УДК 544.478.13

ИССЛЕДОВАНИЕ КИСЛОТНО-ОСНОВНЫХ СВОЙСТВ ПОВЕРХНОСТИ ФЕРРИТА КОБАЛЬТА РАЗЛИЧНЫМИ ФИЗИКО-ХИМИЧЕСКИМИ МЕТОДАМИ

© 2020 г. К. О. Денисова^{*a*}, А. А. Ильин^{*a*}, *, Р. Н. Румянцев^{*a*}, А. П. Ильин^{*a*}, Н. Н. Смирнов^{*a*}

^аИвановский государственный химико-технологический университет, Иваново, Россия

*e-mail: ilyin@isuct.ru Поступила в редакцию 16.12.2019 г. После доработки 28.01.2020 г. Принята к публикации 15.05.2020 г.

Методами термопрограммируемой десорбции аммиака, ИК-спектроскопии с использованием адсорбированного пиридина, аммиака и индикаторным методом Гаммета исследованы кислотно-основные свойства феррита кобальта, синтезированного механохимическим методом с различным соотношением основных компонентов $Fe_2O_3 : Co_3O_4$. Сопоставление результатов общего содержания льюисовских и бренстедовских кислотных центров тремя методами показало достаточно близкие значения все трех образцов с вероятностью 0.5%. Показано, что введение избытка оксида кобальта в состав феррита кобальта приводит к увеличению концентрации бренстедовских и льюисовских центров при одновременном увеличении количества сильных основных центров по методу термопрограммируемой десорбции аммиака. Индикаторный метод является наиболее информативным методом количественного исследования кислотно-основных свойств поверхности феррита кобальта, так как позволяет оценить концентрацию и силу льюисовских и бренстедовских кислотных центров и основных центров.

Ключевые слова: феррит кобальта, десорбция аммиака, индикаторный метод, кислотно-основные свойства

DOI: 10.31857/S004035712005005X

ВВЕДЕНИЕ

В основе гетерогенных процессов, протекающих с участием катализатора, лежат донорно-акцепторные свойства его поверхности, которые лучше всего отражают ее кислотно-основные характеристики. В соответствии с современными представлениями на поверхности твердых катализаторов имеются кислотные и основные центры [1]. Кислотно-основные свойства твердых катализаторов влияют на активность и селективность многих каталитических реакций не только в кислотно-основных превращениях, но и в реакциях восстановления и окисления [2-4]. Многочисленные каталитические реакции катализируются твердыми кислотными катализаторами, которые широко используются для переработки нефти и в химической промышленности. Цеолиты. простые и сложные оксиды, ферриты и фосфаты, проявляющие кислотно-основные свойства различной природы, используются в важных промышленных процессах, таких как окисление аммиака, конверсия СО водяным паром и др. [5]. Гетерогенные твердые катализаторы, которые проявляют кислотные и основные свойства, имеют много преимуществ по сравнению с жидкими кислотными и основными катализаторами, поскольку они не являются коррозийными, безопасны для окружающей среды, и их отделение от газообразных или жидких продуктов не вызывает затруднений [6].

Изучение кислотно-основных свойств поверхностности катализаторов всегда было проблемой, интересной и важной не только с теоретической, но и с практической точки зрения, поскольку именно эти свойства определяют качество адсорбентов, катализаторов, полупроводников. Известно, что поверхностные свойства оксидов и оксидных соединений определяются свойствами их поверхностных ОН-групп, зависящих от типа атома металла и его координации с атомами кислорода в кристаллической структуре соединений [7].

Исходя из данных кристаллографии, даже для идеального кристалла на разных гранях могут существовать атомы металла, координированные с различным числом атомов кислорода. Соответственно, кислотно-основные свойства ОН-групп, связанных с такими атомами металла, могут существенно различаться. Существование целого ряда кислотно-основных центров на поверхности раз-

7	0	5
1	0	J

Название индикатора	pK _a	λ_{max} , нм
Этиленгликоль	14.2	340
Индигокармин	12.8	610
Тропеолин 0	12.0	440
Ализариновый желтый	10.0	340
Тимоловый синий	8.8	430
Феноловый красный	8.1	440
Бромтимоловый синий	7.3	430
Бромкрезоловый пурпурный	6.4	540
Метиловый красный	5.0	430
Бромфеноловый синий	4.1	590
Метиловый оранжевый	3.5	460
Фуксин (основание)	2.1	540
Бриллиантовый зеленый	1.3	590

Таблица 1. Характеристики использованных кислотно-основных индикаторов

личных оксидов было неоднократно доказано методами ИК-спектроскопии [11–14], ЭПР-спектроскопии [15], а также методом адсорбции индикаторов [16].

