Уфа, Россия
 ³ООО "Управляющая компания "ТАУ НефтеХим", Стерлитамак, Россия
 *E-mail: sfb1980@mail.ru
 Поступила в редакцию 07.12.2018 г.
 После доработки 04.03.2019 г.
 Принята к публикации 02.04.2019 г.

Продуктами разделения бутилен-бутадиеновой фракции методом хемосорбции являются бутадиен и бутан-бутиленовая фракция. Бутадиен является диеновым мономером для производства эластомеров и пластиков. Бутан-бутиленовая фракция используется как сырье для различных нефтехимических процессов, в частности для получения олигомерных продуктов C_4 и метилтретбутилового эфира. Остаточное содержание бутадиена в бутан-бутиленовой фракции более 0.5 мас. % оказывает отрицательное влияние при ее использовании в качестве сырья нефтехимических процессов, а также снижает выход бутадиена. В статье рассмотрен способ очистки бутан-бутиленовой фракции от бутадиена путем возврата в виде флегмы части бутан-бутиленовой фракции в смеси с потоком поглотительного медно-аммиачного раствора в колонну хемосорбции. Смешение потоков осуществляется в трубчатом турбулентном аппарате, вмонтированном в флегмовую линию. Организация дополнительного контакта части бутан-бутиленовой фракции с медно-аммиачным раствором позволит повысить сорбционную эффективность колонны.

Ключевые слова: бутилен-бутадиеновая фракция, бутан-бутиленовая фракция, бутадиен, производство бутадиена, хемосорбция, трубчатый турбулентный аппарат, водно-аммиачный раствор ацетата одновалентной меди

DOI: 10.1134/S0040357119050117

ВВЕДЕНИЕ

Промышленными способами получения бутадиена-1,3 (бутадиена) являются метод дегидрирования нормального бутана и выделение из фракции C₄ пиролиза углеводородов – бутилен-бутадиеновой фракции (**ББФ**) [1–4]. В ББФ содержание бутадиена составляет в пределах 35–55 мас. %, остальные компоненты – бутан, бутилены, а также примеси легких углеводородов C₃₋, тяжелых углеводородов C₅₊, ацетиленовые углеводороды [5].

Для разделения смеси углеводородов ББФ, различающихся ненасыщенностью химических связей, распространена экстрактивная ректификация с использованием таких растворителей, как ацетонитрил, N,N-диметилформамид или Nметилпирролидон [1–4]. Способом разделения фракции ББФ на бутадиеновую (марки А или Б) и бутан-бутиленовую фракции на ОАО "Стерлитамакский нефтехимический завод" является хемосорбция, которая требует использования сырья высокой чистоты. В связи с этим присутствие примесей обусловливает проведение очистки фракции ББФ перед хемосорбцией: методом ректификации от тяжелых углеводородов С₅₊, легких углеводородов С3_, влаги и метанола, гидрирование на селективном катализаторе [6-12]. Содержание бутадиена в бутан-бутиленовой фракции, получаемой при разделении ББФ методом хемосорбции поглотительным водно-аммиачным раствором ацетата одновалентной меди (МАР), по техническим требованиям должно быть не более 0.5 мас. %. На действующей промышленной технологической схеме отсутствует флегмовая линия возврата бутан-бутиленовой фракции на орошение колонны хемосорбции, что затрудняет регулирование содержания бутадиена в испаряющейся фракции [4].

С целью совершенствования технологической схемы выделения бутан-бутиленовой фракции рассмотрена возможность регулирования состава бутан-бутиленовой фракции путем возврата ее части в виде флегмы в колонну хемосорбции в

Компонент	C, кг-моль/м ³
Cu ₂ O	2.75-3.50
CuO	0.18-0.40
CH ₃ COOH	4.0-4.8
NH ₃	9.2-12.8

Таблица 1. Компонентный состав МАР

смеси с раствором МАР через трубчатый турбулентный аппарат (**TTA**).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В лабораторных условиях проведено смешение МАР с бутан-бутиленовой фракцией. Состав исходного раствора МАР [13] представлен в табл. 1.

