УДК 66.048.3

ТЕРМОДИНАМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ РАЗДЕЛЯЮЩЕГО АГЕНТА В ПРОЦЕССАХ РЕКТИФИКАЦИИ

© 2021 г. И. А. Сукин^{а,} *, А. И. Балунов^b, А. М. Цирлин^a

^аИнститут программных систем им. А.К. Айламазяна РАН, Веськово, Ярославская область, Россия ^bЯрославский государственный технический университет, Ярославль, Россия

> *e-mail: ivsukin@gmail.com Поступила в редакцию 07.12.2018 г. После доработки 25.12.2019 г. Принята к публикации 14.02.2020 г.

Получена граница производительности колонны бинарной ректификации в зависимости от затрат теплоты. Показано, что затраты теплоты на моль разделяемой смеси в обратимом процессе для многокомпонентных смесей зависят от порядка разделения, а необратимые затраты монотонно с ними связаны. Это позволяет для выбора порядка разделения применять обратимые показатели. Рассмотрена задача о целесообразности использования разделяющего агента для повышения экономичности разделения смесей с близкими температурами кипения компонентов.

Ключевые слова: ректификация, многокомпонентные смеси, температурный коэффициент, порядок разделения, предельная производительность, минимальные затраты теплоты, разделяющий агент

DOI: 10.31857/S0040357121010139

введение

Анализу процессов разделения жидких смесей в колоннах ректификации посвящена обширная литература (см. [1-7] и др.). При этом одним из центральных вопросов является оценка минимальных затрат теплоты, необходимых для процесса разделения. Эти затраты определяют сложность разделения смеси при той или иной границе между фракциями, отделяемыми в куб и в дефлегматор. Затраты теплоты состоят из двух составляющих: затраты в обратимом процессе и дополнительные затраты, связанные с необратимостью процессов теплообмена в кубе и дефлегматоре и массообмена по высоте колонны. Когда размеры колонны, а вместе с ними и коэффициенты тепло- и массопереноса растут, необратимая составляющая затрат стремится к нулю.

На первый взгляд, в рамках обратимых процессов связь теплоты с производительностью установить невозможно, так как молярная работа разделения Гиббса зависит только от состава разделяемой смеси и не отражает таких ее свойств, как температуры кипения компонентов. Но это не так для процессов, использующих теплоту. Здесь требуется учесть коэффициент превращения теплоты в работу, а этот коэффициент для колонны ректификации зависит от температур в кубе и в дефлегматоре и уменьшается при сближении этих температур. Поэтому в процессах ректификации компоненты смеси с близкими температурами кипения можно разделить лишь при значительных затратах энергии.

Мы рассмотрим необратимые оценки затрат энергии на разделение смеси в процессе бинарной ректификации, покажем, что эти оценки хотя и больше, чем обратимые, но монотонно от них зависят. Выясним, в каком случае добавление в исходную смесь дополнительного компонента (разделяющего агента) позволяет получить экономию энергии.

СВЯЗЬ ПАРАМЕТРОВ СИСТЕМЫ С ЗАТРАТАМИ ТЕПЛОТЫ

Процесс разделения многокомпонентной смеси на две фракции в колонне ректификации характеризуется следующими параметрами.

1. Свойства разделяемой смеси: мольные доли компонентов в разделяемом потоке x_{Fi} , температуры кипения T_i^0 и мольные теплоты парообразо-

вания компонентов r_i , i = 1, ..., n при атмосферном давлении. Ниже предполагаем, что индексы i возрастают по мере роста температуры кипения.

2. Состав продуктов: мольные доли компонентов в дефлегматоре (легкая фракция) x_{Di} и в кубе (тяжелая фракция) x_{Bi} .

3. Технологические параметры колонны: давление, поддерживаемое в колонне \overline{P} , температура в кубе T_B , температура в дефлегматоре T_D (см. рис. 1).

Рис. 1. Расчетная схема колонны ректификации.

