УЛК 574.6.663.1

ОБОБЩЕННЫЕ СООТНОШЕНИЯ ДЛЯ ВЫЧИСЛЕНИЯ ЭЛЕМЕНТОВ МНОЖЕСТВ ВХОДНЫХ ПОКАЗАТЕЛЕЙ ФЕРМЕНТАТИВНОГО ПРОЦЕССА ПОЛУЧЕНИЯ МОЛОЧНОЙ КИСЛОТЫ

© 2021 г. Ю. Л. Гордеева $^{a, *}$, А. Г. Бородкин b , Е. Л. Гордеева b

^аМосковская государственная академия ветеринарной медицины и биотехнологии им. К.И. Скрябина, Москва, Россия ^bРоссийский химико-технологический университет им. Д.И. Менделеева, Москва, Россия

> *e-mail: l.s.gordeev@yandex.ru Поступила в редакцию 21.10.2020 г. После доработки 07.12.2020 г. Принята к публикации 14.01.2021 г.

Приведены обобщенные соотношения для вычисления множеств входных показателей ферментативного процесса получения молочной кислоты, обеспечивающие реальные условия существования технологического процесса в непрерывных условиях. В основу положены расчетные соотношения, полученные по уравнениям математической модели, содержащей балансовые соотношения по биомассе, субстрату, продукту, побочному продукту с учетом использования основного субстрата и компонента, воспроизводящего основной субстрат в процессе синтеза. Сформированы два варианта оценки области существования технологического процесса. Область первого варианта представлена зависимостью S_0 от D при $M_0 = 0$; второго $-M_0$ от D при $S_0 = 0$. Приведены координаты "особых" точек для обоих вариантов, ограничивающие значения множеств для каждой особой точки. Получены множества показателей для каждой особой точки. Приведены численные примеры расчета показателей с использованием обобщенных соотношений при $Q_P = 6$ г/(л ч). Обобщенные формулы разработаны по предыдущим работам. Приведены также обобщенные формулы для вычисления состава, поступающего на ферментацию потока. Обобщенные формулы записаны для двух вариантов, представлены в трех частях, каждая из которых определяется значением $S_0(D)$ для первого варианта и $M_0(D)$ для второго. Для каждого из вариантов получены составы множеств в количестве шести единиц. Так же как и для особых точек получены обобщенные соотношения и формулы вычисления состава множеств для потока по обоим вариантам.

Ключевые слова: молочная кислота, множественность показателей, обобщенные соотношения **DOI:** 10.31857/S0040357121030064

ВВЕДЕНИЕ

Входными показателями непрерывного стационарного процесса получения молочной кислоты [1, 2] являются: S_0 — концентрация основного субстрата (непосредственно потребляемого микроорганизмами), г/л; M_0 — концентрация компонента сырья, воспроизводящего основной субстрат в процессе синтеза, г/л; D — величина протока (D = v/V, где v — объемная скорость через ферментер, л/ч; V — объем ферментера, л), ч $^{-1}$.

Величиной, характеризующей качество работы ферментера, является продуктивность по целевому продукту (молочной кислоте) Q_P , г/(л ч), $(Q_P = DP, \text{где } P - \text{концентрация продукта на выходе из аппарата, г/л).$

В дальнейшем анализе использованы формулы (1)—(5), полученные по уравнениям математической модели [1, 2]:

$$A(D) = \left(1 - \frac{Q_P}{X_{\text{max}}(\alpha D + \beta)}\right)^{n_1} \left(1 - \frac{Q_P}{P_{\text{max}}D}\right)^{n_2}; \quad (1)$$

$$S' = S_0 + \frac{k_M M_0}{D + k_M}; (2)$$

$$S_{1}' = \frac{1}{Y_{X/S}} \frac{Q_{P}}{(\alpha D + \beta)} + \frac{K_{i}}{2} \left[A(D) \frac{\mu_{\text{max}}}{D} - 1 \right] + \sqrt{\left(\frac{K_{i}}{2}\right)^{2} \left[A(D) \frac{\mu_{\text{max}}}{D} - 1 \right]^{2} - K_{m} K_{i}};$$
(3)

$$S_{2}' = \frac{1}{Y_{X/S}} \frac{Q_{P}}{(\alpha D + \beta)} + \frac{K_{i}}{2} \left[A(D) \frac{\mu_{\text{max}}}{D} - 1 \right] - \sqrt{\left(\frac{K_{i}}{2}\right)^{2} \left[A(D) \frac{\mu_{\text{max}}}{D} - 1 \right]^{2} - K_{m} K_{i}};$$
(4)

$$\left(\frac{K_i}{2}\right)^2 \left[A(D)\frac{\mu_{\text{max}}}{D} - 1\right]^2 - K_m K_i = 0.$$
 (5)