Эксперименты по извлечению бутадиена проводили в объемном аппарате смешения и в статическом аппаратах смешения, результаты которых сравнивали с данными эксперимента, моделирующего расслоенное течение углеводородной фракции и сорбента. Время контакта смешиваемых потоков в экспериментах было принято равным одной минуте.

Извлечение бутадиена оценивали по изменению его концентрации в бутан-бутиленовой фракции и в растворе МАР.

Рис. 1. Установка смешения раствора МАР и бутан-бутиленовой фракции: 1 - емкость с раствором МАР; 2 - емкость с бутан-бутиленовой фракцией; 3 - трубчатый турбулентный аппарат (<math>N = 5, $d_{\rm d} = 24$ мм, $d_{\rm k} = 12$ мм).

Компонентный состав углеводородов бутанбутиленовой фракции анализировали методом газожидкостной хроматографии с использованием пламенно-ионизационного детектора. Неподвижная фаза — три-*н*-бутилфосфат на диатомите, жидкая фаза — полиэтиленгликоль ПЭГ-2000, газ-носитель — гелий, температура колонки 15— 40°С. Массовую долю фракции углеводородов определяли методом внутренней нормализации.

Компонентный состав поглощенных МАР углеводородов определяли хроматографически методом абсолютной градуировки. Объем пробы, подаваемый на анализ в испаритель, составляет 1–2 мл. В испарителе углеводороды десорбируются из МАР, далее разделяются на фракции в колонке. Условия хроматографирования: колонка с неподвижной фазой – диатомитовый кирпич фракции 0.16–0.25 мм, неподвижная фаза – полиэтиленгликоль ПЭГ-2000, газ-носитель – гелий; температура испарителя 175°С, термостата колонки 70°С.

В медно-аммиачный раствор, отобранный из циркулирующего потока перед его подачей в колонну хемосорбции объемом 100 мл и охлажденный до температуры минус 10°С, вводили бутанбутиленовую фракцию объемом 20 мл с температурой также минус 10°С. После выдержки в течение 60 с без перемешивания проводился анализ сред (эксперимент 1).

В эксперименте 2 данную смесь в течение 30 с перемешивали лопастной мешалкой в круглодонной колбе, далее выдерживали без перемешивания 30 с и проводили анализ (эксперимент 2).

При температуре и объемных соотношениях перемешиваемых сред, соответствующих условиям экспериментов 1 и 2, смешивание проводили в трубчатом турбулентном аппарате (эксперимент 3). Схема экспериментальной установки представлена на рис. 1.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЯ

Анализ смешения потоков. Из-за различия по плотностям смешиваемых сред, в эксперименте 1 формировалась расслоенная система, и абсорбция бутадиена раствором МАР происходила на поверхности раздела фаз. Углеводородный состав МАР, насыщенного углеводородами C_4 , и состав бутан-бутиленовой фракции приведены соответственно в табл. 2 и 3. Содержание бутадиена в растворе МАР возросло с 0.095 до 0.12 мас. %, в ББФ уменьшилась с 0.62 до 0.58 мас. %, что свидетельствует о сорбционном неравновесии потоков.

Использование перемешивающего устройства способствовало увеличению удельной поверхности контакта фаз и абсорбции бутадиена в раствор МАР. Содержание бутадиена в ББФ уменьшилась до 0.46 мас. %, что подтверждает целесообразность

Раствор МАР	<i>x</i> , мас. %		
	$\Sigma C_4 H_8$	C ₄ H ₆	
Исходный	0.01	0.095	
Эксперимент 1	0.057	0.12	
Эксперимент 2	0.16	0.21	
Эксперимент 3	0.19	0.32	

Таблица 2. Результаты анализа состава поглотительного раствора МАР

использования перемешивающих устройств для очистки бутан-бутиленовой фракции.