В последние годы ферритам со структурой шпинели уделяется большое внимание благодаря их структурным, кислотно-основным и каталитическим свойствам. Эти материалы являются хорошими катализаторами для многих процессов, например при разложении N₂O, синтеза Фишера-Тропша, при окислении СО до СО₂ и риформинга СН₄ в синтез-газ [17–19]. Ферриты обладают сильными кислотными и основными центрами. Физико-химические свойства ферритов определяются валентным состоянием ионов металлов и их распределением в кристаллической решетке, характеризующейся также определенными видами и уровнями точечных дефектов. Ферриты – это сложные соединения, атомы металлов которых находятся в различной координации с атомами кислорода. Поверхность ферритов подобна многоосновным кислотам или многокислотным основаниям, т.е. имеет несколько констант диссоциации. Координационные состояния атомов (катионов и анионов для ферритов) и реакционные свойства поверхности катализатора зависят от того, на какой кристаллической плоскости происходит адсорбция [20].

Установлено, что реакционная способность катализаторов по отношению к газам восстановителям определяется в первую очередь активностью окислительно-восстановительного взаимодействия с участием хемосорбированных форм кислорода на поверхности. В связи с этим актуальным является выбор методики определения кислотно-основных свойств поверхности адсорбционных центров с целью разработки способов изменения концентрации и соотношения между адсорбционными центрами различной природы. Целью данной работы являлось изучение кислотно-основных свойств феррита кобальта и их оценка физико-химическими методами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК-спектры получены при комнатной температуре на ИК-спектрометре TENSOR II (Bruker AXS Gmbb). Для определения характеристик количества кислотных центров на поверхности экспериментальных образцов в качестве молекулы-зонда использовали пиридин. Концентрацию кислотных центров оценивали из интегральной интенсивности соответствующих этим центрам полос поглощения в спектрах адсорбированного пиридина с использованием коэффициента интегрального поглощения [20] по формуле

$$A_0 = 0.13(v_{\text{пиридин}} - 2130). \tag{1}$$

Определение концентрации центров основано на выполнении закона Бугера—Ламберта—Бера в применении к некоторым полосам в спектрах адсорбированных молекул. В случае адсорбированных зондов этот закон удобно представить в виде

$$A^{3} = 10^{-3} A_{0} C \rho, \qquad (2)$$

где A^3 — наблюдаемое интегральное поглощение полосы, см⁻¹; A_0 — интегральное поглощение полосы для концентрации адсорбата, мкмоль/г; C концентрация адсорбированного зонда, мкмоль/г; ρ — количество катализатора, приходящегося на 1 см² сечения светового потока, мг [21].

Адсорбция и десорбция аммиака проводились на термодесорбционной установке, собранной на базе газового хроматографа марки Цвет-500. Общую поверхностную кислотность образцов оценивали в предположении об одноцентровой адсорбции аммиака по количеству хемосорбированных молекул, десорбция которых практически завершалась при подъеме температуры в реакторе с катализатором до 400–450°С.

Количество кислотных центров N_i (ммоль/г), распределенных по соответствующим максимумам термодесорбционных пиков $T_{\max,i}$, рассчитывалось из значений площади под десорбционными кривыми по формуле

$$N_{i} = \frac{6 \times 10^{23} S(T_{\max,i}) V}{22\,400 S_{\text{yg}} \sum S(T_{\max,i}) G},$$
(3)

где 6 × 10²³ – число Авогадро; $S(T_{\max,i})$ – площадь под соответствующим максимумом на термодесорбционной кривой, мм²; $S_{y_{\pi}}$ – удельная поверхность образцов носителя, м²/г; *G* – навеска, г; $\Sigma S(T_{\max,i})$ – суммарная площадь пиков на термодесорбционной кривой, мм². Количество молей десорбированного аммиака вычислялось как *V*/22400, где *V* – десорбированный объем аммиака, мл.