Сформированы два варианта оценки областей реального осуществления технологического процесса. Для первого варианта область представлена зависимостью S_0 от D при $M_0=0$; для второго — M_0 от D при $S_0=0$. Ограничивающими показателями для обеих областей являются координаты точек, получивших название "особых" в [1, 2]. Особые точки для области первого варианта обозначим номерами 1, 2, 3, 4, 5; для второго — номерами 1', 2', 3', 4', 5'.

Положение особых точек для обоих вариантов, определяется величиной протока D, \mathbf{q}^{-1} .

В дальнейшем полагается, что константы в (1)—(5) известны для конкретного штамма микроорганизмов.

Границы формируемых областей для обоих вариантов определяются величиной протока для особых точек 1, 2, 5 и 1', 2', 5', обеспечивающих условия реального осуществления технологии. Особая точка 5 и 5' есть точка максимума Q_P , $\Gamma/(\Pi \, \Psi)$. Значение величины протока одинаково для точек 1 и 1', одинаково для точек 2 и 2', одинаково для точек 5 и 5'. Последовательность вычислений соответствующих значений D для особых точек 1, 2, 5 и 1', 2', 5' полагает первоначальное решение задачи оценки D_5 , доставляющей максимум Q_P по уравнению (5) при использовании (1). В результате получим пару значений:

$$D_5, \, \mathrm{u}^{-1}; \, \max Q_P, \, \, \Gamma/(\pi \, \mathrm{u}).$$
 (6)

Решается задача оценки D_1 и D_2 так же по уравнению (5) для условия $Q_P \le \max Q_P$. Получаем значения ($D_2 \ge D_1$).

Таким образом, области обоих вариантов ограничены значениями D:

$$D_1 \le D \le D_2. \tag{7}$$

Для особых точек 1, 2, 5 и 1', 2', 5' вычисляются значения S_0 области первого варианта и M_0 — области второго варианта:

$$S_0(D_1) = S'_1(D_1), \quad S_0(D_2) = S'_1(D_2),$$

 $S_0(D_5) = S'_1(D_5),$
(8)

$$M_{0}(D_{1}) = \frac{D_{1} + k_{M}}{k_{M}} S'_{1}(D_{1}); \quad M_{0}(D_{2}) =$$

$$= \frac{D_{2} + k_{M}}{k_{M}} S'_{1}(D_{2}); \quad M_{0}(D_{5}) = \frac{D_{5} + k_{M}}{k_{M}} S'_{1}(D_{5}).$$
(9)

В соотношениях (8) и (9) значения S'_1 вычисляются по (3).

Результаты формируют область первого варианта решением (3) и (4) для D по (7), где

$$S_0(D) = S_1'(D)$$
 и $S_0(D) = S_2'(D)$. (10)

Область второго варианта формируется следующими уравнениями:

$$M_{0}(D) = \frac{D + k_{M}}{k_{M}} S'_{1}(D)$$
 и $M_{0}(D) =$

$$= \frac{D + k_{M}}{k_{M}} S'_{2}(D).$$
(11)

Особые точки 3 и 3', 4 и 4' дают ограничения по S_0 , г/л для области первого варианта и по M_0 , г/л для области второго варианта.

Значение $D = D_3^1$ для точки 3 доставляет максимум $S_1^1(D)$ по (3); значение $D = D_4^1$ для точки 4 доставляет минимум $S_2^1(D)$ по (4).

Получили:
$$D_3^1$$
, $S_0\left(D_3^1\right) = S_1'\left(D_3^1\right)$; D_4^1 , $S_0\left(D_4^1\right) = S_2'\left(D_4^1\right)$. (12)

 $S_0\left(D_3^1\right)$ и $S_0\left(D_4^1\right)$ есть максимальное и минимальное значение S_0 , соответственно, для принятого $Q_{\rm P}$, г/(л ч).