Использование объемного аппарата смешения для формирования высокодисперсных систем требует энергетических затрат на работу мешалки и не предотвращает гравитационного расслоения углеводородной среды и МАР. Исходя из этого, в качестве перемешиваюшего устройства должен использоваться статический аппарат смешения. При получении высокодисперсных систем в нефтехимических отраслях промышленности успешно зарекомендовал себя трубчатый турбулентный аппарат диффузор-конфузорной конструкции [14–18]. В связи с этим дальнейшее исследование по увеличению поверхности раздела фаз было проведено с использованием этого аппарата. При смешивании бутан-бутиленовой фракции и раствора МАР с применением трубчатого турбулентного аппарата остаточное содержание бутадиена в углеводородной фракции уменьшилось до 0.11 мас. % (табл. 3).

Таким образом, организация дополнительного контакта части бутан-бутиленовой фракции с раствором МАР позволит повысить сорбционную эффективность колонны.

Расчет геометрических параметров аппарата. Определение геометрических параметров ТТА проведено для условий промышленной установки хемосорбции с расходом раствора МАР 37-220 м³/ч. При расчете параметров аппарата было учтено, что смешение раствора МАР и углеводородной фракции необходимо проводить при малых перепадах давления, что напрямую связано с затратами энергии для обеспечения требуемой производительности установки. Расчет геометрических параметров и перепада давления в ТТА проводился по методу, представленному в работе [18], где общий перепад давления определяется как сумма перепадов давления в каждой секции аппарата. Расчеты параметров аппарата проводились исходя из условия, что перемешивающее устройство должно быть частью трубопровода с внутренним диаметром 0.2 м и допустимым перепалом давления в трубопроводе ввода раствора МАР в колонну хемосорбшии, равным 0.03 МПа.

В табл. 4 представлены рассчитанные геометрические параметры турбулентного аппарата для перемешивания бутан-бутиленовой фракции с раствором МАР, подаваемых в колонну хемосорбции в качестве орошения, при которых перепад давления незначителен и составляет 0.027 МПа.

Расчет размеров дисперсных включений. Увеличение интенсивности перемешивания приводит к увеличению массопереноса бутадиена в раствор МАР, что достигается увеличением удельной поверхности контакта фаз. Полученные из литературных источников [18] закономерности диспергирования двухфазных потоков позволяют прогнозировать минимальный размер частиц дисперсной фазы по известным физико-химическим свойствам изучаемых сред.

Расчетным методом получены размеры дисперсных частиц бутан-бутиленовой фракции в зависимости от глубины профилирования диффузор-конфузорного канала ТТА в интервале отношения диаметра диффузора *d*_d к диаметру кон-

Бутан-бутиленовая	х, мас. %					
фракция	i-C ₄ H ₁₀	n-C ₄ H ₁₀	α- и <i>i</i> -C ₄ H ₈	β - <i>транс</i> - C_4H_8	β- <i>цис</i> -C ₄ H ₈	C_4H_6
Исходная	5.05	11.52	73.21	7.04	2.56	0.62
Эксперимент 1	5.09	11.55	73.34	6.99	2.45	0.58
Эксперимент 2	5.17	11.57	73.42	6.91	2.47	0.46
Эксперимент 3	5.25	11.85	73.82	6.65	2.32	0.11

Таблица 3. Результаты анализа состава бутан-бутиленовой фракции

Параметр	Значение
<i>d</i> _d , м	0.20
<i>d</i> _k , м	0.145
<i>L</i> _s , м	0.40
<i>L</i> _{in} , м	0.20
L _{out} , м	0.20
<i>L</i> _{ТТА} , м	2.0
ү, град	45 ± 5
Ν	4
$\Delta P_{\text{TTA}},$ МПа	0.027

Таблица 4. Геометрические параметры трубчатого турбулентного аппарата

Таблица 5. Влияние глубины профилирования канала на размер частиц и удельную поверхность дисперсных включений ($G_{CAS} = 110 \text{ м}^3/\text{ч}, R = 4.7 \text{ м}^3/\text{ч}, d_d = 0.2 \text{ м}$)

