УЛК 574.6.663.1

СТАЦИОНАРНЫЕ СОСТОЯНИЯ ФЕРМЕНТАТИВНОГО ПРОЦЕССА ПОЛУЧЕНИЯ МОЛОЧНОЙ КИСЛОТЫ ПО ЗАДАННОЙ КОНЦЕНТРАЦИИ ОСНОВНОГО СУБСТРАТА

© 2020 г. Е. Л. Гордеева^а, Л. В. Равичев^а, Ю. Л. Гордеева^{b, *}

^а Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия

^b Московская государственная академия ветеринарной медицины и биотехнологии им. К.И. Скрябина, Москва, Россия *e-mail: l.s.gordeev@vandex.ru

Поступила в редакцию 13.01.2020 г. После доработки 21.01.2020 г. Принята к публикации 07.02.2020 г.

Приведена расчетная схема, обобщающая теоретические представления технологии непрерывной ферментации молочной кислоты при заданной концентрации основного субстрата в потоке, поступающем в ферментер. Последовательность формирования расчетной схемы включает предварительный анализ и основной анализ. В предварительном анализе получены соотношения, формирующие область оценки граничных показателей, отвечающих заданному значению продуктивности процесса. Отмечены координаты точки максимальной продуктивности — величины $S_{\rm opt}, D^{\rm opt}$; координаты особых точек: для точки $1 - [S_1(D_1), D_1]$; для точки $2 - [S_2(D_2), D_2]$; для точки 3 - $[S_3(D_3), D_3]$ и для точки $4 - [S_4(D_4), D_4]$. Для точки максимальной продуктивности и особых точек даны соотношения для вычисления начальных значений концентраций основного субстрата S_0 и соответствующих начальных концентраций компонента, воспроизводящего субстрат в процессе ферментации M_0 . Значения координат явились ограничениями в формировании соотношений основного анализа, определяющие множества для выбора значений M_0 и D по заданному значению S_0 . Схема формирования множеств представлена тремя частями: І. ІІ и ІІІ. Границы частей определены соотношениями (21), (22) и (23). Приведена последовательность формирования множеств для каждой части и показано, что для части І существует единственное множество Мн1; для части ІІ – два множества Мн1* и Мн2*; для части III – три множества Мн1**, Мн2**, Мн3**. Приведены таблицы для вычисления элементов множеств при заданном значении S_0 . Полученные теоретические соотношения использованы для численного расчета по оценке показателей множественности стационарных состояний для каждого из множеств Мн. Показано, что диапазон задания S_0 наиболее широк для части I, в то время как диапазон формирования величины протока D наибольший для части III. Численные оценки в сравнительном варианте для множеств частей II и III показали, что конечные концентрации компонентов при одинаковых начальных условиях отличаются по значениям M_0 , М и S. Последнее дает возможность получить сравнительные оценки для дальнейшей переработки полученных компонентов (выделение молочной кислоты, утилизация и использование непревращенных компонентов, выделение побочного продукта и т.п.).

Ключевые слова: молочная кислота, математическое моделирование, множественность по концентрации субстрата, стационарные состояния

DOI: 10.31857/S0040357120040065

ВВЕДЕНИЕ

В настоящей работе рассматриваются стационарные состояния технологического процесса непрерывной ферментации молочной кислоты. Технологическое обеспечение процесса определяется тремя входными показателями — величиной протока через ферментер (D, \mathbf{q}^{-1}) ; величиной концентрации основного субстрата в поступаю-

щем потоке (S_0 , г/л) (под основным субстратом понимается субстрат, непосредственно потребляемый микроорганизмами; для многих микроорганизмов часто основным субстратом является глюкоза [1]); величиной концентрации компонента сырья, воспроизводящего основной субстрат в процессе ферментации (M_0 , г/л). Так, в [2] этим компонентом является мальтоза, при дегра-

дации которой воспроизводится основной субстрат. В работе [3] дополнительное количество субстрата образуется деградацией крахмала. Общее количество субстрата, потребляемого микроорганизмами, складывается из двух составляющих – часть от основного субстрата и часть от компонента, воспроизводящего субстрат. В последней части, если обозначить константу деградации как k_M , ч⁻¹, то количество образуемого субстрата будет равно $k_M M$, где M — концентрация в ферментере, г/л. Таким образом, две величины S_0 и M_0 дополняют друг друга в практической реализации технологического процесса. Величина протока D является независимой величиной, имеющей ограниченное значение $D_{\text{пред}}$, при котором субстрат вымывается из ферментера, "не успев" вступить в процесс синтеза. Таким образом, в результате процесса синтеза в потоке, покидающем ферментер, остаются компоненты в следующих концентрациях: Р, г/л — концентрация молочной кислоты; S, Γ/π — концентрация субстрата; X, Γ/π концентрация биомассы; M, г/л — концентрация компонента, воспроизводящего субстрат; B, г/л концентрация побочного продукта. Здесь В представляет продукт, который, возможно, образуется в процессе синтеза молочной кислоты. При использовании различных штаммов микроорганизмов побочные продукты (в совокупности) могут получаться в малых количествах и не иметь практической ценности. Однако в работе [4] в качестве побочного продукта приведено образование бактериоцина в виде низина или педиоцина, т.е. продуктов, имеющих самостоятельную ценность. В публикации [4] в качестве микроорганизмов использованы Lactococcus lactis и Pediococcus asidilactici.

Основы формирования обобщенной математической модели, учитывающей вышеизложенные положения, приведены в публикации [5]. Система уравнений имеет следующий вид:

$$\begin{cases}
-DX + \mu X = 0 \\
(\alpha \mu + \beta) X - DP = 0 \\
(\alpha_B \mu + \beta_B) X - DB = 0 \\
D(S_0 - S) - \frac{1}{Y_{X/S}} \mu X + k_M M = 0 \\
D(M_0 - M) - k_M M = 0 \\
\mu = \mu_{\text{max}} \left(1 - \frac{X}{X_{\text{max}}}\right)^{n_1} \left(1 - \frac{P}{P_{\text{max}}}\right)^{n_2} \frac{S}{K_m + S + S^2/K_i}
\end{cases}$$
(1)

Математическая модель содержит элементы, учитывающие возможность ингибирования, включенные в соотношение кинетики: ингибирование биомассой (X_{\max} , n_1), продуктом (P_{\max} , n_2), субстратом (K_i).

Использование уравнений математической модели требует иметь оценки констант, которые получают по экспериментальным данным для конкретного штамма микроорганизмов. Результаты преобразования системы (1) приведены в приложении (формулы (Π .1) $-(\Pi$.11)), которые необходимы для решения поставленной задачи.