Значение $D = D_3^2$ для точки 3' доставляет максимум M_0 в соотношении

$$M_0 = \frac{D + k_M}{k_M} S_1'(D). \tag{13}$$

Значение $D = D_4^2$ для точки 4' доставляет минимум M_0 в соотношении

$$M_0 = \frac{D + k_M}{k_M} S_2'(D). \tag{14}$$

Получили:
$$D_3^2$$
, $M_0(D_3^2)$; D_4^2 , $M_0(D_4^2)$. (15)

 $M_0\left(D_3^2\right)$ и $M_0\left(D_4^2\right)$ есть максимальное и минимальное значение M_0 , соответственно, для принятого Q_P , г/(л ч).

ОБОБЩЕННЫЕ ФОРМУЛЫ ВЫЧИСЛЕНИЯ СОСТАВА ОСОБЫХ ТОЧЕК

Обобщенная формула для области первого варианта получена по публикации [2]:

$$M_0^i = \frac{D^* + k_M}{k_M} \left(S^* - S_0^i \right), \tag{16}$$

$$0 \le S_0^i \le S^*. \tag{17}$$

В зависимости от S_0^i вычисляются соответствующие значения M_0^i .

Обозначения для (16): особая точка 1: $S^* = S_0\left(D_1\right),\ D^* = D_1;$ особая точка 2: $S^* = S_0\left(D_2\right),$ $D^* = D_2;$ особая точка 3: $S^* = S_0\left(D_3^1\right),\ D^* = D_3^1;$ особая точка 4: $S^* = S_0\left(D_4^1\right),\ D^* = D_4^1;$ особая точка 5: $S^* = S_0\left(D^{\text{opt}}\right),\ D^* = D^{\text{opt}}.$

Задавая значение S_0^i по (17), вычисляют M_0^i по каждой из особых точек. Таким образом, для каждой особой точки формируется множество, состоящее из пар значений $\left(S_0^i, M_0^i\right)$. Состав множества имеет следующий вид:

$$\left\{ \begin{pmatrix} S_0^1 \\ M_0^1 \end{pmatrix}, \begin{pmatrix} S_0^2 \\ M_0^2 \end{pmatrix}, \dots, \begin{pmatrix} S_0^i \\ M_0^i \end{pmatrix}, \dots, \begin{pmatrix} S_0^n \\ M_0^n \end{pmatrix} \right\}, \quad (18)$$

где $S_0^n = S^*$ для каждой особой точки.

Обобщенная формула для области второго варианта получена по [1]:

$$S_0^i = \frac{k_M}{D^{**} + k_M} (M^{**} - M_0^i); \tag{19}$$

$$0 \le M_0^i \le M^{**}. \tag{20}$$

В зависимости от M_0^i вычисляются соответствующие значения S_0^i .

Обозначения для (19): особая точка 1': $M^{**}=M_0(D_1)$, $D^{**}=D_1$; особая точка 2': $M^{**}=M_0(D_2)$, $D^{**}=D_2$; особая точка 3': $M^{**}=M_0\left(D_3^2\right)$, $D^{**}=D_3^2$; особая точка 4': $M^{**}=M_0\left(D_4^2\right)$, $D^{**}=D_4^2$; особая точка 5': $M^{**}=M_0\left(D^{\mathrm{opt}}\right)$, $D^{**}=D^{\mathrm{opt}}$.

Задавая M_0^i по (20) вычисляются значения S_0^i по каждой особой точке. При задании M_0^i по (20) формируется множество, состоящее из пар значений (M_0^i, S_0^i) . Состав множества имеет следующий вид:

$$\left\{ \begin{pmatrix} \boldsymbol{M}_0^1 \\ \boldsymbol{S}_0^1 \end{pmatrix}, \begin{pmatrix} \boldsymbol{M}_0^2 \\ \boldsymbol{S}_0^2 \end{pmatrix}, \dots, \begin{pmatrix} \boldsymbol{M}_0^i \\ \boldsymbol{S}_0^i \end{pmatrix}, \dots, \begin{pmatrix} \boldsymbol{M}_0^n \\ \boldsymbol{S}_0^n \end{pmatrix} \right\}, \quad (21)$$

где $M_0^n = M^{**}$ для каждой особой точки.

В вышеприведенном анализе координаты особых точек для области первого варианта вычисляются при условии $M_0=0$; для области второго варианта — $S_0=0$.

В реальной технологии в потоке может содержаться как основной субстрат, так и компонент, воспроизводящий основной субстрат. В связи с этим состав в особых точках может быть иным, при том, что компоненты состава взаимосвязаны соотношением (2).

