УДК 547.314:66.097.3

ИССЛЕДОВАНИЕ РЕАКЦИИ СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ МЕТИЛАЦЕТИЛЕНА В МЕТИЛАЦЕТИЛЕН-ПРОПИЛЕНОВЫХ СМЕСЯХ НА МОДИФИЦИРОВАННЫХ ПАЛЛАДИЙ-ОКСИДНЫХ НАНОКАТАЛИЗАТОРАХ

© 2021 г. Е. В. Писаренко^{*a*, *, А. Б. Пономарев^{*b*}, В. Н. Писаренко^{*c*}}

^аРоссийский химико-технологический университет им. Д.И. Менделеева, Москва, Россия ^bИнститут элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия ^cOOO "Синтон", Москва, Россия

*e-mail: evpisarenko@mail.ru Поступила в редакцию 02.02.2021 г. После доработки 04.02.2021 г. Принята к публикации 08.02.2021 г.

Изучен механизм и кинетика каталитической реакции селективного гидрирования метилацетилена в пропан-пропиленовых газовых смесях вплоть до полного исчерпания в них метилацетилена на Pd-нанокатализаторе (Pd/ α -Al₂O₃), промотированного металлами I, II, VI групп Периодической таблицы Д.И. Менделеева при содержании 0.05 мас. % Pd. Опыты проводили в изотермическом проточном реакторе объемом 100 см³ и стендовом политропическом реакторе объемом 8 дм³. При проведении опытов варьировали объемную скорость сырьевого потока от 2000 до 3000 ч⁻¹, температуру реакционной смеси от 303 до 420 К, мольное отношение водород/метилацетилен от 1.5 до 3.0. Было поставлено 40 опытов в изотермическом проточном реакторе. По результатам лабораторных экспериментов предложен стадийный механизм каталитической реакции и построена соответствующая ему кинетическая модель. Методом наименыших квадратов оценены константы модели. Определена область селективного проведения изучаемой реакции, в которой метилацетилен полностью отсутствует, а концентрация пропилена в выходном потоке превышает концентрацию пропилена в исходном потоке реагентов.

Ключевые слова: моделирование, метилацетилен, гидрирование, пропан-пропиленовая фракция пирогаза, кинетика, оценка параметров модели, оптимальные режимы эксплуатации реактора **DOI:** 10.31857/S0040357121030179

введение

Одним из основных продуктов нефтехимической промышленности является пропилен. Он производится в промышленных процессах дегидрирования пропана, термического пиролиза бензиновой фракции нефти, парового крекинга углеводородов различных фракций газового конденсата и нефти. При этом наряду с пропиленом образуются также ацетиленовые, олефиновые, парафиновые, нафтеновые и ароматические углеводороды. Они должны быть разделены и при этом выделен чистый пропилен. Иначе последуюшие синтезы на основе пропилена – полипропилена, бутиловых, октиловых спиртов, фенола, ацетона и т.д. не позволят получить высококачественные целевые продукты. В первую очередь пропилен должен быть очищен от метилацетилена обычно каталитическим способом его селективного гидрирования в дополнительные количества пропилена. Поэтому подбор селективного катализатора гидрирования метилацетилена имеет чрезвычайно важное экономическое значение. Производительность процесса определяется обычно в сотни тысяч тонн целевого продукта в год при общем объеме используемого катализатора в десятки тонн.

Следовательно, к промышленному катализатору предъявляются следующие требования.

1. Катализатор должен быть высокоэффективным, т.е. его количество и общая цена должны минимизироваться. Для высокоэффективного катализатора тепловые затраты на проведение процесса также снижаются.

2. Катализатор должен быть высокоселективным, т.е. при 100% конверсии метилацетилена должен быть обеспечен прирост пропилена. Дополнительно необходимо обеспечить прирост водорода по сравнению с расходом водорода на исчерпывающее гидрирование метилацетилена. 3. Продукты олигомеризации и/или полимеризации пропилена и/или метилацетилена должны отсутствовать.

4. Длительность эксплуатации катализатора должна быть несколько лет, не менее 3 лет.

5. Катализатор должен выдерживать 6-8 регенераций.

В настоящее время происходит неуклонный рост производственных мощностей установок получения полимеров, таких как полиэтилен и полипропилен, при возрастании требований по качеству производимой продукции. Так, в 2015 г. мировое производство пропилена составляло 94.2 млн тонн/год, в 2018 мировое потребление возросло до 106 млн тонн/год, а к 2025 мировое производство пропилена составит по прогнозам до 132 млн тонн/год [1].

В качестве промышленных катализаторов гидрирования ацетиленовых и диеновых углеводородов традиционно используются катализаторы, содержащие металлы VIII группы Периодической системы Д.И. Менделеева (Ni, Pd, Pt) [2, 3].

Проводятся многочисленные исследования по разработке новых эффективных катализаторов как селективного гидрирования ацетилена в этан-этиленовой фракции (ЭЭФ), так и метилацетилена и пропадиена в пропан-пропиленовой фракции пирогаза (ППФ). При селективном гидрировании алкинов возможно не только уменьшение их содержания до ррт долей, но и увеличение содержания алкенов в продуктовом потоке газа.

В [4-7] рассмотрены катализаторы селективного гидрирования ацетиленовых углеводородов на основе палладия. В [4] показано влияние солей прекурсоров на основе ацетилацетоната и ацетата Pd на каталитическую активность и селективность работы палладиевых катализаторов Pd/δ-Al₂O₃ в реакции гидрирования метилацетилена и пропадиена в пропан-пропиленовой фракции пирогаза и установлена оптимальная температура восстановления катализатора. Показано, что для прекурсора ацетилацетоната палладия образуются наночастицы палладия меньшего диаметра в интервале 1.9-2.9 нм при различных температурах восстановления катализатора. В [5] гидрирование ацетиленовых углеводородов осуществляли на палладиевых полимер-модифицированных катализаторах (1% Pd-полимер-ZnO). В качестве полимеров использовались водорастворимые полиэтиленгликоль и пектин на оксиде цинка. В [6] активация катализатора Pd/Al₂O₃ проводилась с использованием у-излучения. В [7] предложен биметаллический палладийсодержащий катализатор (Pd-Mn, Fe или Sn/Al₂O₃) гидрирования ацетиленовых и диеновых углеводородов.