Настоящая задача связана с определением множественности стационарных состояний по заданным значениям D, S_0 и M_0 .

Результаты оценки множественности по заданной величине D приведены в работе [6].

Множественность по заданным значениям S_0 и M_0 целесообразно рассмотреть последовательно, т.е. первоначально необходимо получить показатели процесса, когда задается только значение S_0 . Именно этот анализ выполнен в настоящей публикации.

Последующий шаг определяется условием, когда задается только M_0 . В настоящей работе это вариант не рассматривается.

Для решения поставленной задачи требуется выполнение предварительных расчетов, суть которых заключается в возможности получения соотношений, обеспечивающих реальное осуществление процесса. Таким образом, дальнейший анализ базируется на уравнениях математической модели (1).

ПРЕДВАРИТЕЛЬНЫЙ АНАЛИЗ

Целью предварительного анализа является получение характеристики объекта, для которого будет оцениваться множественность.

Задачей технологического процесса является получение показателей, обеспечивающих заданное значение продуктивности по целевому продукту Q_P , г/(л ч) — молочной кислоте. При этом возможен вариант получения максимальной продуктивности $\max Q_P$ или продуктивности меньше максимальной. В последнем случае возможна экономия сырьевых материалов или лучшие условия выделения целевого продукта и др.

Первая задача, которая решается при получении характеристик объекта, есть задача оценки $\max Q_P$ и определение величины протока D^{opt} , обеспечивающего $\max Q_P$

Максимальное значение Q_P вычисляется с использованием уравнений (П.8) и (П.2), т.е. вычисляется значение D^{opt} , обеспечивающее $\max Q_P$ в уравнении

$$\left(\frac{K_i}{2}\right)^2 \left[A(D) \frac{\mu_{\text{max}}}{D} - 1 \right]^2 - K_m K_i = 0.$$
 (2)

Уравнение (2) решается численно. Получаем

$$\max Q_P$$
 и D^{opt} . (3)

Таблица 1. Соотношения для вычисления компонент множеств для S_0 и M_0 для точки оптимального условия и особых точек

Оптимальная точка	$S_0^i = S_{\text{opt}} \frac{n_0 - i}{n_0}$	(13)
D^{opt} , ч $^{-1}$; S_{opt} , г/л	$M_0^i = \frac{i}{n_0} \frac{D^{\text{opt}} + k_M}{k_M} S_{\text{opt}}$	(14)
D_k , ч $^{-1}$; S_k , г/л $k=1.0$. Особая точка 1: D_1 ; S_1	$S_0^i = S_k \frac{n_k - i}{n_k}$	(15)
$k=2.0.$ Особая точка 2: $D_2; S_2$	$M_0^i = \frac{i}{n_k} \frac{D_k + k_M}{k_M} S_k$	(16)
$k=3.0$. Особая точка 3: D_3 ; S_3 $k=4.0$. Особая точка 4: D_4 ; S_4	Значения n_0 и n_k задает пользователь; $i=0-n_0$; $i=0-n_k$	

Для $\max Q_P$ и D^{opt} вычисляется S_{opt} по (П.6) или (П.7). Получаем

$$S_{\text{opt}} = S_1' \left(D^{\text{opt}} \right) = S_2' \left(D^{\text{opt}} \right) =$$

$$= \frac{1}{Y_{X/S}} \frac{\max Q_P}{\left(\alpha D^{\text{opt}} + \beta \right)} + \left(K_m K_i \right)^{1/2}. \tag{4}$$

Положение точки $\max Q_P$ обозначено значениями

$$\left[S_{\text{opt}}, D^{\text{opt}}\right].$$
 (5)

Следующая задача заключается в получении оценок при условии

$$Q_P < \max Q_P. \tag{6}$$

Для Q_P по условию (6) также решается уравнение (П.8), используя (П.2). Получаем два значения D_1 и D_2 (значения D не могут быть меньше D_1 и не могут быть больше D_2 по условиям (П.6) и (П.7)).

Для D_1 и D_2 вычисляются значения $S'(D_1)$ и $S'(D_2)$ по (П.6):

$$S_{1} = S'_{1}(D_{1}) = \frac{1}{Y_{X/S}} \frac{Q_{P}}{(\alpha D_{1} + \beta)} +$$

$$+ (K_{m}K_{i})^{1/2} = S'_{2}(D_{1}),$$

$$S_{2} = S'_{1}(D_{2}) = \frac{1}{Y_{X/S}} \frac{Q_{P}}{(\alpha D_{2} + \beta)} +$$

$$+ (K_{m}K_{i})^{1/2} = S'_{2}(D_{2}).$$
(8)

В соотношениях (7) и (8) имеем следующее условие:

$$S_1 > S_2. \tag{9}$$

Точки с координатами $[S_1, D_1]$ и $[S_2, D_2]$ назовем особыми точками 1 и 2.

Координаты особых точек 1 и 2 определяют область значений величины протока D при $Q_P < \max Q_p$:

$$D_1 < D < D_2.$$
 (10)

Далее, для Q_P по (6) вычисляется D_3 из значений D по (10), обеспечивающее максимальное значение

 $S_1^{'}$ по (П.6). Для D_3 вычисляется $S_3 = \max S_1^{'}(D_3)$. Координаты особой точки 3:

$$[S_3, D_3]. \tag{11}$$

Для Q_P по (6) вычисляется D_4 из (10), обеспечивающее минимум S_2' по (П.7). Для D_4 вычисляется $S_4 = \min S_2'(D_4)$. Координаты особой точки 4:

$$[S_4, D_4]. \tag{12}$$

Координаты точки $\max Q_P$ и особых точек являются ограничительными характеристиками объекта для любого Q_P по условию (6).

Для каждой из этих точек имеется возможность вычислить множество значений S_0 и M_0 в потоке, поступающем в ферментер.

В табл. 1 представлены соотношения, формирующие множества S_0 и M_0 для точки экстремума и особых точек.