На фотоколориметре КФК-2МП измеряли оптические плотности исходных растворов индикаторов (D_0). Затем приготавливали суспензии катализаторов в этих растворах и измеряли оптические плотности (D_1) после установления адсорбционного равновесия и отделения раствора от осадка декантацией или центрифугированием. Чтобы учесть влияние на оптическую плотность изменения pH при контакте образца с раствором, приготавливали суспензию катализаторов в дистиллированной воде, через 30 мин отделяли осадок, добавляли раствор индикатора и измеряли оптическую плотность (D_2). Содержание активных центров (q_{pKa} , моль/г) с данным значением pK_a рассчитывали по формуле

$$q_{\rm pKa} = \frac{C_{\rm инд}V_{\rm инд}}{D_0} \left(\frac{|D_0 - D_1|}{m_1} \pm \frac{|D_0 - D_2|}{m_2} \right), \tag{4}$$

где $C_{\text{инд}}$ и $V_{\text{инд}}$ – концентрация и объем раствора индикатора; m_1 и m_2 – масса катализатора при измерении D_1 и D_2 ; знак "–" соответствует однонаправленному изменению D_1 и D_2 относительно D_0 , а знак "+" – разнонаправленному [3].

Распределение адсорбционных центров получали в координатах $q_{pKa} = f(pK_a)$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Одним из наиболее распространенных и высокоэффективных методов исследования кислотно-основных центров на поверхности катализаторов является инфракрасная спектроскопия [2, 4, 5]. В основе применения ИК-спектроскопии для исследования донорно-акцепторных свойств поверхности лежит метод спектрального зонда. О свойствах центров адсорбции судят по спектрам поглощения адсорбированных молекул, а также по наблюдающемуся при адсорбции изменению положения полос поглощения. Этот метод позволяет надежно идентифицировать взаимодействие молекул-зондов с протонными, апротонными и основными центрами поверхности, количественно охарактеризовать силу отдельных центров, а также пригоден для независимого нахождения концентрации каждого типа поверхностных центров. Применение ИК-спектроскопии позволяет выявить ряд принципиальных моментов гетерогенного катализа – обнаружить наличие на поверхности льюисовских и бренстедовских центров, установить их структуру и выявить их роль в каталитических превращениях. В качестве молекул зондов широкое распространение получили пиридин и аммиак [8]. В данной работе в качестве зонда был выбран пиридин с целью характеристики природы кислотности феррита кобальта.

Пиридин, являясь более слабым основанием по сравнению аммиаком, реагирует только с сильными кислотными центрами поверхности [9]. Специфическая адсорбция пиридина на поверхности феррита кобальта является молекулярной и происходит за счет образования водородных связей с поверхностными гидроксильными группами [23].

На рис. 1 представлены ИК-спектры наночастиц феррита кобальта с различным соотношением основных компонентов. При насыщении феррита кобальта избытком оксида кобальта(III) происходит смешение полосы 417-440 см⁻¹ в более высокочастотную область, и полоса 520-630 см⁻¹ имеет плечо, что соответствует частичному использованию пиридиновых групп хемосорбента при координации с ионами Co³⁺. На ИК-спектрах (рис. 1) феррита кобальта с различным соотношением основных компонентов наблюдаются полосы поглощения в области 1400-1700 см⁻¹, что свилетельствует о наличии на поверхности кислотных льюисовских и бренстедовских центров и о присутствии лишь незначительного количества протонодонорных центров, способных к образованию при адсорбции пиридина ионов пиридиния $\geq \tilde{N} \rightarrow M^+$. В ферритах полосы ИК-спектра создаются за счет колебаний ионов кислорода с катионами, присутствующими в октаэдрических и тетраэдрических позициях в элементарной ячейке.