В условиях фиксированных составов потоков на входе и выходе колонны эти потоки пропорциональны друг другу и в качестве целевого может быть выбран любой из них, в частности поток g_F разделяемой смеси. В этом случае под коэффициентом полезного действия (КПД) колонны будем понимать отношение числа молей разделяемой смеси на единицу затраченного тепла q_+ , подводимого в куб колонны.

Запишем уравнения термодинамических балансов колонны — энергетического, материального и энтропийного [8, 9]:

$$g_F x_F - g_F \varepsilon x_D - g_F (1 - \varepsilon) x_B = 0, \qquad (1)$$

$$q_+ - q_- + g_F h_F - g_F \varepsilon h_D - g_F (1 - \varepsilon) h_B = 0, \qquad (2)$$

$$g_F \varepsilon s_D + g_F (1-\varepsilon) s_B + \frac{q_-}{T_D} - g_F s_F - \frac{q_+}{T_B} = \sigma \ge \sigma_{\min}.$$
 (3)

Здесь $\sigma > 0$ — производство энтропии в колонне, *h* — мольные энтальпии потоков, *s* — мольные эн-

тропии потоков, $\varepsilon = \frac{x_F - x_B}{x_D - x_B}$ – доля отбора верх-

него продукта, x_F , x_D , x_B — мольная доля легкой фракции, т.е. компонентов, чьи температуры кипения ниже выбранной границы разделения, в соответствующем потоке.

Предполагая, что колонна теплоизолирована и потери теплоты в окружающую среду значительно меньше, чем поток теплоты, затрачиваемый на разделение, можно считать, что $q_{+} = q_{-} = q$.

После исключения из этих соотношений всех переменных кроме потока разделяемой смеси, потока теплоты и производства энтропии получим неравенство, связывающее производительность и затраты теплоты с величиной производства энтропии:

$$q \ge g_F \frac{T_B}{T_B - T_D} A_G + \sigma_{\min} \frac{T_B T_D}{T_B - T_D}, \qquad (4)$$

где A_G — молярная обратимая работа разделения смеси, равная разности мольной свободной энергии (химических потенциалов) потоков, покидающих колонну, и потока сырья

$$A_{G} = -RT_{D} \left[\sum_{i} x_{Fi} \ln x_{Fi} - \epsilon \sum_{i} x_{Di} \ln x_{Di} - (1 - \epsilon) \sum_{i} x_{Bi} \ln x_{Bi} \right].$$
(5)

Здесь є – доля отбора верхнего продукта.

Как правило, давление в колонне выбирают таким образом, чтобы для охлаждения дефлегматора можно было использовать наружную воду, т.е. величина T_D была несколько выше температуры окружающей среды.

СВЯЗЬ МЕЖДУ ЗАТРАТАМИ ТЕПЛОТЫ В ОБРАТИМОМ И В НЕОБРАТИМОМ ПРОЦЕССАХ

Как следует из (4), соотношение между затратами теплоты и работой разделения в обратимом процессе таково же как между мощностью и затратами тепла в обратимой тепловой машине с КПД Карно, равным

$$\eta_c = 1 - \frac{T_D}{T_B}.$$

Пусть законы теплопереноса в кубе и в дефлегматоре имеют форму

$$q = \beta_B (T_+ - T_B) = \beta_D (T_D - T_-), \tag{6}$$

где T_+ и T_- – температуры греющего пара и охлаждающей жидкости, β_B и β_D – коэффициенты теплопереноса в кубе и дефлегматоре соответственно, а кинетика массообмена между потоком пара и жидкости в каждом сечении колонны характеризуется выражением

$$g(y, y^{0}) = k \frac{\left[\mu(T, y^{0}) - \mu(T, y)\right]}{T},$$
 (7)

где y — концентрация компонента, соответствующая рабочей линии, y^0 — равновесная концентрация, μ — химические потенциалы, k — коэффициент массопереноса. Концентрации и температура меняются от сечения к сечению.