Условия вычисления S_0^i определяются следующими неравенствами:

для точки экстремума

$$0 \le S_0^i \le S_{\text{opt}}; \tag{17}$$

для особых точек

$$0 \le S_0^i \le S_k. \tag{18}$$

Значения n_0 , n_k пользователь задает произвольно в виде неотрицательного числа для каждо-

Таблица 2. Численные значения констант для базового варианта

K_m , г/л	K_i , г/л	μ_{max} , ч ⁻¹	$X_{\rm max}$, г/л	$P_{\rm max}$, г/л	n_1	n_2	$Y_{X/S}$, Γ/Γ	k_M , y^{-1}	α, Γ/Γ	β , 4^{-1}	α_B , Γ/Γ	β_B , y^{-1}
1.2	164	0.48	30	98.0	0.5	0.5	0.4	0.035	2.2	0.02	1.1	0.01

го номера. Значения $i = 0 - n_0$ для точки экстремума, $i = 0 - n_k$ для особых точек.

Ниже приведем численный расчет с использованием констант базового варианта для системы (1) (табл. 2).

По решению уравнения (2) получены следующие значения для оптимальной точки:

$$\max Q_P = 8.1718 \text{ r/(л ч)}; D^{\text{opt}} = 0.205 \text{ ч}^{-1};$$

 $S_{\text{opt}} = 57.4 \text{ r/л}.$

Для вычисления координат особых точек использовано следующее условие:

$$Q_P = 6.0 \ \Gamma/(\pi \, \text{ч}) < \max Q_P.$$

Значение n_0 для оптимальной точки и n_k для всех особых точек принято равным четырем ($n_0 = 4$, $n_k = 4$), значение i использовано в расчетах по условию $i = 0 - n_0$ и $i = 0 - n_k$ и было одинаковым: 0.0; 1.0; 2.0; 3.0; 4.0.

Вычисляются элементы множеств S_0 и M_0 для точки экстремума и особых точек с использованием исходных данных.

Исходные данные:

- 1) мощность множеств принята одинаковой для всех расчетов ($n_0 = 4$, $n_k = 4$) и равна 5 (i = 0.0; 1.0; 2.0; 3.0; 4.0);
- 2) координаты точки экстремума и особых точек для $Q_P = 6.0 \ \Gamma/(\pi \ \Psi)$:

точка экстремума

$$S_{\text{opt}} = 57.4 \text{ г/л};$$
 $D^{\text{opt}} = 0.205 \text{ ч}^{-1}$: формулы (2)–(4);

особая точка 1

$$S_1 = 77.6 \text{ г/л}; D_1 = 0.09818 \text{ ч}^{-1}$$
: формулы (2),(7),(8);

особая точка 2

$$S_2 = 35.35 \text{ г/л}; D_2 = 0.3107 \text{ ч}^{-1}:$$

формулы (2),(7),(8);

особая точка 3

$$S_3 = 143.28 \text{ r/n};$$

 $D_3 = 0.138 \text{ y}^{-1}: \max S_1' \text{ по (П.6)};$

особая точка 4

$$S_4 = 29.0 \text{ r/\pi};$$

 $D_4 = 0.28 \text{ q}^{-1}: \text{max} S_2' \text{ no } (\Pi.7).$

По результатам предварительного анализа пользователь имеет возможность выбрать или задать значение S_0 , отвечающее условиям точки экстремума или какой-либо из особых точек.

Формула вычисления M_0^i в табл. 1 получена для каждого принятого или заданного значения S_0^i по (П.4):

$$M_0^i = \frac{D^{\text{opt}} + k_M}{k_M} \left[S_{\text{opt}} - S_0^i \right] -$$
 для точки экстремума, (19)

$$M_0^i = \frac{D_k + k_M}{k_M} \Big[S_k - S_0^i \Big]$$
 – для особых точек, (20)

где S_{opt} и S_k — значения исходных данных.

В табл. 3 представлены результаты вычислений S_0^i и M_0^i по исходным данным, приведенным выше.

Далее рассматривается более общая задача задания S_0 для условий, отличных от рассмотренных выше.

ОСНОВНОЙ АНАЛИЗ

Целью основного анализа является получение соотношений для вычисления технологических показателей S_0 , M_0 , D и, соответственно, остальных показателей процесса ферментации P, X, S, M, B по заданному значению S_0 .

В основном анализе используются данные предварительного анализа по координатам точки экстремума и особых точек.

Если значение S_0 задается по значениям для точки экстремума или особых точек, т.е. $S_0 = S_{\rm opt}$ или $S_0 = S_1$ или $S_0 = S_2$ или $S_0 = S_3$ или $S_0 = S_4$, то для всех вышеприведенных условий значение $M_0 = 0$. Показатели процесса вычисляются по (П.11).

В дальнейшем этот вариант не рассматривается, т.е. анализ выполняется исключая рассмотрение точки экстремума и особых точек.

№ п/п	i	0	1	2	3	4
1	Точка экстремума	$S_0^0 = 57.4$ $M_0^0 = 0.0$	$S_0^1 = 43.05$ $M_0^1 = 98.4$	$S_0^2 = 28.7$ $M_0^2 = 196.8$	$S_0^3 = 14.35$ $M_0^3 = 295.7$	$S_0^4 = 0.0$ $M_0^4 = 393.6$
2	Особая точка 1	$S_0^0 = 77.6$ $M_0^0 = 0.0$	$S_0^1 = 58.2$ $M_0^1 = 73.82$	$S_0^2 = 38.8$ $M_0^2 = 147.64$	$S_0^3 = 19.4$ $M_0^3 = 231.46$	$S_0^4 = 0.0$ $M_0^4 = 295.28$
3	Особая точка 2	$S_0^0 = 35.35$ $M_0^0 = 0.0$	$S_0^1 = 26.51$ $M_0^1 = 87.29$	$S_0^2 = 17.67$ $M_0^2 = 174.58$	$S_0^3 = 8.83$ $M_0^3 = 261.87$	$S_0^4 = 0.0$ $M_0^4 = 349.16$
4	Особая точка 3	$S_0^0 = 143.28$ $M_0^0 = 0.0$	$S_0^1 = 107.46$ $M_0^1 = 177.05$	$S_0^2 = 71.64$ $M_0^2 = 354.11$	$S_0^3 = 35.82$ $M_0^3 = 531.16$	$S_0^4 = 0.0$ $M_0^4 = 708.06$
5	Особая точка 4	$S_0^0 = 29.0$ $M_0^0 = 0.0$	$S_0^1 = 21.75$ $M_0^1 = 65.25$	$S_0^2 = 14.5$ $M_0^2 = 13.05$	$S_0^3 = 7.25$ $M_0^3 = 195.75$	$S_0^4 = 0.0$ $M_0^4 = 261.0$

Таблица 3. Результаты расчета множеств S_0 (г/л) и M_0 (г/л)

Основываясь на предварительном анализе, область задания S_0 разделяется на три части:

Часть I:
$$S_1(D_1) \le S_0 \le S_3(D_3)$$
; (21)

Часть II:
$$S_2(D_2) \le S_0 \le S_1(D_1)$$
; (22)

Часть III:
$$S_4(D_4) \le S_0 \le S_2(D_2)$$
. (23)

В соотношениях (21)—(23) указаны значения D, для которых вычисляются S_k .