Признаком образования комплекса пиридиния с льюисовскими центрами является смещение полосы пиридиния 1447 см⁻¹ на 2–4 см⁻¹ в зависимости от соотношения основных компонентов оксида железа и кобальта. Другие близко расположенные полосы 1488 и 1489 см⁻¹ менее интенсивны и практически не меняют своего положения на рис. 1. В присутствии протонных центров льюисовские центры можно идентифицировать только по полосе пиридина 1450–1460 см⁻¹.

Критерием присутствия протонных центров является протонирование пиридина [8]. При протонировании пиридина в спектре появляются полосы поглощения ионов пиридиния, в качестве признака которых выступает полоса при 1608 см⁻¹ на рис 1. Хемосорбированные на поверхности ионы пиридиния имеют полосу поглощения 3340 см⁻¹ валентных колебаний NH⁺. Также в этих спектрах наблюдаем появление полосы поглощения 2358 см⁻¹, характеризующей антисимметричные линейные колебания физически адсорбированных молекул CO₂.

Основная трудность с экспериментальной стороны спектрального метода анализа при определении основных центров поверхности феррита кобальта возникает из-за маскировки спектральных проявлений взаимодействия молекул с поверхностью в результате поглощения объемом

Рис. 1. ИК-спектры феррита кобальта различного состава с пиридином: *1* – CoFe₂O₄ (74% Fe₂O₃; 26% Co₃O₄), 300°C; *2* – CoFe₂O₄ (56% Fe₂O₃; 44% Co₃O₄), 300°C; *3* – CoFe₂O₄ (66% Fe₂O₃; 34% Co₃O₄), 300°C.

катализатора. Даже слабая физическая адсорбция молекулы на поверхности может привести к потере части вращательных и поступательных движений.

С целью преодоления трудностей по определению кислотно-основных центров предложен метод исследования кислотности катализаторов, основанный на термопрограммируемой десорбции с поверхности исследуемых образцов адсорбированного аммиака (ТПД). Благодаря доступности в использовании, экспрессности и визуализации результатов, этот метод приобрел наибольшую популярность. Путем варьирования соответствующих параметров эксперимента с применением этого метода удается не только измерить суммарную кислотность поверхности образцов, но и установить распределение кислотных центров по их силе [9]. Температурный диапазон насыщения образцов катализаторов аммиаком в методе термодесорбции близок к температуре эксплуатации катализаторов. Это позволяет более корректно выявлять корреляции их активности с поверхностными свойствами. Для исследования кислотных центров феррита кобальта в качестве зонда использовали аммиак. Выбор аммиака обусловлен его высокой основностью, позволяющей определить не только сильнокислотные центры, но и слабые центры, а также небольшим размером молекулы и простотой дозировки [22].

Установлено, что в ТПД-спектрах аммиака, адсорбированного на поверхности модифицированного феррита кобальта (рис. 2), проявляются три десорбционных максимума, изменяющих положение на температурной координате в зависимости от условий эксперимента, °С: *T*_{max1} (108–210); *T*_{max2} (211-350); T_{тах3} (350-500). Наблюдаемые максимумы соответствуют десорбции аммиака с поверхностных кислотных центров, условно ранжированных как слабокислотные, умеренно кислотные и сильнокислотные. Видно, что постепенный подъем температуры приводит к более четкому проявлению термодесорбционных максимумов с сохранением качественного распределения кислотных центров по их силе. Это может быть связано со спецификой воздействия излучения на десорбцию молекул аммиака с соответствующих участков поверхности (локальных центров) активной массы феррита кобальта, более эффективно по сравнению с носителем поглощающих энергию излучения и трансформирующих ее в теплоту.

Методом ТПД было также выявлено, что количество кислотных центров уменьшается с увеличением содержания оксида кобальта в феррите. Аммиак десорбируется преимущественно на кислотных центрах, обладающих электроноакцепторными свойствами, по мере увеличения оксида кобальта в феррите количество их падает.

Рис. 2. Термодесорбционные спектры аммиака с поверхности катализатора на основе феррита кобальта: 1 - 74% Fe₂O₃; 2 - 66% Fe₂O₃; 3 - 56% Fe₂O₃.