Для такой кинетики минимальная диссипация зависит от потока теплоты как [9]

$$\sigma_{\min} = q^2 \left(\left[\frac{1}{\beta_B T_B T_+} + \frac{1}{\beta_D T_D T_-} \right] + \left[\frac{2(x_D - x_B)}{kr^2} \right] \right). \quad (8)$$

После подстановки этого выражения в (4) можно привести это неравенство, определяющее границу области реализуемых режимов колонны, к следующему виду:

$$g_F \le bq - aq^2, \tag{9}$$

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 55 № 2 2021

где *b* и *a* – характеристические параметры, связанные с параметрами колонны как

$$a = \left[\frac{1}{\beta_B T_B T_+} + \frac{1}{\beta_D T_D T_-} + \frac{2(x_D - x_B)}{kr^2}\right] \frac{T_D}{A_G},$$
 (10)

$$b = \frac{\eta_c}{A_G} = \frac{T_D}{A_G K_T}.$$
 (11)

Здесь K_T — температурный коэффициент:

$$K_T = \frac{T_B T_D}{T_B - T_D}.$$
 (12)

КПД колонны (затраты теплоты на моль разделяемой смеси), соответствующий границе области реализуемости, выраженный через характеристические параметры, примет следующий вид:

$$\eta = \frac{g_F}{q} = b - aq. \tag{13}$$

Из (13) следует, что КПД достигает максимума, равного b в обратимом процессе, когда g_F и qстремятся к нулю.

Рабочий участок границы области реализуемости соответствует тем значениям q, при которых производительность с ростом затрат тепла не убывает. Он ограничен значением $q^* = \frac{b}{2a}$. КПД на рабочем участке линейно уменьшается от b до b/2.

Введем относительный поток теплоты $q^0 = q/q^*$. На рабочем участке q^0 изменяется от нуля до единицы. КПД колонны как функция q^0 равен

$$\eta = b(1 - 0.5q^0). \tag{14}$$

Так что, если величина обратимого КПД *b* у одной колонны больше чем у другой, то это неравенство сохраняется и для КПД колонны в классе необратимых процессов во всей рабочей области.

РАСЧЕТ ТЕМПЕРАТУР В КУБЕ И В ДЕФЛЕГМАТОРЕ

Температуру в дефлегматоре на практике, как правило, задают приблизительно равной $T_D = 323$ K, чтобы в качестве охлаждающей жидкости можно было использовать воду при температуре окружающей среды, равной примерно 300 K.

Составы паровой фазы y_D и жидкой фазы x_D в дефлегматоре связаны друг с другом через константы фазового равновесия K_{iD} , зависящие от свойств *i*-го компонента, температуры T_D и давления \overline{P} в дефлегматоре:

$$y_{Di} = x_{Di} K_{iD}(T_D, \overline{P}).$$

Так как мольная доля каждого из компонентов в паре в равновесии равна отношению парциально-

го давления этого компонента P_{iD} к общему давлению \overline{P} , то

$$K_{iD}(T_D, \overline{P}) = \frac{P_i^0(T_D)}{\overline{P}}.$$
(15)

Парциальное давление $P_{iD}(T_D)$ — произведение давления паров чистого компонента $P_{iD}^0(T_D)$ на мольную долю этого компонента в жидкости.