При заданном S_0 по любой из частей вычисляются по два значения величины протока, обеспечивающие это значение.

По части I: D_1^1 и D_1^2 вычисляются по (П.6), где $S_1' = S_0, \ D_1^1 < D_3, \ D_1^2 > D_3.$

По части II: D_2^1 вычисляется по (П.7), где $S_2^{'} = S_0$; D_2^2 вычисляется по (П.6), где $S_1^{'} = S_0$; $D_2^1 < D_4$, $D_2^2 > D_3$.

По части III: D_3^1 и D_3^2 вычисляются по (П.7), где $S_2^{'}=S_0,\ D_3^1< D_4,\ D_3^2>D_4$.

Условия формирования множеств значений M_0 и D при заданном значении S_0 рассмотрим отдельно для каждой части.

<u>Часть I</u>.

1. По заданному (или выбранному) S_0 по условию (21) вычисляются значения D_1^1 и D_1^2 по решению уравнения (П.6), используя (П.2) для Q_P по (6). Таким образом, область значений D ограничена следующим условием:

$$D_1^1 \le D \le D_1^2,\tag{24}$$

где S_1' в (П.6) равно S_0 .

2. Вычисляется шаг h по D:

$$h = \frac{D_1^2 - D_1^1}{n_1},\tag{25}$$

где n_1 — произвольное положительное число.

3. Вычисляется значение D^{i} , используя шаг h:

$$D^i = D_1^1 + ih, (26)$$

где $i = 0 - n_1$.

4. Соотношение (26) преобразуем, используя (25):

$$D^{i} = D_{1}^{1} + \frac{i}{n_{1}} \left(D_{1}^{2} - D_{1}^{1} \right). \tag{27}$$

При i = 0 $D^i = D_1^1$; при $i = n_1$ $D^i = D_1^2$.

- 5. Для каждого номера i имеется возможность вычислить $S_1'(D^i)$ по (П.6).
 - 6. Вычисляется M_0^i по формуле

$$M_0^i = \frac{D^i + k_M}{k_M} \left[S_1'(D^i) - S_0 \right]. \tag{28}$$

Получаем множество значений M_0 и D в виде Мн1 для принятого S_0 :

$$MH1: \left\{ M_0^i, D^i \right\}. \tag{29}$$

Итоговые формулы приведены в табл. 4.

Для каждого номера из (29) и принятого S_0 по (П.11) вычисляются остальные показатели процесса.

<u>Часть II.</u> Особенностью для части II является возможность формирования двух множеств $Mh1^*$ и $Mh2^*$ для задания M_0 и D при принятом S_0 .

Часть I	Часть II					
$S'(D_1) < S_0 < S_1'(D_3)$	$S'(D_2) < S_0 < S'(D_1)$					
D_1^1 и D_1^2 по (П.6); $S_1' = S_0$, $D_1^1 < D_3$, $D_1^2 > D_3$	D_2^1 по (П.7); $S_2' = S_0, D_2^1 < D_4$ D_2^2 по (П.6); $S_1' = S_0, D_2^2 > D_3$					
$D^{i} = D_{1}^{1} + \frac{i}{n_{1}} \left(D_{1}^{2} - D_{1}^{1} \right)$ $n_{1} > 0; i = 0 - n_{1}$	$D^{i} = D_{1} + \frac{i}{n_{2}^{1}} (D_{2}^{2} - D_{1})$ $n_{2}^{1} > 0; i = 0 - n_{2}^{1}$	$D^{i} = D_{1} + \frac{i}{n_{2}^{2}} (D_{2}^{1} - D_{1})$ $n_{2}^{2} > 0; i = 0 - n_{2}^{2}$				
$S_1'(D^i)$ по (П.6)	$S_1'(D^i)$ по (П.6)	$S_2'\left(D^i\right)$ по (П.7)				
$M_0^i = \frac{D^i + k_M}{k_M} \left[S_1'(D^i) - S_0 \right]$	$M_0^i = \frac{D^i + k_M}{k_M} \left[S_1^i(D^i) - S_0 \right]$	$M_0^i = \frac{D^i + k_M}{k_M} \left[S_2^i(D^i) - S_0 \right]$				
Мн1 : $\left\{ M_0^i, D^i \right\}$	$MH1^*:\left\{M_0^i,D^i\right\}$	Мн2* : $\left\{M_0^i, D^i\right\}$				

Таблица 4. Соотношения для вычисления множества M_0 и D при заданном значении S_0

$S_2'(D_4) < S_0 < S'($	D_2
-------------------------	-------

Часть III

D_3^1 и D_3^2 по (П.7); $S_2 = S_0, D_3^1 < D_4, D_3^2 > D_4$										
$D^{i} = D_{1} + \frac{i}{n_{3}^{1}} (D_{2} - D_{1})$	$D^{i} = D_{1} + \frac{i}{n_{3}^{2}} \left(D_{3}^{1} - D_{1} \right)$	$D^{i} = D_{3}^{2} + \frac{i}{n_{3}^{2}} \left(D_{2} - D_{3}^{2} \right)$								
$n_3^1 > 0$; $i = 0 - n_3^1$	$n_3^2 > 0$; $i = 0 - n_3^2$	$n_3^3 > 0; i = 0 - n_3^3$								
$S_1'\left(D^i\right)$ по (П.6)	$S_2'\left(D^i\right)$ по (П.7)	$S_2^{'}\left(D^i\right)$ по (П.7)								
$M_0^i = \frac{D^i + k_M}{k_M} \left[S_1'(D^i) - S_0 \right]$	$M_0^i = \frac{D^i + k_M}{k_M} \left[S_2^i(D^i) - S_0 \right]$	$M_0^i = \frac{D^i + k_M}{k_M} \left[S_2'(D^i) - S_0 \right]$								
$MH1 * * : \left\{ M_0^i, D^i \right\}$	$M_{\rm H2} * * : \left\{ M_0^i, D^i \right\}$	Мн3 * * : $\left\{ M_0^i, D^i \right\}$								

- 2.1. Для обоих множеств общим является вычисление D_2^1 по решению (П.7), где $S_2^{'}=S_0$, и D_2^2 по решению (П.6), где $S_1^{'}=S_0$, S_0 по условию (22).
- 2.2. Последовательность формирования множеств аналогична последовательности для части I (здесь не приводится). Результирующие формулы даны в табл. 4 для множеств Мн1* и Мн2*.