В [8] реакция гидрирования метилацетилена на Pt(111) и Sn/Pt(111) изучена методом температурно-программированной десорбции. Установлено, что добавление олова подавляет реакцию декомпозиции метилацетилена с образованием поверхностного углерода.

В [9] предложен катализатор, включающий высококремнистый носитель и, по крайней мере, 1 активный компонент с возможностью формирования заряженных, либо металлических, оксидных, металл-оксидных кластеров (Fe, Co, Ni, Ru, Rh, Ir, V, Cr, Mn, Zn, Cu, Sn, Ag, Au, Pd, Pt), либо биметаллических кластеров (соединений атомов Pd, либо Pt с атомами Ag, Co, Ni, Cu, Zn, Sn, Au).

В [10] использован алюмопалладиевый катализатор КГС-3 для очистки пиролизной ППФ от ацетиленовых и диеновых углеводородов. Проведены испытания КГС-3 на пилотной установке. Установлены оптимальные условия проведения процесса.

В [11–13] представлены математические модели процесса селективного гидрирования ацетиленовых углеводородов. В [11] предложены кинетические модели реакции селективного гидрирования пропилена и метилацетилена на промышленном катализаторе G-55A фирмы Sud-Chemie. В [12] разработана модель промышленного реактора гидрирования ацетилена для смесей типа frontend. В [13] проведена оптимизация промышленного реактора гидрирования метилацетилена и пропадиена. Установлено влияние скорости сырьевого потока, концентрации метилацетилена в сырье, доли разбавителя и скорости подачи водорода на скорость производства пропилена.

После очистки ЭЭФ и ППФ от ацетиленовых углеводородов традиционно осуществляется выделение этилена и пропилена полимеризационной чистоты из соответствующих фракций. В [1] показана коммерческая возможность использования мембраны на основе цеолитного имидазолатного каркаса для разделения пропана и пропилена при содержании пропилена в сырье 70 мас. % и содержании пропилена в продуктовом потоке 99.5 мас. % для двухстадийной схемы процесса. В [14] рассмотрены адсорбенты Cu-MOF-74 и Co-MOF-74 на основе металлических органических каркасов для разделения смесей пропанпропилен.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

При селективном гидрировании метилацетилена в пропан-пропилен-метилацетиленовых газовых смесях использован палладиевый катализатор КПНМ-45М с основным компонентом палладием, промотированный элементами I, II, VI групп Периодической таблицы Д.И. Менделеева, показавший хорошие результаты в реакции гидрировании ацетилена в ЭЭФ пирогаза [15].

Эксперименты проводились в изотермическом проточном реакторе диаметром 2 см и протяженностью реакционной зоны 20 см. Варьировали объемную скорость потока исходных реагентов от 2000 до 3000 ч⁻¹, температуру в реакторе от 303 до 393 К, давление в реакторе от 20 до 30 атм, давление водорода от 0.8 до 2.4 атм, давление метилацетилена от 0.32 до 1.2 атм, давление пропилена от 18.8 до 26.8 атм.

Эксперименты также проводились в политропическом стендовом реакторе диаметром 0.32 дм и длиной реакционной зоны 80 дм. Реакционная зона охлаждалась циркулирующей горячей водой либо циркулирующей кипящей водой. Объемная скорость потока изменялась от 2000 до 3000 ч⁻¹ при давлении 30 атм в диапазоне изменения температуры реакционной зоны от 303 до 420 К, мольного отношения водород:метилацетилен от 1.5 до 3. Анализ продуктов реакции как изотермического, так и политропического реактора осуществляли газохроматографически.

В каталитический реактор был загружен катализатор типа КПНМ-45М, содержащий 0.05 мас. % Pd, промотированный элементами I, II, VI групп Периодической таблицы Д.И. Менделеева. Размер катализатора в изотермическом проточном реакторе был 0.3 мм, размер катализатора в политропическом стендовом реакторе 4.5 мм.

Длительность испытания катализатора КПНМ-45М в изотермическом проточном реакторе составляла 10 ч, в политропическом стендовом реакторе 700 ч. Заметного снижения активности в каждом единичном опыте как в изотермическом проточном реакторе, так и в политропическом стендовом реакторе обнаружено не было, также как и никаких явлений самовозгорания метилацетилена.

СТАДИЙНЫЙ МЕХАНИЗМ И КИНЕТИЧЕСКАЯ МОДЕЛЬ РЕАКЦИИ СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ МЕТИЛАЦЕТИЛЕНА В ПРОПАН-ПРОПИЛЕН-МЕТИЛАЦЕТИЛЕНОВЫХ ГАЗОВЫХ СМЕСЯХ

При изучении кинетики реакции совместного гидрирования метилацетилена с пропиленом значительные трудности при оценке кинетических констант представляет собой неравноточность наблюдений. Обычно в качестве ключевых веществ выбираются метилацетилен (МАЦ) и пропилен, ибо концентрации этих реагентов в значительной мере определяют экономические показатели промышленного процесса. В области экспериментирования диапазон изменения концентрации МАЦ в продуктовом потоке от 4 до 10^{-5} об. %, а диапазон изменения концентрации пропилена от 95 до 80 об. %. Вследствие этого концентрация пропилена в продуктовом потоке может превосходить концентрацию МАЦ более чем в 10^6 раз.