Рассмотрим равновесие парожидкостной смеси в верхней части колонны. Состав потока, выходящего из дефлегматора, определен составом пара у парожидкостной смеси. Состав жидкости в верхней части колонны зависит от у, давления \overline{P} и температуры T_D как

$$x_D = \frac{y_D}{K_D(T_D, \overline{P})}.$$
 (16)

Поскольку $\sum_{i} x_{Di} = 1$, то из (15), (16) можно выразить \overline{P} через x_{Di} :

$$\overline{P} = \frac{1}{\sum_{i=1}^{n} \frac{x_{Di}}{P_{i}^{0}(T_{D})}}.$$
(17)

Аналогичным образом, зная давление в колонне \overline{P} , состав и свойства компонентов в кубе, можно найти температуру T_B в кубе из уравнения парожидкостного равновесия для кубового продукта:

$$\overline{P} = \sum_{i=1}^{n} x_{Bi} P_i^0(T_B).$$
(18)

Полученное уравнение в подавляющем большинстве случаев может быть разрешено относительно T_B только численно, но в силу того, что его правая часть монотонно растет с ростом T_B , оно имеет единственный действительный корень.

Если фракции представляют собой идеальные растворы, то для расчета давлений пара каждого из компонентов можно воспользоваться уравнением Антуана [11]:

$$P_i^0(T) = 10^{\left(A_i - \frac{B_i}{T + C_i}\right)},$$
(19)

где A_i , B_i и C_i — эмпирические коэффициенты, таблицы для которых имеются для большинства веществ. В случае неидеальности фракций необходимо использовать более сложные зависимости давления насыщенного пара компонента от температуры и его мольной доли в жидкости [7].

Таким образом, алгоритм для расчета температур в кубе и в дефлегматоре состоит в следующем.

1. Задают температуру в дефлегматоре колонны T_D , составы потоков x_F , x_D , x_B и соответствую-

Компонент	x_F	x _D	x _B	A	В	С	<i>r</i> , кДж/моль
Бензол	0.4	0.95	0.1	4.01814	1203.835	-53.226	33.9
Толуол	0.6	0.05	0.9	4.07827	1343.943	-53.773	37

Таблица 1. Данные о смеси и продуктах разделения для примера 1

Таблица 2. Данные о смеси и продуктах разделения для примера 2

Компонент	x_F	x_D	x_B	A	В	С	r	<i>T</i> ₀ , K
Метан	0.26	0.435	0	3.9895	443.028	-0.49	8.5	111.65
Этан	0.09	0.15	0	4.50706	791.3	-6.422	9.76	184
Пропан	0.25	0.41	0.01	4.53678	1149.36	24.906	16.25	231
Н-бутан	0.17	0.005	0.417	4.35576	1175.581	-2.071	22.4	272
<i>Н</i> -пентан	0.11	0	0.274	3.9892	1070.617	-40.454	26.5	309
Н-гексан	0.12	0	0.299	3.45604	1044.038	-53.893	31	341

щие коэффициенты уравнения Антуана *A_i*, *B_i*, *C_i* для каждого компонента.

2. Рассчитывают давление, которое необходимо поддерживать в колонне, чтобы при заданном составе температура T_D принимала нужное значение, используя уравнение парожидкостного равновесия в дефлегматоре колонны (17). Необходимые значения давлений пара для каждого из компонентов находят из уравнения Антуана (19).

3. Решают численно относительно температуры кипения в кубе T_B уравнение парожидкостного равновесия (18).

Пример 1. Двухкомпонентная смесь. Рассмотрим разделение смеси, данные о которой приведены в табл. 1 [7, 12].

1. Температура в дефлегматоре задана и равна $T_D = 323$ К. Свойства разделяемой смеси и продуктов разделения представлены в табл. 1.

2. Найдем парциальные давления чистых компонентов, воспользовавшись выражением (19):

$$P_1^0(T_D) = 10^{\left(\frac{4.01814 - \frac{1203.835}{323 + 53.226}\right)}{323 + 53.226}} = 6.58,$$

$$P_2^0(T) = 10^{\left(\frac{4.07827 - \frac{1343.943}{323 + 53.773}\right)}{323 + 53.773}} = 3.25.$$

По формуле (17) общее давление в колонне равно

$$\overline{P} = \frac{1}{\frac{0.95}{6.58} + \frac{0.05}{3.25}} = 6.26.$$

3. Составим уравнение парожидкостного равновесия для куба колонны (см. (18)) и определим температуру в кубе:

$$6.26 = 0.1 \times 10^{\left(4.01814 - \frac{1203.835}{T_B + 53.226}\right)} + 0.9 \times 10^{\left(4.07827 - \frac{1343.943}{T_B + 53.773}\right)}.$$

Решив это уравнение численно, получим величину $T_B = 351$ K.

