УДК 669.587

О МЕХАНИЗМЕ ФУНКЦИОНИРОВАНИЯ КВАЗИПОТЕНЦИОСТАТИЧЕСКОГО РЕЖИМА В ТЕМПЛАТНОМ ЭЛЕКТРОХИМИЧЕСКОМ ПРОЦЕССЕ ПОЛУЧЕНИЯ НАНОПРОВОЛОК

© 2019 г. С. С. Кругликов^{*a*, *}, В. А. Колесников^{*a*}, В. В. Коротков^{*b*}, Д. Л. Загорский^{*b*}, Т. В. Цыганова^{*b*}

^а Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия ^bФедеральный научно-исследовательский центр "Кристаллография и фотоника" РАН, Москва, Россия *e-mail: skruglikov@mail.ru

Поступила в редакцию 23.04.2019 г. После доработки 20.05.2019 г. Принята к публикации 24.05.2019 г.

Рассмотрен механизм процесса формирования ансамбля нанопроволок электроосаждением в поры полимерных мембран в режиме постоянной измеряемой разности потенциалов между катодом и электродом сравнения. Показано, что после заполнения части пор металлом быстрый рост площади этих микроучастков поверхности ведет к изменению баланса между потенциалом этих участков и падением потенциала в примыкающем к этой зоне растворе. Следствием этого является смещение катодного потенциала таких участков в положительную сторону и соответствующее снижение ло-кального значения катодной плотности тока, что способствует выравниванию скоростей роста индивидуальных нанопроволок.

Ключевые слова: темплатное электроосаждение, кобальтовые нанопроволоки, квазипотенциостатический режим, измеряемый электродный потенциал

DOI: 10.1134/S004035711906006X

введение

Последние десятилетия характеризуются быстрым развитием новых областей техники, в которых используются процессы электроосаждения металлов и сплавов: производство микроэлектроники, электрохимическое микроформирование, электроосаждение металлов и сплавов на пористых и волокнистых материалах, армирование полимерных материалов металлами, нанесение адгезионных покрытий, обеспечивающих высокую прочность соединения металлов с полимерами [1-5]. Для новых областей применения процессов электроосаждения создан ряд новых электрохимических технологий [6, 7], в том числе для электроосаждения металлов и сплавов в поры неэлектропроводного материала с целью получения ансамбля нанопроволок – одного из видов так называемого темплатного электроосаждения [8-10].

Процесс электроосаждения нанопроволок желательно проводить таким образом, чтобы обеспечить равномерное заполнение металлом всех пор [8]. Иными словами — прекратить или резко затормозить процесс дальнейшего осаждения металла после выхода на поверхность мембраны сформировавшейся в поре нанопроволоки, так как на конце нанопроволоки начинается рост "шляпки". С этого момента большая часть тока и, соответственно, большая часть металла локализуется на уже появившихся "шляпках". В то же время желательно, чтобы за счет этого не тормозился рост "отставших" нанопроволок.

В данной статье рассмотрены теоретические основы механизма управления процессом формирования ансамбля нанопроволок, что позволит предотвратить нежелательный рост локальной плотности тока по мере заполнения поры металлом и обеспечить максимальное торможение процесса электроосаждения по окончании заполнения конкретной поры. Для решения этой задачи проведен анализ составляющих измеряемой разности потенциалов между катодной поверхностью и электродом сравнения и разработаны рекомендации, основанные на использовании квазипотенциостатического¹ режима в сочетании с

¹ Квазипотенциостатический режим – электролиз при постоянной разности потенциалов между катодом и электродом сравнения, находящимся на небольшом расстоянии (менее 1 мм) от поверхности катода.

оптимальным диапазоном катодной плотности тока и состава электролита.

В качестве объекта рассмотрен электролит без добавок, применяемый для получения кобальтовых нанопроволок при среднем расстоянии между порами не менее чем на порядок превышающем их диаметр [9].