На рис. 3 представлена молекулярная адсорбция аммиака, которая происходит при специфическом взаимодействии молекул аммиака с поверхностью феррита кобальта с образованием кислотно-основных центров поверхности. Следствием этого явилось уменьшение интенсивности полос поглощения 3120 см⁻¹, приписываемых ионам аммония, образовавшимся при реакции молекул аммиака с оставшимися на поверхности молекулами воды, а также с преобладанием льюисовских кислотных центров. Эти полосы интерпретировались как асимметричные валентные и деформационные колебания иона аммония. Полосы поглощения молекулярного адсорбционного аммиака наблюдались около 3401-3417 см-1. Молекулярная адсорбция аммиака происходит при специфическом взаимодействии молекул аммиака с поверхностными гидроксильными группами с образованием водородной связи. Полоса поглощения молекул аммиака 3335 см⁻¹ характеризует их координационную связь с льюисовским центром. Полоса поглощения 3280 см⁻¹ может быть приписана к валентным колебаниям NH⁺ в молекулах аммиака, образовавших координационные связи с поверхностью феррита кобальта.

Таким образом, метод ИК-спектроскопии адсорбированных молекул-зондов устанавливает суммарную величину кислотности поверхности без деления на льюисовские и бренстедовские центры, тогда как хемосорбция аммиака позволяет идентифицировать поверхностные центры по типу и их силе.

Среди методов анализа, позволяющих определять особенности функционально-химического состава поверхности, безусловно, следует выделить метод адсорбции кислотно-основных индикаторов. Инликаторный метод – наиболее старый и экспериментально простой способ измерения кислотно-основных свойств поверхности твердого тела [4]. Он основан на том, что, адсорбируясь на поверхности, индикатор меняет свою окраску, которая является мерой кислотности (основности) поверхности, содержащей льюисовские и бренстедовские активные центры. Полное описание кислотно-основных свойств поверхности твердого вещества подразумевает определение концентрации и силы активных центров, т.е. получение их распределения с дифференциацией на кислоты и основания.

На рис. 4 представлены спектры распределения кислотно-основных центров на поверхности феррита кобальта с различным соотношением основных компонентов. Видно, что распределение кислотно-основных центров на поверхности феррита кобальта носит неоднородный характер и проявляется в дискретности и достаточно четкой деформации полос сорбции с максимумами

Рис. 3. ИК-спектроскопическое исследование адсорбции аммиака на катализаторе на основе феррита кобальта.

Область бренстедовских центров, усиление донорных свойств

Рис. 4. Спектр распределения кислотно-основных центров на поверхности феррита кобальта. Состав катализатора: I - 74% Fe₂O₃, 26% Co₃O₄; 2 - 66% Fe₂O₃, 34% Co₃O₄, 3 - 56% Fe₂O₃, 44% Co₃O₄.

разной интенсивности, отвечающими определенному значению pK_a.

Поверхность феррита кобальта характеризуется сложным набором центров, что обусловлено наличием в их структуре кислородных примесей. Интенсивные полосы с $pK_a = 6.4$; 7.3; 9.45; 12.8 отнесены к протонодонорным центрам адсорбции типа Me–(OH) и Me–(OH)[–], образованным координационно-связанными молекулами воды или OH-группами с основными (MeO)- или кислотными Me²⁺ льюисовскими центрами. Менее интенсивные полосы в области $pK_a = 2.5-5$ и с $pK_a = 1.3$ связаны с присутствием на поверхности протоноакцепторных центров.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 54 № 6 2020

N⁰	Состав катализатора Т ₅	<i>T</i> ₅₀ , °C	<i>T</i> ₁₀₀ , °C	^E <i>S</i> _{уд} , м ² /г	ТПД NH ₃ , ммоль/г	Индикаторный метод, ммоль/г		ИК- спектроскопия, ммоль/г
						Кислотные центры	Основные центры	Кислотные центры
1	$Co_3O_4 - 26\%$ $Fe_2O_3 - 74\%$	423	510	89.5	0.105	0.105	1.05	0.110
2	$Co_3O_4 - 34\%$ Fe ₂ O ₃ - 66%	478	548	117	0.14	0.16	1.84	0.15
3	$Co_3O_4 - 44\%$ Fe ₂ O ₃ - 56%	387	463	197	0.315	0.318	2.78	0.320

Таблица 2. Суммарное содержание активных центров

Льюисовские кислотные центры с pK_a > 14 представляют собой координационно ненасыщенные центры поверхности, которые в случае феррита являются катионами металла (Co³⁺). Эти центры способны взаимодействовать по донорно-акцепторному механизму с молекулами, содержащими неподеленную электронную пару или несущими положительный заряд.