4. Значение обратимого КПД η_c равно

$$\eta_c = \frac{351 - 323}{351} = 0.08.$$

Таким образом, обратимый КПД колонны ректификации очень мал, а в режиме максимальной производительности он составит 4%.

Пример 2. Многокомпонентная смесь. Рассмотрим процесс разделения смеси, данные о котором приведены в табл. 2 [7, 12]. Граница разделения проходит между пропаном и *н*-бутаном. Найдем температурный коэффициент для выбранного варианта разделения, воспользовавшись вышеописанным алгоритмом.

1. Температура в дефлегматоре задана и равна $T_D = 323$ К. Свойства разделяемой смеси и продуктов разделения представлены в табл. 2.

2. Давление, которое необходимо установить в колонне, находим из уравнения (17):

$$\overline{P} = 36.35.$$

3. Из (18) после его численного решения аналогично примеру 1 найдем температуру в кубе:

$$T_B = 425 \text{ K}.$$

4. Обратимый КПД равен

$$\eta_c = 1 - \frac{323}{425} = 0.24.$$

ЦЕЛЕСООБРАЗНОСТЬ ИСПОЛЬЗОВАНИЯ РАЗДЕЛЯЮЩЕГО АГЕНТА

В процессах ректификации для разделения веществ с близкими температурами кипения или азеотропов используют схемы с разделяющим агентом (РА) [14]. При этом к разделяемой смеси

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 55 № 2 2021

добавляют РА, имеющий температуру кипения более низкую, чем компоненты разделяемой смеси (азеотропная ректификация) или более высокую (экстрактивная ректификация). Получившуюся трехкомпонентную смесь разделяют в каскаде из двух колонн. В первой из них отделяют смесь РА с компонентом, близким к нему по температуре кипения, а во второй разделяют эту смесь, возвращая РА на вход системы. На рис. 2 и 3 представлены схемы экстрактивной и азеотропной ректификации.

Термодинамический анализ таких систем [14] позволяет на качественном уровне выяснить, при каких условиях добавление РА снижает затраты теплоты на разделение 1 моля смеси.

Использование РА может оказаться целесообразным не только для азеотропных смесей, но и для трудноразделяемых веществ с близкими физико-химическими свойствами. При этом необходимо сопоставить затраты теплоты в системе с РА из лвух колонн и смесителя с затратами теплоты в одной колонне с близкокипящими компонентами. Используя приведенные выше соотношения, вытекаюшие из термодинамических балансов, выясним, при каких условиях использование РА привелет к экономии тепловой энергии на 1 моль разделяемой смеси в обратимом приближении. В силу монотонной зависимости затрат тепла в необратимом процессе от его затрат в обратимом процессе это условие позволит оценить целесообразность использования РА и при заданной ненулевой производительности.

Подробнее рассмотрим экстрактивную ректификацию, а аналогичные соотношения для азеотропной ректификации приведем без вывода.

Сравнение обратимых затрат теплоты для экстрактивной ректификации. Обозначим через є число молей РА, добавляемое на один моль исходной смеси (степень разбавления), через η_{c0} , η_{c1} , η_{c2} обратимые КПД колонны, разделяющей исходную смесь, смесь трех компонентов с РА в первой колонне каскада и смесь РА с компонентом, ближайшим к нему по температуре кипения, во второй колонне.