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Влияние условий массопереноса на равномерность роста нанопроволок. В процессе формирования ансамбля нанопроволок конвективная составляющая скорости массопереноса практически не играет роли в качестве фактора, контролирующего скорость массопереноса, так как эффективная толщина внешней части диффузионного слоя (у поверхности пористой пластинки) равна радиусу поры (меньше 1 мкм) [10].

Диффузия является основным компонентом суммарного потока участников электродных реакций. Характер распределения значений коэффициента диффузионного массопереноса на неравнодоступной поверхности аналогичен первичному распределению плотности тока [10]. Это означает, что наличие диффузионного контроля скорости электроосаждения всегда будет оказывать только отрицательное воздействие на равномерность роста нанопроволок. То же самое справедливо и в отношении миграционного переноса.

Изменения распределения скорости массопереноса к катодной поверхности в процессе роста нанопроволок также всегда действуют в неблагоприятном направлении — по мере увеличения различий в скорости массопереноса для отдельных нанопроволок возрастает и разница между локальными значениями плотности тока.

Поэтому желательно вообще устранить влияние скорости диффузионного и миграционного переноса на распределение плотности тока в процессе формирования нанопроволок. Это означает, что локальные значения плотности тока не должны превышать 20–30% от предельной величины. С учетом этого фактора целесообразно использовать электролиты с высокой концентрацией ионов осаждаемого металла.

Оценка сопротивления раствора. Для управления процессом формирования нанопроволок можно использовать результаты оценки компонентов электрического сопротивления раствора. Сам процесс формирования нанопроволок можно разделить на три этапа [9]:

(I) — от начала электролиза до выхода металлического осадка из устья поры и начала образования шляпок; (II) — рост шляпок, однако лишь до тех пор, пока их диаметр существенно меньше расстояния между ними;

(III) — срастание шляпок и образование сплошного слоя металла на поверхности образца.

Сопротивление раствора в расчете на одну пору на этапе (I) можно выразить как сумму

$$R_{(I)} = \rho h_0 x / (\pi r_{\pi}^2) + \rho / (2\pi r_{\pi}).$$
(1)

Здесь первое слагаемое — сопротивление раствора в поре, второе — сопротивление раствора над устьем поры, ρ — удельное сопротивление раствора, h_0 — начальная глубина поры, x — относительная доля не заполненной металлом части поры (в процессе электролиза x снижается от единицы до нуля), $r_{\rm п}$ — радиус поры. В процессе роста нанопроволок начальная величина первого слагаемого обычно в десятки раз превышает второе слагаемос, а затем по мере заполнения поры металлом снижается до нуля. Второе слагаемое не изменяется на протяжении всего этапа (I).

В ходе этапа (II) сопротивление раствора в прикатодной зоне каждой шляпки непрерывно уменьшается из-за увеличения ее радиуса:

$$R_{(II)} = \rho / (2\pi r_{II}).$$
 (2)

Это создает возможности для увеличения силы тока по мере увеличения радиуса шляпок.

Сопротивление раствора на этапе (III) в расчете на 1 см² поверхности матрицы:

$$R_{\rm (III)} = \rho k. \tag{3}$$

Здесь k — кратчайшее расстояние от поверхности металла до электрода сравнения или, при использовании капилляра Луггина, до кончика этого капилляра. Следует отметить, что в процессе электролиза наблюдаются плавные переходы от этапа (I) к этапу (II) и от этапа (II) к этапу (III), так как наблюдается значительный разброс в значениях скорости роста отдельных нанопроволок.

Падение потенциала в растворе. С помощью приведенных выше выражений можно приближенно оценить падение потенциала в растворе ΔE , которое включается в измеренный электродный потенциал и смещает истинное значение потенциала металла в положительном направлении.