В качестве функционала $\Phi(\mathbf{k})$, характеризующего степень соответствия результатов расчета экспериментальным данным, выбран функционал $\Phi(\mathbf{k})$ следующего вида:

$$\Phi(\mathbf{k}) = \sum_{u=1}^{N} \left(\mathbf{Y}_{u} - \boldsymbol{\eta}_{u}(\mathbf{x}_{u}, \mathbf{k}) \right)^{T} \Omega(\mathbf{x}_{u}) \left(\mathbf{Y}_{u} - \boldsymbol{\eta}_{u}(\mathbf{x}_{u}, \mathbf{k}) \right), (1)$$

где
$$\Omega(\mathbf{x}_u) = \begin{pmatrix} \omega_1(\mathbf{x}_u) & 0\\ 0 & \omega_2(\mathbf{x}_u) \end{pmatrix}, \ \omega_1(\mathbf{x}_u), \ \omega_2(\mathbf{x}_u) - \text{Beca}$$

наблюдений, $\mathbf{Y}_{u}^{T} = (Y_{2} \ Y_{3})$ – вектор наблюдений, Y_{2} – парциальное давление метилацетилена, Y_{3} – парциальное давление пропилена.

Веса наблюдений обычно обратно пропорциональны дисперсиям наблюдений и определяются при проведении повторного эксперимента.

Согласно предварительно проведенным опытам и литературным данным, предложен следующий стадийный механизм реакции селективного гидрирования МАЦ в пропан-пропиленовой-метилацетиленовой смеси (рис. 1).

Стехиометрическая матрица *В* стадийного механизма реакции гидрирования метилацетилена может быть представлена в виде клеточной матрицы:

$$\boldsymbol{B} = [\boldsymbol{B}_{nb} | \boldsymbol{B}_b], \tag{2}$$

где B_{nb} — подматрица стехиометрических коэффициентов небоденштейновских веществ, B_b подматрица стехиометрических коэффициентов боденштейновских веществ стадийного механизма сложной химической реакции.

Ранг подматрицы B_b равен 4, а число боденштейновских веществ равно 5, следовательно, существует один химический инвариант для боденштейновских веществ, т.е.

$$\sum_{i=1}^{N_b} X_i = 1,$$
 (3)

где X_i — поверхностная концентрация *i*-го реагента.

Далее по правилу Хориути имеем *Р*-маршрутов, т.е.

$$P = Q - r(B_b) = 6 - 4 = 2.$$
(4)

Векторы маршрутов $\mathbf{v}^{(1)}$, $\mathbf{v}^{(2)}$, ..., $\mathbf{v}^{(P)}$ определяются в результате решения уравнений

$$B_b^T \cdot \mathbf{v}^{(i)} = \mathbf{0}. \tag{5}$$

1

1.	$\begin{array}{cccc} H_2 &+& 2\theta \\ X_1 & X_5 \end{array} \qquad \stackrel{\longrightarrow}{\longrightarrow} 2H\theta \\ X_6 \end{array}$)	(б)	1	1
2.	$CH_3-C=CH + \theta \Longrightarrow 0$	CH ₃ −C≢CH θ	(б)	1	0
	X ₂ X ₅	X_7			
3.	$\begin{array}{cccc} CH_{3}-C \stackrel{!}{\neq} CH &+ & 2H\theta \rightarrow CH \\ \theta \\ X_{7} & X_{6} \end{array}$	$_{3}$ -CH \neq CH ₂ + 2 θ $\dot{\theta}$ X_{8} X_{5}	(M)	1	0

4.
$$CH_3 - CH \stackrel{!}{\leftarrow} CH_2 \implies CH_3 - CH = CH_2 + \theta$$
 (6)
 θ
 $X_8 \qquad X_3 \qquad X_5$

6. C	$H_3-CH_2-CH_3 \Longrightarrow$	CH ₃ -CH ₂ -0	$CH_3 + \theta$	(б)	0	1
	0 X ₉	X_4	X ₅		_	1
N ⁽¹⁾ :	CH ₃ −C≡CH -	+ H ₂ = C	CH ₃ -CH=CH ₂	r ⁽¹⁾		
N ⁽²⁾ :	CH ₃ -CH=CH ₂	$+ H_2 = 0$	CH ₃ -CH ₂ -CH ₃	r ⁽²⁾		

Рис. 1. Стадийный механизм реакции селективного гидрирования метилацетилена.

Из условия квазистационарности протекания процесса

$$\mathbf{W}_{6\times 1} = \mathbf{v}_{6\times 2} \cdot \mathbf{r}_{2\times 1} \tag{6}$$

вычисляется вектор скоростей по маршрутам r, а также матрица итоговых уравнений по маршрутам B_f :

$$\boldsymbol{B}_{f4\times 2}^{T} = \boldsymbol{B}_{nb,4\times 6}^{T} \cdot \boldsymbol{v}_{6\times 2}, \tag{7}$$

что позволяет записать систему кинетических уравнений в виде

$$\mathbf{R}_{nb}^{B} = \boldsymbol{B}_{f}^{T} \cdot \mathbf{r}, \qquad (8)$$

где B_f — матрица стехиометрических коэффици-ентов итоговых реакций по маршрутам, определяемая уравнениями $N^{(1)}$ и $N^{(2)}$.

Скорости реакций по маршрутам имеют следующий вид:

$$r^{(1)} = \frac{k_{+3}K_1K_2P_1P_2}{\left(1 + K_1^{0.5}P_1^{0.5} + K_2P_2 + K_4^{-1}P_3 + K_6^{-1}P_4\right)^3},$$
 (9)

$$r^{(2)} = \frac{k_{+5}K_2K_4^{-1}P_1P_3}{\left(1 + K_1^{0.5}P_1^{0.5} + K_2P_2 + K_4^{-1}P_3 + K_6^{-1}P_4\right)^3}, \quad (10)$$

где $r^{(1)}$, $r^{(2)}$ – скорости реакций гидрирования метилацетилена и пропилена соответственно (атм с⁻¹), k_{+i} — кинетическая константа пря-мой *i*-й стадии механизма химической реакции (атм c^{-1}), K_l – константа адсорбционнодесорбционного равновесия І-й стадии механизма химической реакции.