Условие целесообразности использования РА в этих обозначениях примет следующую форму:

$$\frac{(x_1 + \varepsilon)A_{G1}}{\eta_{c1}} + \frac{(x_2 + \varepsilon)A_{G2}}{\eta_{c2}} < \frac{A_{G0}}{\eta_{c0}}.$$
 (20)

Здесь x_1 — мольная доля низкокипящего компонента в исходной смеси, x_2 — мольная доля высококипящего компонента, $x_2 = 1 - x_1$. В левой и в правой части этого неравенства фигурируют обратимые затраты теплоты, отнесенные к 1 молю исходной смеси. Мольная работа разделения равна

$$A_{G1} = -RT_D \left(\frac{x_1}{1+\varepsilon} \ln \frac{x_1}{1+\varepsilon} + \frac{x_2+\varepsilon}{1+\varepsilon} \ln \frac{x_2+\varepsilon}{1+\varepsilon} \right). \quad (21)$$

Аналогично

Рис. 2. Схема экстрактивной ректификации двухкомпонентной смеси.

Рис. 3. Схема азеотропной ректификации двухкомпонентной смеси.

$$A_{G2} = -RT_D \left(\frac{x_2}{x_2 + \varepsilon} \ln \frac{x_2}{x_2 + \varepsilon} + \frac{\varepsilon}{x_2 + \varepsilon} \ln \frac{\varepsilon}{x_2 + \varepsilon} \right), (22)$$
$$A_{G0} = -RT_D \left(x_1 \ln x_1 + x_2 \ln x_2 \right). \tag{23}$$

Нетрудно видеть, что подстановка этих выражений в неравенство (20) после сокращения левой и правой части неравенства на RT_D приводит его к виду

$$\frac{x_{1} \ln x_{1} + (x_{2} + \varepsilon) \ln(x_{2} + \varepsilon) - (1 + \varepsilon) \ln(1 + \varepsilon)}{\eta_{c1}} - \frac{x_{2} \ln x_{2} + \varepsilon \ln \varepsilon - (x_{2} + \varepsilon) \ln(x_{2} + \varepsilon)}{\eta_{c2}} < (24) \\ < -\frac{x_{1} \ln x_{1} + x_{2} \ln x_{2}}{\eta_{c0}}.$$

С учетом независимости отношения температур кипения от давления в колонне термические обратимые КПД равны

$$\eta_{c0} = 1 - \frac{T_1}{T_2}, \ \eta_{c1} = 1 - \frac{T_1}{T_{2s}(\varepsilon)}, \ \eta_{c2} = 1 - \frac{T_2}{T_s}.$$
 (25)

Здесь T_s — температура кипения РА, T_{2s} — температура кипения смеси второго компонента и РА, T_2 — температура кипения второго компонента при атмосферном давлении.

Справедливы следующие неравенства:

$$T_1 < T_2 < T_{2s} < T_s.$$

Сумма выражений, стоящих в числителях дробей в левой части неравенства (24), больше чем A_{G0} , так как схема с РА содержит смеситель и на разделение смешивающихся в нем потоков необходима дополнительная работа разделения.

Сравнение обратимых затрат теплоты для азеотропной ректификации. Для данного типа ректификации имеем $T_s < T_{1s} < T_1 < T_2$, а выражения для обратимых работ разделения (21), (22) перепишутся в следующем виде:

$$A_{G1} = -RT_D\left(\frac{x_1 + \varepsilon}{1 + \varepsilon}\ln\frac{x_1 + \varepsilon}{1 + \varepsilon} + \frac{x_2}{1 + \varepsilon}\ln\frac{x_2}{1 + \varepsilon}\right), \quad (26)$$

$$A_{G2} = -RT_D \left(\frac{x_1}{x_1 + \varepsilon} \ln \frac{x_1}{x_1 + \varepsilon} + \frac{\varepsilon}{x_1 + \varepsilon} \ln \frac{\varepsilon}{x_1 + \varepsilon} \right).$$
(27)