<u>Часть III.</u> Особенностью для части III является возможность формирования трех множеств $Mh1^{**}$, $Mh2^{**}$ и $Mh3^{**}$ для задания M_0 и D при принятом S_0 .

- 3.1. Для трех множеств общим является вычисление D_3^1 и D_3^2 по решению уравнения (П.7), где $S_2' = S_0$, S_0 по условию (23).
- 3.2. Последовательность формирования множеств аналогична последовательности для части I

(так же как и части II, и здесь не приводится). Результирующие формулы даны в табл. 4 для множеств $Mh1^{**}$, $Mh2^{**}$ и $Mh3^{**}$.

Ниже приведены результаты числового расчета показателей технологического процесса, полученные по соотношениям табл. 4 с использованием формул (П.11) для констант табл. 2. На рис. 1 показаны зависимости S' от D, полученные по условию $Q_P < \max Q_P$: $Q_P = 6.0, 7.0$ и 8.0 г/(л ч).

Зависимости получены по решению уравнений (П.6) и (П.7). На рисунке также обозначена точка 5 ($\max Q_p$). Нетрудно видеть, что область технологических показателей сужается с увеличением Q_p .

ЧИСЛЕННЫЙ РАСЧЕТ

Расчет выполняется для всех трех частей согласно табл. 4. В расчете использованы численные

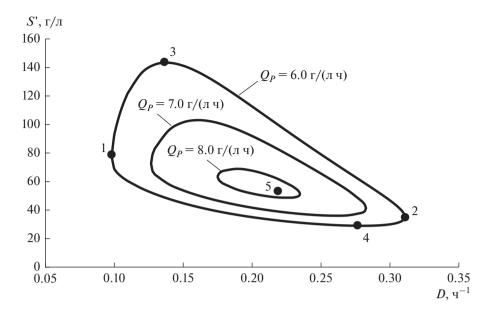


Рис. 1. Зависимость S' от D для значений Q_P , $\Gamma/(\pi \, \mathbf{q})$: 6.0; 7.0; 8.0. Особые точки 1, 2, 3 и 4 — $Q_P = 6 \, \Gamma/(\pi \, \mathbf{q})$; точка 5 — $\max Q_P$.

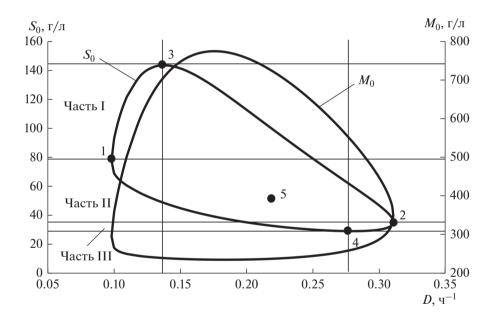


Рис. 2. Портреты для S_0 и M_0 : 1-4- положения особых точек; 5- положение точки экстремума.

значения констант базового варианта (табл. 2) для системы (1). Во всех приведенных ниже расчетах использованы данные предварительного анализа для точки экстремума и особых точек, а также формулы табл. 4 с указанием вида множества.

На рис. 2 показаны портреты для S_0 и M_0 , ограничивающие их значения при $Q_P = 6.0$ г/(л ч).

Портрет S_0 содержит значения в области величины протока D по координатам особых точек 1 и 2,

т.е. значений от 0.09818 до 0.3107 ч $^{-1}$. Все значения S_0 при $M_0=0$.

Портрет M_0 содержит значения для той же области D для всех M_0 при $S_0 = 0$.

На рис. 2 отмечены границы частей I, II и III в соответствии с (21)—(23), по которым выполнен дальнейший расчет.

Часть I

1. Принимается значение S_0 согласно неравенству (21):

1.0 3.0 4.0 5.0 6.552 0.0 2.0 6.0 D^{i} 0.1 0.12 0.14 0.16 0.18 0.20 0.22 0.23045 91.932 136.14 137.15 125.85 112.64 99.00 91.932 143.20 $S_1'(D^i)$ 0.0 195.78 256.34 251.93 208.35 139.04 51,495 0.0 M_0^i

Таблица 5. Результаты вычислений D^i , $S_1^i\left(D^i
ight)$ и M_0^i

$$77.6 < S_0 < 143.25$$
.

Принято $S_0 = 91.932 \ \Gamma/\pi$.

Вычисления по пп. 2—4 проводятся по формулам табл. 4 для множества Мн1.

2. Вычисляются D_1^1 и D_1^2 по (П.6) по следующему условию:

$$D_1^1 < D_3$$
, т.е. $D_1^1 < 0.138 \text{ ч}^{-1}$; $D_1^2 > D_3$, т.е. $D_1^2 > 0.138 \text{ ч}^{-1}$. $S_1^{'}$ в (П.6) равно $S_0 = 91.932 \text{ г/л}$.

Получено $D_1^1 = 0.1 \text{ y}^{-1}$; $D_1^2 > 0.23045 \text{ y}^{-1}$.

3. Вычисляется D^i .

Показатели $n_1 > 0$ и $i = 0.0 - n_1$ выбраны следующим образом.

Записали
$$\Delta = D_1^2 - D_1^1 = 0.23045 - 0.1 = 0.13045$$
.

Значение n_1 принято равным 6.552; значения *i*: 0.0; 1.0; 2.0; 3.0; 4.0; 5.0; 6.0; 6.552.

Полученные значения D^i для соответствующих значений i приведены в табл. 5.

4. Вычисляем $S_1'(D^i)$ и M_0^i .

Результаты вычислений по п. 4 также сведены в табл. 5

Таким образом, для $S_0 = 91.932$ г/л получили множество Мн1 из 8 пар значений (M_0^i , D^i). Количество пар может быть иным в зависимости от заданных значений i по условию $i = 0-n_1$ и заданных значений n_1 .

В данном случае (в приведенном расчете) пользователь может сделать выбор из 8 вариантов. Остальные показатели процесса для каждого из вариантов вычисляются по (Π .11).

Так, если принят вариант для i=3.0, технологические показатели по (П.11) будут: $S_0=91.932$ г/л; $M_0=251.93$ г/л; D=0.16 ч $^{-1}$; P=37.5 г/л; X=16.13 г/л; S=96.83 г/л; M=206.71 г/л; B=18.75 г/л.