Так, для этапа (I):

$$\Delta E_{(I)} = IR_{(I)} = iSR_{(I)} =$$

= $i\pi r_{\pi}^{2} [\rho h_{0} x / (\pi r_{\pi}^{2}) + \rho / (2\pi r_{\pi})].$ (4)

Здесь I – сила тока, проходящего через одну пору; i – соответствующая этому этапу катодная плотность тока на находящейся в поре нанопроволоке. Значение i для этапа (I) можно рассчитать на основе закона Фарадея, зная начальную глубину пор и время их заполнения металлом. Это время

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 53 № 6 2019

соответствует точке начала крутого подъема на кривой сила тока—время, который указывает на появление шляпок.

На протяжении всего этапа (II) идут два параллельных процесса: увеличение радиуса уже образовавшихся шляпок и появление новых шляпок на концах отставших в своем росте нанопроволок. Соответственно, для каждой растущей шляпки непрерывно изменяется баланс между увеличивающейся величиной ΔE и уменьшающейся катодной поляризацией, что, в свою очередь, ведет к снижению катодной плотности тока и замедлению роста шляпок.

Для этапа (II) можно провести приблизительную оценку ΔE , например, для того момента электролиза, когда средний радиус шляпок в 5 раз превысит радиус проволок в порах, принимая, что катодная плотность тока сохраняет прежнее, более высокое значение. При такой оценке значения ΔE будут несколько завышенными, так как в действительности катодная плотность тока будет снижаться по мере роста диаметра шляпок:

$$\Delta E = \rho i r_{\rm m}. \tag{5}$$

Иными словами, рассчитанные таким образом значения ΔE будут отражать более позднюю стадию роста шляпок, когда их радиус превысит начальный уже не в 5, а в большее число раз.

Для этапа (III) имеем

$$\Delta E = \rho k i_{\text{(III)}}.$$
 (6)

Значение *i*_(III) — это плотность тока на единицу площади образца.

Падение потенциала в растворе на этапе (II) – величина, плавно изменяющаяся от значения на этапе (I) до значения на этапе (III). Если прирост ΔE – десятки милливольт, то это соответствует многократному снижению скорости роста осадка на внешней поверхности (т.е. на шляпках) по сравнению со скоростью роста в каналах пор, еще не заполненных металлом. Поэтому целесообразно использовать электролиты с высокой концентрацией осаждаемого металла, но при этом с минимальной проводимостью. По этой причине желательно отсутствие в электролите сильных кислот и оснований (4 < pH < 11).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для проведения экспериментов выбран электролит, отвечающий сформулированным выше требованиям – он содержит только сульфат кобальта и борную кислоту и не содержит сильных кислот и оснований (320 г/л CoSO₄·H₂O, 40 г/л H₃BO₃, pH 3.5–3.8, T=40–45°C) [9]. В последующих расчетах удельное сопротивление раствора р приняли равным 20 Ом см. Осаждение проводили

Таблица 1. Измеренные значения катодного потенциала относительно стандартного водородного электрода $E_{изм}$, длительность этапа (I) $t_{(I)}$, катодная плотность тока на этапе (I) *i* и рассчитанные значения ΔE для этапов (I), (II) и (III)

<i>Е</i> _{изм} , мВ	<i>t</i> _(I) , c	<i>i</i> _(I) , А/см ²	$\Delta E_{(I)},$ мВ	$\Delta E_{(II)},$ мВ	$\Delta E_{(III)},$ мВ
-680	43	0.66	12.4	62	124
-530	90	0.33	6.6	33	66
-580	180	0.16	3.2	16	32
-555	238	0.12	2.4	12	24
-530	396	0.075	1.5	7	15
-505	720	0.041	0.8	4	8

в поры трековых мембран глубиной 10 мкм и диаметром 500 нм, на тыльной поверхности которых был предварительно сформирован толстый слой меди. В процессе электролиза поддерживали постоянное значение измеряемого потенциала катода $E_{\rm изм}$ относительно хлорсеребряного электрода сравнения. При этом открытый конец капилляра Луггина был зафиксирован на расстоянии менее 1 мм от поверхности мембраны.