Условие целесообразности использования РА, подобное (24), для азеотропной ректификации примет форму

$$-\frac{x_2 \ln x_2 + (x_1 + \varepsilon) \ln(x_1 + \varepsilon) - (1 + \varepsilon) \ln(1 + \varepsilon)}{\eta_{c1}} - \frac{x_1 \ln x_1 + \varepsilon \ln \varepsilon - (x_1 + \varepsilon) \ln(x_1 + \varepsilon)}{\eta_{c2}} < (28)$$
$$< -\frac{x_1 \ln x_1 + x_2 \ln x_2}{\eta_{c0}}.$$

Здесь

$$\eta_{c0} = 1 - \frac{T_D}{T_2}, \ \eta_{c1} = 1 - \frac{T_D}{T_2(\varepsilon)}, \ \eta_{c2} = 1 - \frac{T_D}{T_1},$$

где $T_2(\varepsilon)$ — температура кипения второго компонента при выборе такого давления в колонне, для которого температура смеси первого компонента с разделяющим агентом имеет заданное значение $T_D; T_1$ — температура кипения первого компонента при давлении в колонне, обеспечивающем температуру кипения РА, равную T_D .

В силу того что отношение температур кипения мало зависит от давления, в выражениях для η можно использовать отношения температур кипения при атмосферном давлении, тогда

$$\eta_{c0} = 1 - \frac{T_1}{T_2}, \quad \eta_{c1} = 1 - \frac{T_{1s}(\varepsilon)}{T_2}, \quad \eta_{c2} = 1 - \frac{T_s}{T_1}.$$
 (29)

Пример 3. Рассмотрим азеотропное разделение смеси вода—пиридин [15] с концентрациями 0.51 и 0.49 соответственно. Температуры кипения

Рис. 4. Зависимость экономии энергозатрат от состава смеси. В заштрихованной области использование РА целесообразно.

компонентов: вода – $T_1 = 373$ К, пиридин – $T_2 = 388$ К. В качестве разделяющего агента используем метанол с $T_s = 338$ К, который образует с водой смесь, кипящую при температуре $T_{1s} = 353$ К при соотношении молей 14 : 86 [16]. Таким образом, к одному молю смеси вода–пиридин с мольными долями воды x_1 и пиридина x_2 нужно добавить $\varepsilon = 0.16x_1 = 0.082$ моль метанола.

Рассчитаем термические КПД по формулам (29):

$$\eta_{c0} = 1 - \frac{373}{388} = 0.039, \quad \eta_{c1} = 1 - \frac{353}{388} = 0.08,$$

 $\eta_{c2} = \frac{338}{353} = 0.042$

и подставим в неравенство (28). Получим

$$\frac{0.35 + 0.31 + 0.085}{0.08} + \frac{0.343 + 0.205 - 0.31}{0.042} < \frac{0.343 + 0.35}{0.039}.$$

Левая часть этого неравенства равна 15, а правая 17.8. Относительная экономия *E* составила 16%.

В предположении, что степень разбавления РА и все термические КПД фиксированы, построим зависимость процента экономии энергии от состава исходной смеси. График этой функции изображен на рис. 4. Видно, что добавление метанола в мольном соотношении 14 : 86 (массовое соотношение приблизительно 5 : 18) к воде целесообразно при мольной доле воды в исходной смеси $x_1 < 0.78$.

ЗАКЛЮЧЕНИЕ

Получены уравнения, определяющие границу области возможных режимов колонны бинарной ректификации с заданной производительностью. Обратимые затраты теплоты зависят от порядка разделения в силу того, что от них зависит термический КПД колонны. Показано, что затраты теплоты на 1 моль разделяемой смеси с учетом необратимости монотонно зависят от обратимых затрат, что позволяет использовать обратимые показатели для выбора порядка разделения. Приведены условия, при которых использование РА позволяет получить экономию затрат энергии.