Расчет по части I завершен.

<u>Часть II.</u> В части II формируются два множества $Mh1^*$ и $Mh2^*$ (см. табл. 4). В дальнейшем расчете пп. 1 и 2 являются общими для $Mh1^*$ и $Mh2^*$.

1. Принимается значение S_0 согласно неравенству (22):

$$35.35 < S_0 < 77.6$$
.

Принято $S_0 = 53.54 \text{ г/л}.$

2. Вычисляется D_2^1 по (П.7), где $D_2^1 < D_4$, т.е. $D_2^1 < 0.28$ ч $^{-1}$. $S_2^{'}$ в (П.7) равно $S_0 = 53.54$ г/л. Получено $D_2^1 = 0.1237$ ч $^{-1}$.

Вычисляется D_2^2 по (П.6), где $D_2^2 > D_4$, т.е. $D_2^2 > 0.28$ ч $^{-1}$. S_2' в (П.6) равно $S_0 = 53.54$ г/л. Получено $D_2^2 = 0.29$ ч $^{-1}$.

Формирование Мн1*

Вычисление по пп. 3—5 проводится по формулам табл. 4 для множества Мн1*.

3. Вычисляется D^i .

Показатели $n_2^1 > 0$ и $i = 0.0 - n_2^1$ выбраны следующим образом.

Записали
$$\Delta = D_2^2 - D_1 = 0.29 - 0.09818 = 0.19182$$
.

Значение n_2^1 принято равным 19.18; значения i: 0.0; 1.0; 1.5; 2.0; 2.552; 3.0; ...; 19.0; 19.18.

Полученные значения D^i для соответствующих значений i приведены в табл. 6.

- 4. Вычисляем $S'_1(D^i)$.
- 5. Вычисляется M_0^i .

Результаты вычислений по пп. 4 и 5 также сведены в табл. 6.

Таким образом, для $S_0 = 53.54$ г/л получили множество Мн1* из 22 пар значений (M_0^i , D^i). Количество пар может быть иным в зависимости от заданных значений i по условию $i = 0.0 - n_2^1$ и заданных значений n_2^1 .

В данном расчете пользователь может сделать выбор из 22 вариантов. Остальные показатели процесса для каждого из вариантов вычисляются по (Π .11).

Формирование Мн2*

Как уже отмечалось выше, пп. 1 и 2 в части II являются общими для $Mh1^*$ и $Mh2^*$. Поэтому дальнейший расчет проводится с п. 3 (3^a).

Множество	i	0.0	1.0	1.5	2.0	2.552	3.0	•••	19.18
	D^i	0.09818	0.1082	0.1132	0.1182	0.1237	0.1282		0.29
Мн1*	$\mathcal{S}_1'\left(D^i\right)$	77.6	118.207	127.72	134.30	139.09	141.48		53.54
141111	M_0^i	91.55	264.58	314.10	353.50	387.91	410.05	•••	0.0
Мн2*	$S_2'\left(D^i\right)$	77.6	61.42	58.49	56.01	53.54			
	M_0^i	91.55	32.24	20.960	10.811	0.0			

Таблица 6. Результаты расчетов по пп. 4 и 5 для Мн1* и Мн2*

Таблица 7. Результаты оценок технологических показателей по (П.11) для i = 1.5 в Мн1* и Мн2*

Множество	S_0 , г/л	$D^{1.5}$, ч $^{-1}$	$M_0^{1.5}$, г/л	<i>P</i> , г/л	<i>X</i> , г/л	В, г/л	<i>S</i> , г/л	М, г/л
Мн1*	53.54	0.1132	314.10	53.00	22.30	26.50	71.97	239.92
Мн2*	53.54	0.1132	20.96	53.00	22.30	26.50	2.736	16.00

Вычисление по пп. 3^a-5^a проводится по формулам табл. 4 для множества $Mh2^*$.

3^{a} . Вычисляется D^{i} .

Показатели $n_2^2 > 0$ и $i = 0.0 - n_2^2$ выбраны следующим образом.

Записали
$$\Delta = D_2^1 - D_1 = 0.1237 - 0.09818 = 0.02552$$
.

Значение n_2^2 принято равным 2.552; значения i: 0.0; 1.0; 1.5; 2.0; 2.552.

Полученные значения D^i для соответствующих значений і приведены в табл. 6.

- 4^{a} . Вычисляем $S_{2}^{'}(D^{i})$.
- 5^{a} . Вычисляется M_{0}^{i} .

Результаты вычислений по пп. 4^a и 5^a сведены в табл. 6.

Таким образом, для $S_0 = 53.54$ г/л получили множество Mн2* из 4 пар значений (M_0^i , D^i). Количество пар может быть иным в зависимости от заданных значений i по условию $i = 0.0 - n_2^2$ и заданных значений n_2^2 .

В данном расчете пользователь может сделать выбор из 4 вариантов. Остальные показатели процесса для каждого из вариантов вычисляются по $(\Pi.11)$.

В заключении по приведенному расчету для части II отметим следующее.

Значение i для Мн1* и Мн2* подбиралось таким образом, чтобы для $n_2^1 = 19.18$ в Мн1* и для $n_2^2 = 2.552$ в Мн2* первые 4 значения в обоих множествах D^i были одинаковыми (см. табл. 6). Это дало возможность сравнить показатели процесса

по (П.11) для значения D^i первых четырех компонентов Мн1* и Мн2*. Результаты расчета привелены в табл. 7.

Значение *і* для каждого из множеств для сравнения принято равным 1.5. В результате использованы следующие данные:

для Мн1*:
$$S_0 = 53.54$$
 г/л; $D^{1.5} = 0.1132$ ч $^{-1}$; $M_0^{1.5} = 314.11$ г/л; $Q_P = 6.0$ г/(л ч);

для Мн2*:
$$S_0 = 53.54$$
 г/л; $D^{1.5} = 0.1132$ ч $^{-1}$; $M_0^{1.5} = 20.96$ г/л; $Q_P = 6.0$ г/л ч).

<u>Часть III.</u> В части III формируются три множества $Mh1^{**}$, $Mh2^{**}$ и $Mh3^{**}$ (см. табл. 4). В дальнейшем расчете пп. 1 и 2 являются общими для $Mh1^{**}$, $Mh2^{**}$ и $Mh3^{**}$.

1. Принимается значение S_0 согласно неравенству (23):

$$29.0 < S_0 < 35.35$$
.

Принято $S_0 = 30 \ г/л$.