Для феррита кобальта, содержащего в своем составе оксиды кобальта и железа, зафиксированы интенсивные полосы трех типов бренстедовских центров: кислотные $Me-(OH)^{\delta} + (pK_a = 2.5; 3.46; 4.1)$, нейтральные $Me-(OH)^{\delta 0}$ ($pK_a = 6.4$), основные $Me-(OH)^{\delta} - (pK_a = 8.8; 9.45; 12)$. Отмечено, что более интенсивными являются полосы, относящиеся к основным центрам, и их количество увеличивается с увеличением содержания оксида кобальта в составе катализатора (рис. 4).

Результаты исследования по трем методикам определения кислотно-основных свойств поверхности железокобальтового катализатора приведены в табл. 2, здесь же показано суммарное содержание центров для феррита кобальта с различным соотношением оксидов кобальта и железа.

На основании ТПД аммиака и метода индикаторов Гаммета можно заключить, что на поверхности модифицированного феррита кобальта состояние адсорбированного аммиака различно. Это отражается в наличии различных типов центров, отличающихся, по-видимому, по природе. Кроме того, каждый из этих типов энергетически неоднороден.

ЗАКЛЮЧЕНИЕ

На кислотно-основные свойства феррита кобальта существенное влияние оказывает взаимодействие между собой компонентов смешанной фазы. Изменение содержания оксида кобальта в составе смешанной фазы позволяет дополнительно варьировать количество кислотно-основных центров. Полученные экспериментальные данные свидетельствуют об изменении кислотно-основного состояния поверхности исследуемых образцов феррита кобальта при их модифицировании, способствуют развитию представлений о механизме взаимодействия основного катализатора в процессе конверсии закиси азота. Сопоставление результатов общего содержания льюисовских и бренстедовских кислотных центров, полученных методами ИК-спектроскопии адсорбированного аммиака, ТПД NH₃ и индикаторным методом Гаммета, показали достаточно близкие значения все трех образцов с вероятностью 0.5%. Количество центров, способных хемосорбировать аммиак, сопоставимо с суммарной концентрацией бренстедовских (B2) и льюисовских (L2) центров средней силы и рассчитано по всем методам в табл. 4. Вероятно, слабые льюисовские центры (L1) и частично протонодонорные группы, обладающие низкой кислотностью, способны в условиях проведения термопрограммируемой десорбции аммиака к образованию слабых и сильных физических связей с молекулой зонда. Показано, что хемосорбция аммиака позволяет определять суммарную величину кислотности поверхности: протонодонорной (бренстедовской) и электроноакцепторной (льюисовской), тогда как метод ИК-спектроскопии адсорбированных молекулзондов позволяет идентифицировать поверхностные центры по типу и их силе. При этом температурный диапазон насыщения образца молекулой-зондом в методе термопрограммируемой десорбции аммиака близок к температурам эксплуатации катализаторов по сравнению с ИКспектроскопией адсорбированного пиридина, что позволяет более корректно сопоставить поверхностные свойства феррита кобальта с его каталитическими характеристиками.

Практическая часть работы выполнена в рамках плана работ лаборатории синтеза, исследований и

испытания каталитических и адсорбционных систем для процессов переработки углеводородного сырья (созданной при поддержке Министерства образования и науки Российской Федерации на 2012—2022 гг. Тема № FZZW-2020-0010). Теоретическая часть работы выполнена при поддержке гранта "Стипендия Президента РФ" СП-3800.2019.1. При выполнении исследований привлекалось оборудование ЦКП ИГХТУ.