ОБОЗНАЧЕНИЯ

A_G	мольная работа разделения, Дж/моль
a	коэффициент необратимости
b	обратимый КПД
g_F	поток разделяемой смеси, моль/с
h_F, h_D, h_B	мольные энтальпии потоков, Дж/моль
K _D	константа фазового равновесия
K_T	температурный коэффициент
k	коэффициент массопереноса
Р	парциальное давление, Па
P^0	давление паров чистого компонента, Па
\overline{P}	давление в колонне, Па
q_+, q, q	потоки теплоты, Вт
<i>r</i> _i	мольная теплота парообразования <i>i</i> -го
	компонента, кдж/моль
s_F, s_D, s_B	мольные энтропии потоков, дж/(моль к)
T_B	температура в кубе, К
T_D	температура в дефлегматоре, К
T_i	температура кипения <i>і</i> -го компонента, К
x_{Bi}	мольная доля <i>i</i> -го компонента в кубе (тяжелая фракция)
<i>x</i> _{Di}	мольная доля <i>i</i> -го компонента в дефлегма- торе (легкая фракция)
x _{Fi}	мольная доля <i>i</i> -го компонента в разделяе- мой смеси
y^0	равновесная концентрация
α	относительная летучесть
β_D, β_B	коэффициенты теплообмена в дефлегма- торе и кубе, Вт/К

ε степень разбавления РА

- η термический КПД
- σ производство энтропии, Вт/К

СПИСОК ЛИТЕРАТУРЫ

- 1. Александров И.А. Ректификационные и абсорбционные аппараты. М.: Химия, 1978.
- Гельперин Н.И. Основные процессы и аппараты химической технологии. М.: Химия, 1981.
- 3. *Павлов К.Ф.* Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия, 1987.
- 4. *Петлюк Ф.Б.* Многокомпонентная ректификация. Теория и расчет. М.: Химия, 1983.
- 5. Плановский А.Н. Процессы и аппараты химической и нефтехимической технологии. Учебник для вузов. М.: Химия, 1987.
- 6. *Holland C.D.* Fundamentals of Multicomponent Distillation. N.Y.: McGraw-Hill, 1981.
- 7. *Kister H.Z.* Distillation Design. N.Y.: McGraw-Hill, 1992.
- 8. *Цирлин А.М.* Необратимые оценки предельных возможностей термодинамических и микроэкономических систем. М.: Наука, 2003.
- Sukin I.A., Balunov A.I., Schwalbe K. The Rule of Temperature Coefficients for Selection of Optimal Separation Sequence for Multicomponent Mixtures in Thermal Systems // J. Non-Equilib. Thermodyn. 2017. V. 42. № 4. P. 359.
- 10. *Tsirlin A.M., Sukin I.A., Balunov A.I.* Estimates of Energy Consumption and Selection of Optimal Distillation Sequence for Multicomponent Distillation // Theor. Found. Chem. Eng. 2016. V. 50. № 3. Р. 250. [*Цир-лин А.М., Сукин И.А., Балунов А.И.* Оценки затрат энергии на разделение многокомпонентных смесей в термических системах. Выбор последовательности разделения // Теор. осн. хим. технол. 2016. Т. 50. № 3. С. 258.]
- 11. *Poling B.E., Prausnitz J.M., O'Connell J.P.* Properties of Gases and Liquids. N.Y.: McGraw-Hill, 2004.
- 12. NIST Chemistry WebBook, NIST Standard Reference Database Number 69 / Eds. Linstrom P.J., Mallard W.G. Gaithersburg: National Institute of Standards and Technology (NIST), 2018.
- 13. *Prigogine I., Kondepudi D.* Modern Thermodynamics: From Heat Engines to Dissipative Structures. N.Y.: Wiley, 2014.
- Коган В.Б. Азеотропная и экстрактивная ректификация. М.: Химия, 1971.
- Крель Э. Руководство по лабораторной перегонке. М.: Химия, 1980.
- 16. *Berg L., Zuyin Y.* Separation of Pyridine from Water by Extractive Distillation. Pat. 5100514 USA. 1992.