2. Вычисляются D_3^1 и D_3^2 по (П.7), где $D_3^1 < D_4$, т.е. $D_3^1 < 0.28$ ч $^{-1}$; $D_3^2 > D_4$, т.е. $D_3^2 > 0.28$ ч $^{-1}$. S_2^1 в (П.7) равно 30 г/л. Получено $D_3^1 = 0.25$ ч $^{-1}$; $D_3^2 = 0.30$.

Формирование Мн1**

Вычисление показателей по пп. 3—5 проводится по формулам табл. 4 для множества Мн1**.

3. Вычисляется D^i .

Показатели $n_3^1 > 0$ и $i = 0.0 - n_3^1$ выбраны следующим образом.

Записали $\Delta = D_2 - D_1 = 0.3107 - 0.09818 = 0.2125$.

		Мн	1**	Мн	2**
i	D^{i}	$S_1^{'}$	M_0^i	$S_2^{'}$	M_0^i
0.0	0.09818	77.6	181.12	77.6	181.12
1.0	0.1182	134.30	456.54	56.00	113.80
2.0	0.1382	143.28	560.57	48.33	90.71
3.0	0.1582	138.00	596.16	42.79	70.60
7.59	0.25	79.03	400.00	30.04	0.0
				Мн	3**
10.09	0.30	46.78	160.61	30.02	0.0
10.216	0.3025	44.933	143.997	30.419	4.04
10.341	0.305	42.676	123.138	31.093	10.618
10.466	0.3075	40.695	104.65	31.808	17.693
10.62	0.3107	35.35	52.842	35.35	52.842

Таблица 8. Результаты расчетов по пп. 4 и 5 для Мн1**, Мн2** и Мн3**

Значение n_3^1 принято равным 10.62; значения i: 0.0; 1.0; 2.0; 3.0; ...; 7.59; ...; 10.09; 10.216; 10.341; 10.466; 10.62.

Полученные значения D^i для соответствующих значений i приведены в табл. 8.

- 4. Вычисляем $S_1'(D^i)$.
- 5. Вычисляется M_0^i .

Результаты вычислений по пп. 4 и 5 также сведены в табл. 8.

Формирование Мн2**

Вычисление показателей по пп. 3^a-5^a проводится по формулам табл. 4 для множества $Mh2^{**}$.

 3^{a} . Вычисляется D^{i} .

Показатели $n_3^2 > 0$ и $i = 0.0 - n_3^2$ выбраны следующим образом.

Записали $\Delta = D_3^1 - D_1 = 0.25 - 0.09818 = 0.1518$.

Значение n_3^2 принято равным 7.59; значения *i*: 0.0; 1.0; 2.0; 3.0; ...; 7.59.

Полученные значения D^i для соответствующих значений i приведены в табл. 8.

- 4^{a} . Вычисляем $S'_{2}(D^{i})$.
- $5^{\rm a}$. Вычисляется M_0^i .

Результаты вычислений по пп. 4^a и 5^a также сведены в табл. 8.

Формирование Мн3**

Вычисление по пп. 3^6 — 5^6 проводится по формулам табл. 4 для множества Мн 3^{**} .

 3^6 . Вычисляется D^i и значения i в области значений D^i : 0.3-0.3107.

Значения D^i приняты равными 0.3; 0.3025; 0.305; 0.3075; 0.3107.

Соответствующие значения i по формуле расчета D^i в табл. 4 по Мн3**: D^i = 0.3 (i = 10.09); D^i = 0.3025 (i = 10.216); D^i = 0.305 (i = 10.341); D^i = 0.3075 (i = 10.466); D^i = 0.3107 (i = 10.62).

Значения D^i представлены в табл. 8.

- 4⁶. Вычисляем $S_2'(D^i)$.
- 5^6 . Вычисляем M_0^i .

Результаты вычислений по пп. 4^6 и 5^6 также сведены в табл. 8.

Сопоставление результатов оценок показателей процесса для множеств $Mh1^{**}$ и $Mh2^{**}$ для i=2.0 (см. табл. 8) приведено в табл. 9.

Сопоставление результатов оценок показателей процесса для множеств $M + 1^{**}$ и $M + 3^{**}$ для i = 10.341 (см. табл. 8) приведено в табл. 10.

Таблица 9. Результаты оценок технологических показателей по $(\Pi.11)$ для i = 2.0 в $Mh1^{**}$ и $Mh2^{**}$ (табл. 8)

Множество	S_0 , г/л	D^2 , ч ⁻¹	M_0^2 , г/л	Р, г∕л	<i>X</i> , г/л	В, г/л	<i>S</i> , г/л	M, г/л
Мн1**	30	0.1382	560.57	43.415	18.516	21.707	96.99	447.29
Мн2**	30	0.1382	90.71	43.415	18.516	21.707	2.04	72.379

Множество	S_0 , г/л	$D^{10.341}$, \mathbf{q}^{-1}	$M_0^{10.341}$, г/л	<i>P</i> , г/л	<i>X</i> , г/л	В, г/л	S, г/л	<i>М</i> , г/л
Мн1**	30	0.305	123.138	19.672	8.683	9.836	20.968	110.462
Мн3**	30	0.305	10.618	19.672	8.683	9.836	9.386	9.525

Таблица 10. Результаты оценок технологических показателей по (П.11) для i = 10.341 в Мн1** и Мн3** (табл. 8)

ЗАКЛЮЧЕНИЕ

Разработанная методология оценки множеств и их наполнение для определения входных показателей процесса M_0 и D по заданному значению S_0 является универсальной, т.е. может быть использована для любых значений S_0 , определяемых в границах условия функционирования определенных штаммов микроорганизмов.

Диапазон возможных заданий S_0 определяется для каждой из частей. Так, для части I этот диапазон самый широкий — от $S_0(D_1)$ до $\max S_0(D_3)$; для части II диапазон уже — от $S_0(D_1)$ до $S_0(D_2)$; и самый узкий для части III — от $S_0(D_2)$ до $\min S_0(D_4)$.

Диапазон оценок по величине протока самый широкий от D_1 до D_2 по части III; меньший по части II и самый узкий по части I.

Сопоставление результатов расчета для одинаковых начальных условий (S_0 , D) по множеству 1^* и 2^* в части II и по 1^{**} и 2^{**} и 1^{**} и 3^{**} по части III показало следующее. Показатели процесса различаются по M_0 , M и S (см. табл. 7, 9, 10), причем различия существенные. Последнее очень важно, так как технология процесса получения молочной кислоты включает последующие стадии — выделение целевого продукта, побочных продуктов, остатков сырьевых компонентов S и M.