Ранг матрицы B_f равен двум, следовательно, имеются два инварианта среди небоденштейновских веществ. Последние записываются следующим образом:

$$R_1^B = 2R_2^B + R_3^B, (11)$$

Таблица 1. Условия проведения первой серии кинетических опытов в реакции селективного гидрирования метилацетилена в пропан-пропилен-метилацетиленовой смеси при температуре 348 К, давлении 30 атм и объемной скорости потока $2000 \, \text{v}^{-1}$. Состав сырья: водород ($P_1 = 0.8 \, \text{атм}$), метилацетилен ($P_2 = 0.32 \, \text{атм}$), пропилен ($P_3 = 26.8 \, \text{атм}$), пропан – остальное

Nº	Время	Состав реагентов в потоке (расчет), атм			Скорости по атм	маршрутам, м/с	Состав реагентов в потоке (эксперимент), атм		
	KOHIAKIA, C	P_1	<i>P</i> ₂	<i>P</i> ₃	<i>r</i> ₍₁₎	<i>r</i> ₍₂₎	<i>P</i> ₁	<i>P</i> ₂	<i>P</i> ₃
1	3.0	6.325×10^{-1}	1.601×10^{-1}	26.952	3.499×10^{-2}	2.397×10^{-3}	6.051×10^{-1}	1.727×10^{-1}	26.932
2	5.0	5.722×10^{-1}	1.045×10^{-1}	27.003	2.183×10^{-2}	2.295×10^{-3}	5.860×10^{-1}	1.358×10^{-1}	27.013
3	10.0	4.946×10^{-1}	3.799×10^{-2}	27.158	7.540×10^{-3}	2.185×10^{-3}	5.241×10^{-1}	0.422×10^{-1}	27.042
4	15.0	4.600×10^{-1}	1.424×10^{-2}	27.071	2.734×10^{-3}	2.148×10^{-3}	4.752×10^{-1}	1.302×10^{-2}	27.092
5	20.0	4.404×10^{-1}	5.368×10^{-3}	27.069	1.034×10^{-3}	2.122×10^{-3}	4.502×10^{-1}	3.806×10^{-2}	27.072
6	30.0	4.143×10^{-1}	7.943×10^{-3}	27.053	1.475×10^{-4}	2.089×10^{-3}	3.985×10^{-1}	8.022×10^{-3}	27.062
7	40.0	3.941×10^{-1}	1.278×10^{-4}	27.039	2.211×10^{-5}	1.939×10^{-3}	3.821×10^{-1}	1.403×10^{-4}	27.045
8	50.0	3.749×10^{-1}	2.274×10^{-5}	27.015	3.780×10^{-6}	1.827×10^{-3}	3.670×10^{-1}	4.412×10^{-5}	27.002
9	60.0	3.570×10^{-1}	4.469×10^{-6}	26.997	6.995×10^{-7}	1.719×10^{-3}	3.565×10^{-1}	5.234×10^{-6}	27.000
10	70.0	3.402×10^{-1}	9.667×10^{-7}	26.980	1.424×10^{-7}	1.618×10^{-3}	3.406×10^{-1}	9.727×10^{-7}	27.995

$$R_4^B = -R_2^B - R_3^B, (12)$$

где R_1^B , R_2^B , R_3^B , R_4^B – скорости изменения концентраций небоденштейновских веществ: водорода, метилацетилена, пропилена и пропана соответственно (атм с⁻¹).

Таким образом, система 4 дифференциальных уравнений может быть преобразована к системе дифференциальных уравнений типа (8) по ключевым веществам метилацетилену и пропилену. Уравнения (11)–(12) могут быть использованы также для дополнительной проверки соответствия кинетической модели эксперименту.

Кинетические константы модели оценивались по результатам лабораторных опытов, проводимых в изотермическом проточном каталитическом реакторе при температурах 348, 363 и 393 К, давлении 20–30 атм, объемной скорости подачи сырья 2000–3000 ч⁻¹, мольном отношении водород : метилацетилен 1.5–3 методом нелинейных наименьших квадратов [16]. Каждый единичный эксперимент завершался только по достижении концентрации метилацетилена в выходном продуктовом потоке 1 ррт и менее. В каждом опыте определяли селективность и активность катализатора КПНМ-45М по целевому продукту пропилену.

В табл. 1-3 приведены результаты испытания катализатора КПНМ-45М в изотермическом проточном лабораторном реакторе. Показано при этом, что при увеличении температуры реакционной зоны в реакторе от 348 до 363 и 393 К время контакта приобретает значения 70, 50 и 30 с соответственно. При этом во всех случаях имеет место глубокая очистка пропилена. Иначе получен высокочистый мономер пропилена пригодный для использования в любых производствах его переработки. Соответственно он и характеризуется более высокой ценой.

По результатам кинетических опытов вычисляли численные значения констант модели и их зависимости от температуры.

Численные значения кинетических констант модели представлены в табл. 4.

Стендовые эксперименты проводились в проточном реакторе, представляющим собой стальную трубку с внутренним диаметром 0.32 дм, длиной каталитического слоя 80 дм. С внешней стороны каталитическая трубка охлаждается горячей или кипящей водой, расположенной в циркуляционном контуре. Давление в нем переменное, следовательно, в кипящем контуре может быть установлена различная температура. Внутри трубки располагается реакционная зона, заполненная катализатором КПНМ-45М. В реактор подается реакционная смесь с небольшими концентрациями водорода и метилацетилена.

Система дифференциальных уравнений модели политропического стендового реактора имеет следующий вид:

$$\frac{dP_i}{d\tau} = R_i^B \quad i = 1, \dots, 4, \tag{13}$$

$$\frac{dT}{d\tau} = \left[\left(\frac{\Delta H_1}{RT} \right) r^{(1)} + \left(\frac{\Delta H_2}{RT} \right) r^{(2)} \right] / C_p C_m + \frac{4\alpha}{d_R C_p C_m} (T - T_x).$$
(14)

ПИСАРЕНКО и др.