	_	
$d_{\rm d}/d_{ m k}$	<i>D</i> , мм	<i>F</i> , м ⁻¹
1.0	0.52	11.5
1.38	0.17	35.3
1.60	0.11	54.5
2.0	0.07	85.7
2.5	0.06	100
3.0	0.03	200

Таблица 6. Влияние расхода потока МАР на размер частиц и удельную поверхность дисперсных включений $(R = 4.7 \text{ m}^3/\text{ч}, d_d/d_k = 1.4)$

$G_{\rm CAS}$, м ³ /ч	<i>D</i> , мм	<i>F</i> , м ⁻¹
37	0.62	9.7
73	0.27	22.2
110	0.17	35.3
147	0.12	50.0
183	0.09	66.7
220	0.07	85.7

Таблица 7. Влияние расхода флегмы на размер частиц и удельную поверхность дисперсных включений $(G_{CAS} = 110 \text{ м}^3/\text{ч}, d_d/d_k = 1.4)$

<i>R</i> , м ³ /ч	<i>D</i> , мм	<i>F</i> , м ⁻¹
1.8	0.168	35.7
3.6	0.168	35.7
4.7	0.167	35.9
7.2	0.167	35.9
18	0.166	36.1
36	0.164	36.6

фузора d_k равном 1—3. Результаты представлены в табл. 5.

При увеличении соотношения d_d/d_k от 1 до 3 минимальный размер частиц бутан-бутиленовой фракции уменьшается с 0.52 до 0.03 мм, т.е. в 17 раз, удельная поверхность при этом увеличивается с 11.5 до 200 м⁻¹.

Для TTA с геометрическими параметрами диффузор-конфузорного канала, равными $d_d/d_k = 1.4$, и расходом раствора MAP 110 м³/ч минимальный размер частиц составляет 0.17 мм. Снижение расхода раствора MAP приводит к росту размера частиц диспергированной фазы (табл. 6) и, соответственно, к снижению извлечения бутадиена.

Изменение расхода бутан-бутиленовой фракции в виде флегмы в интервале 1.8–36.0 м³/ч не приводит к значимым изменениям размера частиц (табл. 7).

Технологическая схема хемосорбции с использованием трубчатого турбулентного аппарата. В результате вышеприведенного исследования предложена схема смешения углеводородной фракции с раствором MAP, включающая малогабаритный трубчатый турбулентный аппарат диффузор-конфузорной конструкции. На действующей технологической установке ОАО "Стерлитамакский нефтехимический завод" предлагается возвращать часть бутан-бутиленовой фракции в качестве орошения в колонну хемосорбции в смеси с поглотительным раствором MAP через трубчатый турбулентный аппарат. Технологическая схема очистки бутан-бутиленовой фракции по изучаемому способу представлена на рис. 2.

Процесс по предлагаемому способу осуществляется следующим образом. В колонне *1* бутиленбутадиеновая фракция I очищается от тяжелых углеводородов II методом ректификации. Бутилен-бутадиеновая фракция в колонне азеотропной осушки *2* очищается от влаги и метанола III. На стадии очистки от ацетиленовых углеводородов бутилен-бутадиеновая фракция в реакторе гидрирования подвергается каталитическому гидрированию водородом IV.

На стадии хемосорбции бутилен-бутадиеновая фракция I в присутствии поглотительного водноаммиачного раствора ацетата одновалентной меди V, охлажденного ниже минус 10° C, делится на бутадиен VI, который выводится из колонны 5 в результате десорбции из раствора МАР при 90— 95°C, и бутан-бутиленовую фракцию VII.

Часть потока VII в виде флегмы возвращается в колонну хемосорбции 4, предварительно смешиваясь с MAP V в трубчатом турбулентном аппарате 6.