Таким образом, разработанная методология может служить теоретической основой для создания непрерывного технологического процесса ферментативного получения молочной кислоты по заданному значению S_0 и выбору подходящих начальных значений M_0 и D.

Исследование выполнено при финансовой поддержке РХТУ им. Д.И. Менделеева. The reported study was funded by Mendeleev University of Chemical Technology.

ПРИЛОЖЕНИЕ

$$\frac{D}{\mu_{\text{max}}} = A(D) \frac{K_i S}{K_m K_i + K_i S + S^2}.$$
 (П.1)

$$A(D) = \left(1 - \frac{Q_P}{X_{\text{max}}(\alpha D + \beta)}\right)^{n_1} \times \left(1 - \frac{Q_P}{P_{\text{max}}(\alpha D + \beta)}\right)^{n_2}.$$
(II.2)

$$S = S' - \frac{1}{Y_{X/S}} \frac{Q_P}{(\alpha D + \beta)}.$$
 (II.3)

$$S' = S_0 + \frac{k_M M_0}{D + k_M}. (\Pi.4)$$

$$S = \frac{K_i}{2} \left[A(D) \frac{\mu_{\text{max}}}{D} - 1 \right] \pm$$

$$\pm \sqrt{\left(\frac{K_i}{2}\right)^2 \left[A(D) \frac{\mu_{\text{max}}}{D} - 1 \right]^2 - K_m K_i}. \tag{\Pi.5}$$

$$S_{1}' = \frac{1}{Y_{X/S}} \frac{Q_{P}}{(\alpha D + \beta)} + \frac{K_{i}}{2} \left[A(D) \frac{\mu_{\text{max}}}{D} - 1 \right] + \sqrt{\left(\frac{K_{i}}{2}\right)^{2} \left[A(D) \frac{\mu_{\text{max}}}{D} - 1 \right]^{2} - K_{m} K_{i}}. \tag{\Pi.6}$$

$$S_{2}' = \frac{1}{Y_{X/S}} \frac{Q_{P}}{(\alpha D + \beta)} + \frac{K_{i}}{2} \left[A(D) \frac{\mu_{\text{max}}}{D} - 1 \right] - \sqrt{\left(\frac{K_{i}}{2}\right)^{2} \left[A(D) \frac{\mu_{\text{max}}}{D} - 1 \right]^{2} - K_{m} K_{i}}. \tag{\Pi.7}$$

Уравнения для вычисления $\max Q_P$ (максимального значения Q_P) и соответствующего ему значения протока D^{opt} :

$$\left(\frac{K_{i}}{2}\right)^{2} \left[A(D)\frac{\mu_{\text{max}}}{D} - 1\right]^{2} - K_{m}K_{i} = 0, \quad (\Pi.8)$$

$$S'_{\text{opt}} = \frac{1}{Y_{X/S}} \frac{\max Q_P}{(\alpha D^{\text{opt}} + \beta)} + (K_m K_i)^{1/2},$$
 (П.9)

$$S'_{\text{opt}} = S_0^{\text{opt}} + \frac{k_M M_0^{\text{opt}}}{D^{\text{opt}} + k_M},$$
 (П.10)

$$\begin{cases} P = \frac{Q_P}{D}; \quad X = \frac{P}{\alpha + \beta/D}; \\ B = (\alpha_B + \beta_B/D) \frac{P}{\alpha + \beta/D} \\ S = S_0 + \frac{k_M M_0}{D + k_M} - \frac{1}{Y_{X/S}} \frac{P}{\alpha + \beta/D}; \\ M = \frac{DM_0}{D + k_M} \end{cases}$$
(II.11)

ОБОЗНАЧЕНИЯ

В концентрация суммарного количества побочных продуктов, г/л D величина протока, y^{-1} константа ингибирования, г/л K_i K_m константа насыщения субстрата, г/л константа, определяющая количество k_{M} воспроизвеленного субстрата, y^{-1} M концентрация сырья, дополнительно воспроизводящего субстрат, г/л P концентрация продукта, г/л Q_P продуктивность, г/(л ч) S концентрация субстрата, г/л X концентрация биомассы, г/л $Y_{X/S}$ стехиометрический коэффициент, г/г α , α_B , β , β_B константы удельная скорость роста микроорганизмов, 4^{-1}

ИНДЕКСЫ

начальное значениепредпредельное значение

тах максимальное значение opt оптимальное значение

СПИСОК ЛИТЕРАТУРЫ

- Hofvendahl K., Hahn-Hägerdal B. Factors affecting the fermentative lactic acid production from renewable resources // Enzyme Microb. Technol. 2000. V. 26. P. 87.
- 2. Gonzalez K., Tebbani S., Lopes F., Thorigné A., Givry S., Dumur D., Pareau D. Modeling the continuous lactic acid production process from wheat flour // Appl. Microbiol. Biotechnol. 2016. V. 100. № 1. P. 147.
- 3. Åkerberg C., Hofvendahl K., Zacchi G., Hahn-Hägerdal B. Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour // Appl. Microbiol. Biotechnol. 1998. V. 49. № 6. P. 682.
- Vázquez J.A., Murado M.A. Unstructured mathematical model for biomass, lactic acid and bacteriocin production by lactic acid bacteria in batch fermentation // J. Chem. Technol. Biotechnol. 2008. V. 83. № 1. P. 91.
- 5. Gordeeva Yu.L., Borodkin A.G., Gordeeva E.L., Ruda-kovskaya E.G. Mathematical modeling of continuous fermentation process in lactic acid production // Theor. Found.Chem. Eng. 2019. V. 53. № 4. Р. 501. [Гордеева Ю.Л., Бородкин А.Г., Гордеева Е.Л., Руда-ковская Е.Г. Математическое моделирование процесса непрерывной ферментации при получении молочной кислоты // Теор. осн. хим. технол. 2019. Т. 53. № 4. С. 402.]
- 6. Gordeeva Yu.L., Borodkin A.G., Gordeeva E.L. Steady states of a continuous fermentation process for lactic acid production: the multiplicity for a given dilution rate // Theor. Found. Chem. Eng. 2020, Vol. 54, No. 3, pp. 483. [Гордеева Ю.Л., Бородкин А.Г., Гордеева Е.Л. Стационарные состояния непрерывного процесса ферментативного получения молочной кислоты. Множественность по заданной величине протока // Теор. осн. хим. технол. 2020. Т. 54. № 3. С. 362.]