Таблица 2. Условия проведения второй серии кинетических опытов в реакции селективного гидрирования метилацетилена в пропан-пропилен-метилацетиленовой смеси при температуре 363 К, давлении 30 атм и объемной скорости потока 2000 ч⁻¹. Состав сырья: водород ($P_1 = 0.8$ атм), метилацетилен ($P_2 = 0.32$ атм), пропилен ($P_3 = 26.8$ атм), пропан – остальное

N⁰	Время	Состав ре (ра	сагентов в пот осчет), атм	оке	Скорости по атм	маршрутам, и/с	Состав р (эксп	еагентов в пот еримент), атм	гоке I		
	KOHTAKTA, C	P_1	<i>P</i> ₂	<i>P</i> ₃	<i>r</i> ₍₁₎	<i>r</i> ₍₂₎	<i>P</i> ₁	<i>P</i> ₂	<i>P</i> ₃		
1	3.0	6.016×10^{-1}	1.276×10^{-1}	26.986	3.661×10^{-2}	1.871×10^{-3}	6.788×10^{-1}	1.309×10^{-1}	26.897		
2	5.0	5.433×10^{-1}	$7,256 \times 10^{-2}$	27.037	2.002×10^{-2}	1.794×10^{-3}	5.392×10^{-1}	2.309×10^{-2}	27.137		
3	10.0	4.806×10^{-1}	1.902×10^{-2}	27.082	5.070×10^{-3}	1.739×10^{-3}	4.912×10^{-1}	1.851×10^{-2}	27.079		
4	15.0	4.580×10^{-1}	5.084×10^{-3}	27.087	1.344×10^{-3}	1.733×10^{-3}	4.496×10^{-1}	5.291×10^{-3}	27.089		
5	20.0	4.455×10^{-1}	1.349×10^{-3}	27.082	3.541×10^{-4}	1.719×10^{-3}	4.446×10^{-1}	1.409×10^{-3}	27.083		
6	30.0	4.272×10^{-1}	9.984×10^{-5}	27.067	2.528×10^{-5}	1.657×10^{-3}	4.320×10^{-1}	9.820×10^{-5}	27.071		
7	40.0	$4,108 \times 10^{-1}$	8.247×10^{-6}	27.051	1.990×10^{-6}	1.579×10^{-3}	4.153×10^{-1}	5.261×10^{-6}	27.052		
8	50.0	3.958×10^{-1}	7.691×10^{-7}	27.035	1.764×10^{-7}	1.499×10^{-3}	3.982×10^{-1}	8.257×10^{-7}	27.041		

Таблица 3. Условия проведения третьей серии кинетических опытов в реакции селективного гидрирования метилацетилена в пропан-пропилен-метилацетиленовой смеси при температуре 393 К, давлении 30 атм и объемной скорости потока 2000 ч⁻¹. Состав сырья: водород ($P_1 = 0.8$ атм), метилацетилен ($P_2 = 0.32$ атм), пропилен ($P_3 = 26.8$ атм), пропан – остальное

N⁰	Время	Состав ро (ра	еагентов в по асчет), атм	токе	Скорости по атм	маршрутам, и/с	Состав р (эксп	еагентов в пот еримент), атм	оке		
	контакта, с	P_1	<i>P</i> ₂	<i>P</i> ₃	<i>r</i> ₍₁₎	<i>r</i> ₍₂₎	P_1	<i>P</i> ₂	<i>P</i> ₃		
1	3.0	5.494×10^{-1}	7.331×10^{-2}	27.043	3.315×10^{-2}	1.178×10^{-3}	5.501×10^{-1}	7.408×10^{-2}	27.051		
2	5.0	5.040×10^{-1}	3.016×10^{-2}	27.083	1.324×10^{-2}	1.145×10^{-3}	$5.020 imes 10^{-1}$	3.008×10^{-2}	27.096		
3	10.0	4.715×10^{-1}	3.387×10^{-3}	27.104	1.488×10^{-3}	1.146×10^{-3}	4.822×10^{-1}	3.289×10^{-3}	27.102		
4	15.0	4.628×10^{-1}	3.764×10^{-4}	27.156	1.610×10^{-4}	1.139×10^{-3}	4.681×10^{-1}	3.680×10^{-4}	27.100		
5	20.0	4.567×10^{-1}	4.166×10^{-5}	27.096	1.811×10^{-5}	1.135×10^{-3}	4.522×10^{-1}	4.205×10^{-5}	27.097		
6	25.0	4.510×10^{-1}	4.734×10^{-6}	27.091	2.025×10^{-6}	1.116×10^{-3}	4.484×10^{-1}	4.809×10^{-6}	27.092		
7	30.0	4.454×10^{-1}	5.592×10^{-7}	27.085	2.346×10^{-7}	1.096×10^{-3}	4.458×10^{-1}	6.009×10^{-7}	27.079		

Таблица 4. Кинетические константы модели

Константа адсорби	ционно-десорбци-	Константа адсорби	ционно-десорбци-	Константа скорости медленной			
$K_1^{0.5} = e^{k_{0.1} + k_{0.1}}$	$k_{0.2}/T$, atm ^{-0.5}	$K_2 = e^{k_{0,3} + k_{0,3}}$	$k_{0.4}/T$, atm ⁻¹	$k_{+3}K_1K_2 = e^{k_{0.2}}$	$k_{+3}K_1K_2 = e^{k_{0.5}+k_{0.6}/T}$, atm c ⁻¹		
<i>k</i> _{0.1}	<i>k</i> _{0.2}	<i>k</i> _{0.3}	k _{0.4}	k _{0.5}	k _{0.6}		
-10.17	2507.49	4.22	46.27	24.33	-5134.0		
Константа адсорби онного равнове	ционно-десорбци- есия 4-й стадии	Константа скор 5-й с	ости медленной гадии	Константа адсорбционно-десорбци- онного равновесия 6-й стадии			
$K_4^{-1} = e^{k_{0.7} + 1}$	$k_{0.8}/T$, atm ⁻¹	$k_{+5}K_2K_4^{-1} = e^{k_0}$	$k_{0.10}/T$, атм с ⁻¹	$K_6^{-1} = e^{k_{0.11} + k_{0.2}/T}$, atm ⁻¹			
k _{0.7}	k _{0.8}	k _{0.9}	k _{0.10}	<i>k</i> _{0.11}	k _{0.12}		
-2.57	887.93	3.94	-755.14	7.39	1812.84		