Рис. 2. Схема выделения бутадиеновой фракции и очистки бутан-бутиленовой фракции: I – сырьевой поток в колонну очистки возвратного растворителя, II – углеводороды фракции C₅, III – вода и метанол, IV – водород, V – водно-аммиачный раствор ацетата одновалентной меди, VI – бутадиеновая фракция, VII – бутан-бутиленовая фракция, *I* – колонны ректификации бутилен-бутадиеновой фракции для очистки от тяжелых углеводородов C₅, *2* – колонны ректификации бутилен-бутадиеновой фракции от влаги и метанола, *3* – реактор гидрирования, *4* – колонна абсорбции, *5* – колонна десорбции, *6* – трубчатый турбулентный аппарат.

ЗАКЛЮЧЕНИЕ

В результате исследования показана возможность организации флегмового орошения колонны хемосорбции смесью МАР с бутан-бутиленовой фракцией. Применение трубчатого турбулентного аппарата позволяет получать высокодисперсную систему смешиваемых потоков, повысить сорбционную эффективность колонны.

ОБОЗНАЧЕНИЯ

- *C* мольная концентрация компонентов в МАР, кг-моль/м³
- *D* размер дисперсных включений, мм
- *d* диаметр (внутренний), м
- *F* удельная поверхность дисперсных частиц, мм⁻¹
- G расход МАР, м³/ч
- L длина, м
- N количество диффузор-конфузорных секций
- ΔP перепад давления, МПа
- *R* расход бутан-бутиленовой фракции на орошение, м³/ч
- х содержание компонентов, мас. %
- ү угол раскрытия диффузора, град

ИНДЕКСЫ

- САЅ водно-аммиачный раствор ацетата одновалентной меди
- d диффузор

- in, out входная и выходная секция трубчатого турбулентного аппарата
- к конфузор
- s секция трубчатого турбулентного аппарата

СПИСОК ЛИТЕРАТУРЫ

- Платэ Н.А. Основы химии и технологии мономеров. М.: Наука: МАИК "Наука/Интерпериодика", 2002.
- 2. *Pavlov O.S., Karsakov S.A., Pavlov S.Yu.* Development of processes for C₄ hydrocarbons separation and 1,3butadiene purification // Theor. Found. Chem. Eng. 2011. V. 45. № 6. Р. 669. [*Павлов О.С., Карсаков С.А., Павлов С.Ю.* Развитие процессов разделения C₄-углеводородов и очистки 1,3-бутадиена // Теор. осн. хим. технол. 2011. Т. 45. № 6. С. 669.]
- 3. *Ахмадиев А.Л., Поникаров С.И.* Установка вакуумного дегидрирования углеводородов // Вестн. Казан. технол. унив. 2010. № 7. С. 171.
- 4. Кирпичников П.А., Береснев В.В., Попова Л.М. Альбом технологических схем основных производств промышленности синтетического каучука. Л.: Химия, 1986.
- Насыров И.Ш., Шурупов О.К., Шелудченко В.А., Захаров В.П., Умергалин Т.Г., Шевляков Ф.Б. Оценка влияния состава сырья и технологических параметров отдельных стадий выделения бутадиена-1,3 из бутилен-бутадиеновой фракции методом хемосорбции на расходный коэффициент бутадиена // Башк. хим. ж. 2017. Т. 24. № 4. С. 55.
- Касьянова Л.З., Каримов Э.Х., Каримов О.Х. Гидрирование бутадиенсодержащих фракций на поверхности палладиевого катализатора // Приволж. научн. вестн. 2012. № 6 (10). С. 6.
- 7. Ламберов А.А., Ильясов И.Р., Егорова С.Р., Назаров М.В., Гильманов Х.Х., Шатилов В.М. Опытные испытания алюмопалладиевых катализаторов се-

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 53 № 5 2019

лективного гидрирования винилацетилена // Катал. пром-сти. 2008. № 5. С. 49.