ОБОЗНАЧЕНИЯ

интегральное поглощение полосы для A_0 концентрации адсорбата, мкмоль/г наблюдаемое интегральное поглощение A^3 полосы. см⁻¹ С концентрация адсорбированного зонда, мкмоль/г Синд концентрация раствора индикатора, моль/мл G навеска, г m_1, m_2 массы катализатора, г N_i содержание активных центров, моль/г $S(T_{\max i})$ площадь под соответствующим максимумом на термодесорбционной кривой, мм² суммарная площадь пиков на термоде- $\Sigma S(T_{\max, i})$ сорбционной кривой, мм² $S_{\rm yg}$ удельная поверхность образцов носителя, M^2/Γ Vдесорбированный объем аммиака, мл $V_{\rm инд}$ объем раствора индикатора, мл λ спектр поглощения, см⁻¹ количество катализатора, приходящегося ρ на 1 см² сечения светового потока, мг

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ермолович Е.А.* Влияние измельчения на донорноакцепторные свойства поверхности компонентов закладочных материалов // Физ.-тех. пробл. разраб. полезн. ископ. 2013. № 5. С. 191.
- Busca G., Onida B., Tichit D., Vaccari A. Catalysis by acids and bases: New materials and surface studies: ABC-6, 6th World Congress on Catalysis by Acids and Bases, Genova (Italy), May 10–14, 2009 // Catal. Today. 2010. V. 152. № 1–4. P. 1. https://doi.org/10.1016/S0920-5861(10)00343-3
- Vredrine J.C. The role of redox, acid-base and collective properties and the crystalline state of heterogeneous catalysts in the selective oxidation reactions // Top. Catal. 2002. V. 21. P. 97.
- Fechete I., Wang Y., Vredrine J.C. The past, present and future of heterogeneous catalysis // Catal. Today. 2012. V. 189. P. 2.

- 5. Исупова Л.А., Цыбуля С.В., Крюкова Г.Н., Буднева А.А., Паукштис Е.А., Литвак Г.С., Иванов В.П., Коломийчук В.Н., Павлюхин Ю.Т., Садыков В.А. Механохимический синтез и каталитические свойства феррита кальция – Ca₂Fe₂O₅ // Кинет. катал. 2002. Т. 43. № 1. С. 132. [Isupova L.A., Tsybulya S.V., Kryukova G.N., Budneva A.A., Paukshtis E.A., Litvak G.S., Ivanov V.P., Kolomiichuk V.N., Pavlyukhin Yu.T., Sadykov V.A. Mechanochemical synthesis and catalytic properties of calcium ferrite – Ca₂Fe₂O₅ // Kinetics and Catalysis. 2002. V. 43. № 1. P. 122.]
- 6. Романова Р.Г., Ламберов А.А., Гильманов Х.Х., Гильмуллин Р.Р. Кислотно-основные свойства поверхности биметаллических катализаторов дегидрирования // Вестн. Казан. технол. унив. 2010. № 5. С. 74.
- 7. Ситников П.А., Рябков Ю.И., Рязанов М.А., Белых А.Г., Васенева И.Н., Федосеев М.С., Терешатов В.В. Влияние кислотно-основных свойств поверхности оксида алюминия на реакционную способность с эпоксидными соединениями // Изв. Коми научн. центра Урал. отд. Росс. акад. наук. 2013. Т. 15. № 3. С. 19. [Sitnikov P.A., Kuchin A.V., Ryazanov M.A., Belykh A.G., Vaseneva I.N., Fedoseev M.S., Tereshatov V.V. Influence of acid-base properties of oxides surface on their reactivity towards epoxy compounds // Russ. J. Gen. Chem. 2014. V. 84. P. 810.]
- Lauren-Pernot H. Evaluation of surface acid-basic properties of inorganic-based solids by model catalytic alcohol reaction networks // Catalyst. 2006. V. 48. P. 315.
- 9. *Танабе К.* Твердые кислоты и основания. М.: Мир, 1973.
- Никитенков Н.Н. Основы анализа поверхности твердых тел методами атомной физики. М.: Мир, 2012.
- 11. *Смит А*. Прикладная ИК-спектроскопия. М.: Мир, 1982.
- 12. Нечипоренко А.П., Буренина Т.А., Кольцов С.И. Индикаторный метод исследования поверхностной кислотности твердых веществ // Журн. общ. хим. 1985. Т. 55. № 9. С. 1907.
- 13. Захарова Н.В., Сычев М.М. Эволюция донорно-акцепторных центров поверхности сегнетоэлектриков при диспергировании // Конденс. среды межфазные границы. 2010. № 1. С. 56.
- 14. Романова Р.Г., Петрова Е.В. Кислотно-основные свойства поверхности бинарных систем на основе оксидов алюминия и циркония // Кинет. катал. 2006. Т. 47. № 1. С. 141. [Romanova R.G., Petrova E.V. Acid-base surface properties of binary systems based on aluminum and zirconium oxides // Kinet. Catal. 2006. V. 47. № 1. Р. 138.]
- Глазнева Т.С. Коцаренко Н.С., Паукштис Е.А. Кислотно-основные свойства поверхности оксидных катализаторов: от изучения водных суспензий к исследованиям in-situ // Кинет. катал. 2008. Т. 49. № 6. С. 906. [Glazneva T.S., Kotsarenko N.S., Paukshtis E.A. Acid-base surface properties of oxide catalysts: from the study of aqueous suspensions to in-situ studies // Kinet. Catal. 2008. V. 49. № 6. Р. 859.]
- 16. До М.Т., Михаленко И.И. Адсорбция пиридина как зонда электроноакцепторных центров поверхности оксида титана с ионами серебра, меди и золота //