Численный пример для особой точки **1** (первый вариант). $S_0^n = S^* = 77.6$ г/л. Число значений S_0^i в соответствии с (17) принято равным пяти: $S_0^1 = 77.6$; $S_0^2 = 58.2$; $S_0^3 = 38.8$; $S_0^4 = 19.4$; $S_0^5 = 0.0$. Состав множества имеет следующий вид:

$$\left\{ \binom{77.6}{0.0}, \binom{58.2}{73.8}, \binom{38.8}{147.64}, \binom{19.4}{221.46}, \binom{0.0}{295.8} \right\}. \tag{22}$$

Численный пример для особой точки 2' (второй вариант). $M_0^n = M^{**} = 349.16$ г/л. Значений M_0^i в соответствии с (20) было принято равным пяти: $M_0^1 = 349.1$; $M_0^2 = 261.87$; $M_0^3 = 174.58$; $M_0^4 = 87.29$; $M_0^5 = 0.0$. Состав множества имеет следующий вид:

$$\left\{ \begin{pmatrix} 349.16 \\ 0.0 \end{pmatrix}, \begin{pmatrix} 261.87 \\ 8.84 \end{pmatrix}, \begin{pmatrix} 174.58 \\ 17.68 \end{pmatrix}, \begin{pmatrix} 87.29 \\ 26.512 \end{pmatrix}, \begin{pmatrix} 0.0 \\ 35.35 \end{pmatrix} \right\}, D = 0.3107.(23)$$
(23)

Численный расчет выполнен с использованием значений констант (табл. 1) [1, 2] для продуктивности $Q_P = 6$ г/(л ч).

ОБОБЩЕННЫЕ ФОРМУЛЫ ДЛЯ ВЫЧИСЛЕНИЯ СОСТАВА ПОСТУПАЮЩЕГО ПОТОКА НА ФЕРМЕНТАЦИЮ

В общем случае состав поступающего потока на ферментацию (кроме отдельных добавок) определяется концентрацией двух компонентов основно-

го субстрата и компонента, воспроизводящего основной субстрат в процессе ферментации.

Условия рассмотрены общие для двух вариантов областей реализации технологического процесса:

$$Q_{P} < \max Q_{P}. \tag{24}$$

Каждая из областей делится на три части, границы которых определяются координатами особых точек.

Таблица 1. Численные значения констант

K_m , г/л	K_i , г/л	$\mu_{\text{max}}, \mathbf{y}^{-1}$	Х _{тах} , г/л	Р _{тах} , г/л	n_1	n_2	$Y_{X/S}$, Γ/Γ	k_M , ч $^{-1}$	α, r/r	β, ч ⁻¹	$\alpha_{\rm B}$, Γ/Γ	$\beta_{\rm B}$, ч $^{-1}$
1.2	164	0.48	30	98.0	0.5	0.5	0.4	0.035	2.2	0.02	1.1	0.01

Оценка технологических показателей выполняется при задании S_0 , г/л для области первого варианта и M_0 , г/л для области второго варианта.

В каждой из частей обеих областей сформированы множества для вычисления показателей процесса. Обозначение частей и множеств приведено ниже.

Первый вариант	Второй вариант				
Часть I: $S_0\left(D_1\right) \leq S_0 \leq S_0\left(D_3^1\right)$	$M_0\left(D_2\right) \le M_0 \le M_0\left(D_3^2\right)$	(25)			
Часть II: $S_0\left(D_2\right) \leq S_0 \leq S_0\left(D_1\right)$	$M_0\left(D_1\right) \leq M_0 \leq M_0\left(D_2\right)$	(26)			
Часть III: $S_0\left(D_4^1\right) \leq S_0 \leq S_0\left(D_2\right)$	$M_0\left(D_4^2\right) \le M_0 \le M_0\left(D_1\right)$	(27)			
Мн1 (по 25); Мн1* и Мн2* (по 26)	Мнl ₁ (по 25); Мнl ₁ * и Мн2 ₁ * (по 26)				
Мн1**, Мн2**, Мн3** (по 27)	Мн1 ₁ **, Мн2 ₁ **, Мн3 ₁ ** (по 27)				

Положение каждого из множеств определяется величиной протока D.