- Тарарыкин А.Г., Невьянцева Л.Н., Баженов Ю.П., Галиева Ф.А., Касьянова Л.З. Разработка и внедрение в производство катализаторов серии РК220 для селективного гидрирования примесей ацетиленовых углеводородов при очистке бутиленбутадиеновой фракции в процессе получения бутадиена-1,3 // Катал. пром-сти. 2009. № 5. С. 51.
- 9. Куттубаев С.Н., Рахимов М.Н., Павлов М.Л., Басимова Р.А., Кутепов Б.И. Исследование эффективности очистки этан-этиленовой фракции пиролиза от ацетиленистых соединений на различных катализаторах // Нефтегазов. дело. 2012. № 4. С. 165.
- Nasyrov I.Sh., Shurupov O.K., Zakharov V.P., Shevlyakov F.B., Bakytov N.B. Enhancement of the efficiency of selective hydrogenation of acetylene hydrocarbons in the butylene-butadiene fraction during butadiene-1,3 production // Pet. Chem. 2018. V. 58. № 10. P. 905. [*Hacыpos U.Ш., Шурупов О.К., Захаров В.П., Шевляков Ф.Б., Бакытов Н.Б.* Повышение эффективности селективного гидрирования ацетиленовых углеводородов в бутилен-бутадиеновой фракции при производстве бутадиена-1,3 // Нефтехимия. 2018. Т. 58. № 5. С. 618.]
- Насыров И.Ш., Шурупов О.К., Захаров В.П., Шевляков Ф.Б., Бакытов Н.Б. Оценка влияния пропускной способности распределительных насадок водорода на эффективность гидрирования ацетиленовых углеводородов в бутилен-бутадиеновой фракции в производстве бутадиена-1,3 // Вестн. технол. унив. 2017. Т. 20. № 24. С. 78.
- 12. Захаров В.П., Шевляков Ф.Б., Булатова О.Ф., Путилов Е.Ю., Бакытов Н.Б., Шурупов О.К., Насы-

ров И.Ш. Способ повышения эффективности селективного гидрирования. Патент 2658417 РФ. 2018.

- Насыров И.Ш., Шурупов О.К., Шелудченко В.А., Шевляков Ф.Б., Захаров В.П. Исследование влияния окислительно-восстановительного потенциала раствора медноаммиачного на его стабильность в процессе выделения бутадиена из фракции С₄ пиролиза углеводородов методом хемосорбции // Хим. пром-сть сегодня. 2017. № 6. С. 16.
- 14. Каеем Д.Х., Умергалин Т.Г., Шевляков Ф.Б., Захаров В.П. К уменьшению потерь углеводородных компонентов попутных нефтяных газов // Изв. высш. учебн. завед., хим. хим. технол. 2009. Т. 52. Вып. 12. С. 129.
- Данилов Ю.М., Мухаметзянова А.Г., Дьяконов Г.С. Интенсификация процесса перемешивания в малогабаритных трубчатых турбулентных аппаратах // Хим. пром-сть сегодня. 2010. № 9. С. 50.
- 16. Захаров В.П., Минскер К.С., Шевляков Ф.Б., Берлин А.А., Алексанян Г.Г., Рытов Б.Л., Коноплев А.А. Интенсификация газожидкостных процессов в трубчатых турбулентных аппаратах // Ж. прикл. хим. 2004. Т. 77. № 11. С. 1822.
- 17. *Tsadkin M.A., Badikova A.D.* Industrial trials of a newgeneration contactor for the process of the sulfuric-acid alkylation of isobutane with olefins // Theor. Found. Chem. Eng. 2018. V. 52. № 2. Р. 246. [Цадкин М.А., Бадикова А.Д. Промышленные испытания контактора нового поколения для процесса сернокислотного алкилирования изобутана олефинами // Теор. осн. хим. технол. 2018. Т. 52. № 2. С. 225.]
- 18. Шевляков Ф.Б., Умергалин Т.Г., Захаров В.П. Использование трубчатого турбулентного аппарата в нефтегазовых и химических процессах. Уфа: Башкирский государственный университет, 2018.