Таблица 5. Условия проведения стендового эксперимента в политропическом реакторе ($d_{\rm R} = 0.32$ дм) при начальной температуре подачи сырья $T_0 = 333$ K, давлении $P_0 = 30$ атм, объемной скорости $V_0 = 3000$ ч⁻¹, температуре теплоносителя 343 K. Состав сырья: водород ($P_1 = 0.8$ атм), метилацетилен ($P_2 = 0.32$ атм), пропилен ($P_3 = 26.8$ атм), пропан – остальное

N⁰	Время	Состав реагентов в потоке (расчет), атм			<i>Т</i> , К	Состав р (эксп	<i>Т</i> , К		
	KOHTAKTA, C	<i>P</i> ₁	P_2	<i>P</i> ₃		<i>P</i> ₁	<i>P</i> ₂	<i>P</i> ₃	
1	1.0	7.222×10^{-1}	2.465×10^{-1}	26.869	341.1	7.336×10^{-1}	$2.584 imes 10^{-1}$	26.854	340.5
2	2.0	6.489×10^{-1}	1.777×10^{-1}	26.934	347.7	6.574×10^{-1}	1.853×10^{-1}	26.902	345.2
3	3.0	$5.895 imes 10^{-1}$	1.217×10^{-1}	26.986	352.0	$6.034 imes 10^{-1}$	1.328×10^{-1}	26.992	353.0
4	5.0	5.160×10^{-1}	5.520×10^{-2}	27.045	355.1	5.254×10^{-1}	5.408×10^{-2}	27.008	354.0
5	10.0	4.536×10^{-1}	8.981×10^{-3}	27.075	351.7	4.650×10^{-1}	8.871×10^{-3}	27.072	355.0
6	15.0	4.304×10^{-1}	1.898×10^{-3}	27.066	348.1	4.112×10^{-1}	1.632×10^{-3}	27.052	349.0
7	25.0	3.971×10^{-1}	1.280×10^{-4}	27.037	345.2	3.892×10^{-1}	1.234×10^{-4}	27.040	344.0
8	30.0	3.821×10^{-1}	3.799×10^{-5}	27.022	344.7	3.795×10^{-1}	4.502×10^{-5}	27.018	343.0
9	35.0	3.678×10^{-1}	1.205×10^{-5}	27.007	344.5	3.682×10^{-1}	1.526×10^{-5}	27.009	342.2
10	40.0	3.542×10^{-1}	4.049×10^{-6}	26.994	344.3	3.529×10^{-1}	4.062×10^{-6}	26.899	342.0
11	50.0	3.287×10^{-1}	5.343×10^{-7}	26.968	344.2	3.354×10^{-1}	отс.	26.952	342.0

Начальные условия:

$$\tau = 0 \quad P_i(0) = P_i^0 \quad i = 1, \dots, 4 \quad T(0) = T^0.$$
 (15)

В табл. 5–7 приведены результаты расчета по модели (13)–(15) и результаты испытаний катализатора КПНМ-45М, проведенных в политропическом стендовом реакторе очистки пропилена от метилацетилена в пирогазе при давлении 30 атм, объемной скорости потока на входе в реактор 3000 ч⁻¹, начальной температуре подачи сырья 333 К при различных температуре подачи сырья 333 К при различных температурах теплоносителя 343 и 353 К соответственно, начальной температуре подачи сырья 303 К и температуре теплоносителя 340 К. Состав сырья на входе в реактор: водород 0.8 атм, метилацетилен 0.32 атм, пропилен 26.8 атм, пропан – остальное (табл. 5); водород 2.4 атм, метилацетилен 1.2 атм, пропилен 26.1 атм, пропан – остальное (табл. 6, 7).

Показано, что в продуктовом потоке метилацетилен на выходе из реактора отсутствует, а содержание пропилена на выходе из реактора превышает его содержание в сырьевых потоках на входе в реактор. Иначе, во всех ситуациях происходит прирост пропилена за счет селективного гидрирования метилацетилена.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Основная цель данной работы создание катализатора КПНМ-45М, обеспечивающего высокую производительность процесса гидрирования метилацетилена в метилацетилен-пропиленовых газовых смесях с объемной скоростью подачи сырья 2000–3000 ч⁻¹, в интервале температур 303– 420 К, давлений 20–30 атм. При этом процесс должен быть высокоселективным и высокорентабельным с концентрацией пропилена в продуктовом потоке, превышающей его концентрацию в сырье. При длительной эксплуатации катализатора состав метилацетилен-пропиленовых газовых смесей может изменяться в связи с изменением условий их получения при пиролизе бензиновых углеводородов. Поэтому при проведении испытаний работы катализатора варьировали не только мольным отношением водорода к метилацетилену, но и концентрацией метилацетилена, которую изменяли от 4 до 1 об. %. Последнее характеризует большинство фракций ППФ пирогаза.

Показано, что организация переменных температурных полей в политропическом реакторе способствует увеличению производительности работы аппарата и повышению селективности работы катализатора.

ЗАКЛЮЧЕНИЕ

Предложен модифицированный палладий-оксидный нанокатализатор селективного гидрирования метилацетилена в метилацетилен-пропиленовых газовых смесях. Изучена кинетика реакций гидрирования метилацетилена и пропилена в изотермическом проточном реакторе. Поставлено 40 лабораторных опытов. При проведении лабораторных экспериментов варьировали объемную скорость сырьевого потока от 2000 до 3000 ч⁻¹, температуру реакционной смеси от 303 до 420 K,

ПИСАРЕНКО и др.