Кривые сила тока—время, полученные при разных значениях $E_{\rm изм}$, имеют три участка, характеризующих три этапа процесса, рассмотренные выше: (I) — горизонтальный или слегка наклоненный вниз, продолжающийся до момента выхода отдельных проволок на поверхность и начала образования шляпок; (II) — участок подъема кривой, наклон которого уменьшается с ростом $E_{\rm изм}$; (III) практически горизонтальный участок, характеризующий наличие на всей поверхности мембраны или значительной ее части сплошного слоя металла. Средние значения катодной плотности тока на этапе (I) при различных значениях ΔE были рассчитаны, принимая, что выход по току практически равен 100%.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ И ИХ ОБСУЖДЕНИЕ

Результаты измерений и расчетов обобщены в табл. 1.

Представленные в табл. 1 данные показывают, что при постоянном значении $E_{\rm изм}$ распределение истинного электродного потенциала не является равномерным: внутри растущих пор истинный потенциал значительно отрицательнее, чем у шляпок. Поскольку локальные значения плотности тока соответствуют локальным истинным значениям потенциала, отставшие в своем росте нанопроволоки быстро "догоняют" тех, которые уже вышли на внешнюю поверхность и начали

образовывать шляпки, дальнейший рост которых продолжает замедляться по мере увеличения их радиуса.

На этапах (I) и (II) катодный потенциал внутри не заполненных металлом пор практически совпадает с измеренным потенциалом, в то время как потенциал растущих шляпок непрерывно дрейфует в положительном направлении, что ведет к соответствующему снижению плотности тока на шляпках.

На этапе (III) после образования сплошного слоя металла вся поверхность вновь становится эквипотенциальной. Однако, в отличие от ситуации на этапах (I) и (II), истинное значение потенциала положительнее измеренного на десятки милливольт, а катодная плотность тока снижается на порядок.

ЗАКЛЮЧЕНИЕ

Проведение процесса электроосаждения нанопроволок в квазипотенциостатических условиях позволяет осуществить принцип саморегулирования при формировании ансамбля нанопроволок и таким образом обеспечить выравнивание скоростей их роста.

Теоретическая и расчетная части работы выполнены в РХТУ им. Д.И. Менделеева. Экспериментальные исследования проводились в рамках государственного задания ФНИЦ "Кристаллография и фотоника" РАН при поддержке Федерального агентства научных организаций (соглашение № 007-ГЗ/Ч3363/26).

ОБОЗНАЧЕНИЯ

- *Е* электродный потенциал, мВ
- *∆Е* падение потенциала в прикатодной зоне раствора, мВ
- *h* глубина поры, см
- I сила тока, А
- *i* плотность тока, А/см²
- *k* расстояние от поверхности катода до кончика капилляра Луггина, см
- *R* сопротивление, Ом
- r радиус поры, см
- *S* площадь катодной поверхности, см²
- *t* длительность этапа, с
- *х* относительная доля не заполненной металлом части поры
- ρ удельное сопротивление раствора, Ом см