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 54 № 6 2020

Физикохим. поверхн. защ. матер. 2015. Т. 51. № 6. С. 577. [*Tkhyui D.M., Mikhalenko I.I.* Pyridine adsorption for probing electron-acceptor sites on the surface of titanium oxide with supported silver, copper, and gold ions // Prot. Met. Phys. Chem. Surf. 2015. V. 51. № 6. Р. 934.]

- 17. Ильин А.П., Смирнов Н.Н., Ильин А.А. Разработка катализатора для процесса среднетемпературной конверсии монооксида углерода в производстве аммиака // Росс. хим. ж. 2006. Т. 60. № 3. С. 84.
- Manova E., Paneva D., Kunev B., Estournès C., Rivière E., Tenchev K., Léaustic A., Mitov I. Mechanochemical synthesis and characterization of nanodimensional iron-cobalt spinel oxides // J. Alloys Compd. 2009. V. 485. № 1-2. P. 356.
- Guido E.S., Giaime M.D. Mechanochemical route for the synthesis of cobalt ferrite-silica and iron-cobalt alloy-silica nanocomposites // J. Nanopart. Res. 2004. № 6. P. 99.
- Васютин О.А. Исследование влияния условий синтеза на адсорбционные свойства феррошпинели и поверхностных свойств феррограната иттрия ме-

тодами потенциометрии и смачивания. Автореф. дис. ... канд. хим. наук. СПб., 2012.

- 21. Паукштис Е.А., Юрченко Э.Н. Применение ИКспектроскопии для исследования кислотно-основных свойств гетерогенных катализаторов // Усп. хим. 1983. Т. 52. № 3. С. 242. [Paukshtis E.A., Yurchenko E.N. Study of the acid-base properties of heterogeneous catalysts by infrared spectroscopy // Russ. Chem. Rev. 1983. V. 52. № 3. Р. 242.]
- 22. Мурадова П.А., Зульфугарова С.М., Шакунова Н.В., Литвишков Ю.Н., Третьяков В.Ф., Талышинский Р.М. Кислотные свойства поверхности армированных алюминием алюмооксидных носителей, сформированных в поле СВЧ // НефтеГазоХимия. 2012. Т. 6. № 2. С. 52.
- 23. Ивановская М.И., Толстик А.И., Котиков Д.А., Паньков В.В. Структурные особенности Zn-Mn феррита, синтезированного методом распылительного пиролиза // Журн. физ. хим. 2009. Т. 83. № 12. С. 2283. [Ivanovskaya M.I., Tolstik A.I., Kotsikau D.A., Pankov V.V. The structural characteristics of Zn-Mn ferrite synthesized by spray pyrolysis // Russ. J. Phys. Chem. A. 2009. V. 83. № 12. P. 2081.]