Таблица 6. Условия проведения стендового эксперимента в политропическом реакторе ($d_{\rm R} = 0.32$ дм) при начальной температуре подачи сырья $T_0 = 333$ K, давлении $P_0 = 30$ атм, объемной скорости $V_0 = 3000$ ч⁻¹, температуре теплоносителя 353 K. Состав сырья: водород ($P_1 = 2.4$ атм), метилацетилен ($P_2 = 1.2$ атм), пропилен ($P_3 = 26.1$ атм), пропан – остальное

Nº	Время контакта, с	Coct	тав реагентов в по (расчет), атм	отоке	<i>Т</i> , К	Состав реагентов в потоке (эксперимент), атм			<i>Т</i> , К
		P_1	P_2	P_3		P_1	<i>P</i> ₂	<i>P</i> ₃	
1	5×10^{-2}	2.395	1.195	26.104	333.5	2.382	1.189	26.104	333.6
2	$2.5 imes 10^{-1}$	2.375	1.175	26.123	335.7	2.371	1.168	26.118	335.6
3	$7.5 imes 10^{-1}$	2.311	1.112	26.185	342.0	2.305	1.106	26.190	341.8
4	1.0	2.268	1.070	26.223	346.4	2.230	1.050	26.210	345.0
5	1.5	2.146	9.491×10^{-1}	26.348	357.5	2.122	8.810×10^{-1}	26.440	358.2
6	2.0	1.938	7.423×10^{-1}	26.553	375.6	1.865	7.360×10^{-1}	26.602	374.4
7	3.0	1.358	1.657×10^{-1}	27.127	421.7	1.412	1.620×10^{-1}	27.106	419.5
8	5.0	1.190	2.591×10^{-3}	27.285	416.5	1.210	2.637×10^{-3}	27.315	418.0
9	10.0	1.171	1.543×10^{-6}	27.271	385.8	1.159	1.509×10^{-6}	27.270	384.6
10	15.0	1.150	8.592×10^{-9}	27.250	371.2	1.152	отс.	27.240	370.8
11	20.0	1.126	1.298×10^{-11}	27.226	363.0	1.138	отс.	27.230	365.2

Таблица 7. Условия проведения стендового эксперимента в политропическом реакторе ($d_{\rm R} = 0.32$ дм) при начальной температуре подачи сырья $T_0 = 303$ K, давлении $P_0 = 30$ атм, объемной скорости $V_0 = 3000$ ч⁻¹, температуре теплоносителя 340 К. Состав сырья: водород ($P_1 = 2.4$ атм), метилацетилен ($P_2 = 1.2$ атм), пропилен ($P_3 = 26.1$ атм), пропан – остальное

Nº	Время	Состав реагентов в потоке (расчет), атм		Т, К	Coc ^o	Т, К			
	контакта, с	<i>P</i> ₁	<i>P</i> ₂	<i>P</i> ₃		P_1	<i>P</i> ₂	<i>P</i> ₃	
1	2.5×10^{-1}	2.396	1.196	26.103	304.3	2.394	1.190	26.094	304.5
2	7.5×10^{-1}	2.389	1.189	26.110	306.9	2.390	1.182	26124	306.7
3	1.5	2.374	1.175	26.123	310.9	2.380	1.178	26.130	309.6
4	3.0	2.327	1.129	26.167	319.7	2.310	1.130	26.159	320.0
5	5.0	2.181	9.870×10^{-1}	26.307	336.7	2.204	1.020	26.260	339.0
6	10.0	1.182	3.297×10^{-3}	27.276	399.1	1.180	4.201×10^{-3}	27.280	398.0
7	15.0	1.159	1.065×10^{-5}	27.259	370.3	1.148	1.059×10^{-5}	27.260	371.2
8	20.0	1.132	1.993×10^{-7}	27.233	356.8	1.141	2.204×10^{-7}	27.230	357.0
9	25.0	1.103	8.093×10^{-9}	27.203	350.3	1.119	отс.	27.210	351.0
10	30.0	1.073	4.949×10^{-10}	27.173	347.1	1.093	отс.	27.169	348.0
11	35.0	1.043	3.897×10^{-11}	27.142	345.3	1.065	отс.	27.140	346.0
12	40.0	1.014	3.663×10^{-12}	27.114	344.4	1.028	отс.	27.124	344.8

мольное отношение водород/метилацетилен от 1.5 до 3.0. По результатам эксперимента методом наименьших квадратов для заданного стадийного механизма реакции гидрирования метилацетилена и пропилена оценены кинетические константы модели. Показано соответствие модели эксперименту во всей области экспериментирования.

Поставлено 30 опытов в политропическом стендовом реакторе. Определены высокоинтенсивные режимы работы реакторного оборудования. Получен прирост производительности реактора по пропилену во всей области экспериментирования при содержании метилацетилена в продуктовом потоке менее 1 ррт.

Изучена кинетика реакции гидрирования метилацетилена в метилацетилен-пропиленовых смесях на модифицированных палладийоксидных нанокатализаторах. Предложен шестистадийный двухмаршрутный механизм каталитической реакции селективного гидрирования метилацетилена в пропан-пропиленовой фракции пирогаза на палладийсодержаших нанокатализаторах и построена соответствующая ему кинетическая модель. Методом наименьших квадратов по результатам кинетического эксперимента оценены параметры кинетической модели и показано соответствие кинетической модели полученным экспериментальным данным во всей области экспериментирования. Найдены высокоинтенсивные режимы работы реакторного оборудования, при которых получен прирост производительности по пропилену при содержании метилацетилена менее 1 ррт в продуктовом потоке.

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации.

ОБОЗНАЧЕНИЯ

B матрица стехиометрических коэффициентов стадийного механизма сложной химической реакции

подматрица матрицы В стехиометрических B_b коэффициентов боденштейновских веществ

- полматрица матрицы В стехиометрических B_{nb} коэффициентов небоденштейновских вешеств
- матрица стехиометрических коэффициен- B_f тов небоденштейновских веществ в итоговых реакциях по маршрутам
- молярная теплоемкость реакционной смеси, C_{p} кал/(моль К)
- суммарная мольная концентрация реаген- C_m тов в реакционном потоке, моль/м³
- диаметр трубки стендового реактора, м d_R
- тепловой эффект химической реакции по *p*-му ΔH_i маршруту, кал/моль

константа равновесия і-й стадии механизма K_i

химической реакции, $K_1 -$ атм⁻¹; $K_2 -$ атм⁻¹; $K_4, K_6 -$ атм

- константа скорости прямой реакции *i*-й ста k_{+i} дии механизма химической реакции, атм c^{-1}
- номер *i*-го маршрута химической реакции $N^{(i)}$