ИНДЕКСЫ

679

(I), (II), (III)	этапы процесса
0	начальный
ИЗМ	измеряемый
П	пора
ш	шляпка

СПИСОК ЛИТЕРАТУРЫ

- 1. *Datta V, Landolt D*. Fundamental aspects and applications of microfabrication // Electrochim. Acta. 2000. V. 45. P. 2535.
- 2. *Koshev A.N., Varentsov V.K.* Mathematical Modeling of Effective Systems of Reactors with Flow-Through 3D Electrodes // Theor. Found. Chem. Eng. 2018. V. 52. № 1. Р. 87. [*Кошев А.Н., Варенцов В.К.* Математическое моделирование эффективных систем реакторов с проточными трехмерными электродами // Теор. осн. хим. технол. 2018. Т. 52. № 1. С. 93.]
- Varentsov V.K., Koshev A.N., Sukhov I.F. Mathematical modeling and experimental studies of the joint electrodeposition of gold and silver from sulfuric acid thiourea solutions on flow-through 3D electrode taking into account its nonstationary state // Theor. Found. Chem. Eng. 2018. V. 52. P. 495. [Варенцов В.К., Кошев А.Н., Сухов И.Ф. Процессы совместного электроосаждения золота и серебра из сернокислых растворов на проточном электроде // Теор. осн. хим. технол. 2018. T. 52. C. 391.]
- Koshev A.N., Varentsov V.K. Mathematical modeling of operation of a reactor with flow-through three-dimensional electrodes at limiting diffusion current under non-steady-state conditions // Theor. Found. Chem. Eng. 2018. V. 52. P. 779. [Кошев А.Н., Варенцов В.К. Математическое моделирование работы реактора с проточными трехмерными электродами в режиме предельного диффузионного тока в условиях нестационарности // Теор. осн. хим. технол. 2018. T. 52. C. 497.]
- Kruglikov S.S., Kolesnikov V.A., Nekrasova N.E., Gubin A.F. Role of macro- and microdistribution in the formation of metal and alloys layers in the production of printed circuits and other components of electronic devices // Theor. Found. Chem. Eng. 2018. V. 52. № 6. P. 975. [Кругликов С.С., Колесников В.А., Некрасова Н.Е., Губин А.Ф. Роль факторов макро- и микрораспределения в процессах формирования слоев металлов и сплавов в производстве печатных плат и других компонентов электронных устройств // Teop. och. хим. технол. 2018. Т. 52. № 6. С. 663.]
- Vinokurov E.G., Meshalkin V.P., Vasilenko E.A., Nevmyatullina H.A., Berukhina T.F., Bondar V.V. System analysis of the efficiency and competitiveness of chroming technologies // Theor. Found. Chem. Eng. 2016. V. 50. № 5. P. 730. [Винокуров Е.Г., Мешалкин В.П., Василенко Е.А., Невмятуллина Х.А., Берухина Т.Ф., Бондарь В.В. Системный анализ эффективности и конкурентоспособности технологий хромирова-

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 53 № 6 2019

ния // Теор. осн. хим. технол. 2016. Т. 50. № 5. С. 551.]

- Kruglikov S.S., Kolesnikov V.A., Nekrasova N.E., Gubin A.F. Regeneration of chromium electroplating electrolytes by the application of electromembrane processes // Theor. Found. Chem. Eng. 2018. V. 52. № 5. P. 800. [Кругликов С.С., Колесников В.А., Некрасова Н.Е., Губин А.Ф. Регенерация электролитов хромирования с помощью электромембранных процессов // Теор. осн. хим. технол. 2018. Т. 52. № 5. С. 519.]
- Davydov A.D., Volgin V.M. Template electrodeposition of metals. Review // Russ. J. Electrochem. 2016. V. 52. № 9. Р. 806. [Давыдов А.Д., Волгин В.М. Темплатное электроосаждение металлов (обзор) // Электрохимия. 2016. Т. 52. № 9. С. 905.]
- 9. Korotkov V.V., Kudryavtsev V.N., Kruglikov S.S., Zagorskii D.L., Sul'yanov S.N., Bedin S.A. Electrodeposi-

tion of Metals of Iron Groop into the Pores of Track Membranes for the Preparation of Nanowires // Galvanotekhnika i obrabotka poverkhnosti. 2015. V. 23. № 1. P. 24. [Коротков В.В., Кудрявцев В.Н., Кругликов С.С., Загорский Д.Л., Сульянов С.Н., Бедин С.А. Электроосаждение металлов группы железа в поры трековых матриц для получения нанопроволок // Гальванотехника и обработка поверхности. 2015. T. 23. № 1. C. 24.].

Kruglikov S.S. Certain Features of the Electrodeposition of Metals and Alloys under Potentiostatic Conditions // Galvanotekhnika i obrabotka poverkhnosti. 2016. V. 24. № 1. Р. 40. [Кругликов С.С. О некоторых особенностях использования потенциостатического режима при электроосаждении металлов и сплавов // Гальванотехника и обработка поверхности. 2016. Т. 24. № 1. С. 40.].