число боленштейновских вешеств

- N_{h} Р давление в реакторе, атм парциальное давление *i*-го реагента в реак- P_i торе, атм номер маршрута химической реакции, р p = 1, ..., 2число элементарных стадий механизма 0 химической реакции R универсальная газовая постоянная, $(aтм m^3)/(моль K)$ скорость изменения концентрации і-го R^B_{\cdot} вешества, атм c^{-1} скорость химической реакции по р-му $r^{(p)}$ маршруту, атм c^{-1} Т температура в реакторе, К температура теплоносителя, К T_r \mathcal{T}^0 температура на входе в каталитический слой, К вектор скоростей стадий механизма химиче-W ской реакции, атм c^{-1} условия проведения и-го опыта \mathbf{X}_{u} результат и-го эксперимента Y_u коэффициент теплопередачи от реакционα ной среды к теплоносителю, кал/(м² с К) $\mathbf{\eta}_{u}(\mathbf{x}_{u},\mathbf{k})$ отклик, оцененный по модели $\mathbf{v}^{(p)}$ вектор стехиометрических чисел р-го маршрута химической реакции время контакта реакционной смеси в катаτ
 - литическом реакторе, с

ИНЛЕКСЫ

- 1 водород
- 2 метилацетилен
- 3 пропилен
- 4 пропан
- 5 9боденштейновские (неустойчивые) вещества

СПИСОК ЛИТЕРАТУРЫ

- 1. Alcheikhhamdon Y., Pinnau I., Hoorfar M., Chen B. Propylene – propane separation using Zeolitic-Imidazolate Framework (ZIF-8) membranes: Process techno-commercial evaluation // J. Membr. Sci. 2019. V. 591. P.117.
- 2. Стыценко В.Д., Мельников Д.П. Селективное гидрирование диеновых и ацетиленовых соединений на металлсодержащих катализаторах // Журн. физ. хим. 2016. Т. 90. № 5. С. 691.
- 3. Бусыгин В.М., Гильманов Х.Х., Трифонов С.В., Ламберов А.А. Проблемы и перспективы эксплуатации

катализаторов в ОАО "Нижнекамскнефтехим". Сообщение I. Катализаторы производств этилена, пропилена, мономеров и продуктов на их основе // Катал. пром-сти. 2005. № 23. С. 23.

- 4. Ласкин А.И., Ильясов И.Р., Ламберов А.А. Трансформация прекурсоров палладия, нанесенных на алюмооксидный носитель, в процессе восстановительной активации // Нефтехимия. 2019. Т. 59. № 2. С. 200
- Жармагамбетова А.К., Сейткалиева К.С., Талгатов Э.Т., Ауезханова А.С., Джардималиева Г.И., Помогайло А.Д. Модифицированные полимерами нанесенные палладиевые катализаторы гидрирования ацетиленовых соединений // Кинет. катал. 2016. Т. 57. № 3. С. 362.
- Yu H., Mao Z., Dai W., Peng J., Zhai M., Wei G. Highly selective Pd/Al₂O₃ catalyst for hydrogenation of methylacetylene and propadiene in propylene stream prepared by γ-radiation // Appl. Catal., A. 2012. V. 445– 446. P. 246.
- Мельников Д.П., Кустов Л.М., Стыценко В.Д., Савельева Е.В., Ткаченко О.П., Шестеркина А.А., Новиков А.А. Катализатор селективного гидрирования диеновых и ацетиленовых углеводородов и способ его получения. Пат. 2669397 РФ. 2018.
- Peck J.W., Mahon D.I., Koel B.E. A temperature programmed desorption study of the reaction of methylacetylene on Pt(111) and Sn/Pt(111) surface alloys // Surf. Sci. 1998. V. 410. P. 200.
- Бальжинимаев Б.С., Ковалев Е.В., Сукнев А.П., Паукитис Е.А. Способ селективного гидрирования ацетиленовых углеводородов. Пат. 2601751 РФ. 2016.
- 10. Ласкин А.И., Ильясов И.Р., Назаров М.В., Ламберов А.А., Назмиева И.Ф., Шатилов В.М., Бикмурзин А.Ш. Опытно-промышленные испытания катализатора селективного гидрирования метилаце-

тилена и пропадиена // Катал. пром-сти. 2013. № 3. С. 42.

- Fajardo J.C., Godinez C., Cabanes A.L., Villora G. Kinetic analysis of rate data for propylene and methylacetylene hydrogenation // Chem. Eng. Process. 1996. V. 35. P. 203.
- Rijo B., Lemos F., Fonseca I., Vilelas A. Development of a model for an industrial acetylene hydrogenation reactor using plant data – Part I // Chem. Eng. J. 2020. V. 379. P. 122390.
- Samimi F, Khadem Modarresi Z., Dehghani O., Rahimpour M.R., Bolhasani A. Application of response surface methodology for optimization of an industrial methylacetylene and propadiene hydrogenation reactor // J. Taiwan Inst. Chem. Eng. 2015. V. 46. P. 51.
- 14. Abedini H., Shariati A., Khosravi-Nikout M.R. Adsorption of propane and propylene on M-MOF-74 (M = Cu, Co): Equilibrium and kinetic study // Chem. Eng. Res. Des. 2020. V. 153. P. 96.
- 15. *Pisarenko E.V., Ponomaryov A.B., Ilinova A.A., Pisarenko V.N.* Modeling the Process of Purifying Ethylene from Acetylene Hydrocarbons over Palladium Nanocatalysts // Theor. Found. Chem. Eng. 2020. V. 54. № 3. P. 446. [*Писаренко Е.В., Пономарев А.Б., Ильинова А.А., Писаренко В.Н.* Моделирование процесса очистки этилена от ацетиленовых углеводородов на палладиевых нанокатализаторах // Теор. осн. хим. технол. 2020. Т. 54. № 3. С. 326.]
- 16. Pisarenko E.V., Pisarenko V.N. Analysis and simulation of the nonlinear kinetics of reacting chemical systems // Theor. Found. Chem. Eng. 2013. V. 47. № 2. Р. 128. [Писаренко Е.В., Писаренко В.Н. Анализ и моделирование нелинейной кинетики химических реагирующих систем // Теор. осн. хим. технол. 2013. T. 47. № 2. С. 173.]