Формула для области первого варианта. Для каждого из множеств заданным является значение S_0 , г/л согласно (25)—(27). По формуле вычисляются значения M_0^i — элементы множества Мн, которые формируются по D^i :

$$M_0^i = \frac{D^i + k_M}{k_M} \Big[S'(D^i) - S_0 \Big].$$
 (28)

Обозначения к (28):

Мн1: S_0 по (25); $D_1^1 \le D^i \le D_2^1$, D_1^1 и D_2^1 по (3); $S_1' = S_0$; $S' \left(D^i \right) = S_1' \left(D^i \right)$ по (3).

Мн1*: S_0 по (26); $D_1 \le D^i \le D_2^2$, D_2^2 по (3); $S_1' = S_0$; $S'(D^i) = S_1'(D^i)$ по (3).

Мн2*: S_0 по (26); $D_1 \leq D^i \leq D_2^1$, D_2^1 по (4); $S_2' = S_0$; $S'(D^i) = S_2'(D^i)$ по (4).

Мн1**: S_0 по (27); $D_1 \le D^i \le D_2$, D_1 и D_2 по (5), (1); $S'(D^i) = S'_1(D^i)$ по (3).

Мн2**: S_0 по (27); $D_1 \le D^i \le D_3^1$, D_1 по (5), (1); D_3^1 по (4), $S_2' = S_0$; $S'(D^i) = S_2'(D^i)$ по (4).

Мн3**: S_0 по (27); $D_3^2 \le D^i \le D_2$, D_2 по (5), (1); D_3^2 по (4), $S_2' = S_0$; $S'(D^i) = S_2'(D^i)$ по (4).

Пример числового расчета компонентов множеств M_0^i для Мн1 и Мн3**. В качестве исходных данных пользователь задает S_0 и D^i в соответствии с ограничениями для $Q_P = 6$ г/(л ч) < max $Q_P = 8.1718$ г/(л ч).

Мн1: $\mathbf{S}_0=91.93$ г/л; $0.1\leq D^i\leq 0.2304$, принято $D^1=0.14$ ч $^{-1}$, $D^2=0.18$ ч $^{-1}$, $D^3=0.22$ ч $^{-1}$. Получили по (28): $M_0^1=256.24$ г/л, $M_0^2=208.35$ г/л, $M_0^3=51.49$ г/л.

Мн3**: $S_0=30$ г/л; $0.30\leq D^i\leq 0.3107$, принято $D^1=0.3025$ ч $^{-1}$, $D^2=0.305$ ч $^{-1}$, $D^3=0.3075$ ч $^{-1}$. Получили по (28): $M_0^1=4.04$ г/л, $M_0^2=10.618$ г/л, $M_0^3=17.693$ г/л.

Формула для области второго варианта. Для каждого из множеств заданным является значение M_0 , г/л согласно (25)—(27). По формуле вы-

числяются значения S_0^i — элементы множества Мн, которые формируются по D^i :

$$S_0^i = S'(D^i) - \frac{k_M}{D^i + k_M} M_0.$$
 (29)

Обозначения к (29):

$$\begin{split} & \text{Мн1}_1 \text{: } M_0 \text{ по (25); } D_1^1 \leq D^i \leq D_1^2 \text{, где } D_1^1 \text{ и } D_1^2 \text{ по} \\ & \text{решению } S_1^\prime \left(D\right) - \frac{k_M}{D + k_M} M_0 = 0; \ S^\prime \left(D\right) \text{ по (3);} \\ & D_1^1 < D_1^2; S^\prime \left(D^i\right) = S_1^\prime \left(D^i\right) \text{по (3).} \end{split}$$

$$\begin{split} & \text{MHI}_1^* \text{: } \text{M}_0 \text{ по (26); } D_2^1 \leq D^i \leq D_2, \ D_1, \ D_2 \text{ по (5),} \\ & D_1 < D_2; \ D_2^1 \text{ по решению } S_1^\prime \left(D\right) - \frac{k_M}{D + k_M} M_0 = 0; \\ & S_1^\prime \left(D\right) \text{по (3); } S^\prime \left(D^i\right) = S_1^\prime \left(D^i\right) \text{по (3).} \end{split}$$

 $\mathrm{MH2}_{1}^{*}$: M_{0} по (26); $D_{2}^{2} \leq D^{i} \leq D_{2}$, D_{1} , D_{2} по (5), $D_{1} < D_{2}$; D_{2}^{2} по решению $S_{2}^{i}(D) - \frac{k_{M}}{D + k_{M}} M_{0} = 0$; $S_{2}^{i}(D)$ по (4); $S^{i}(D^{i}) = S_{2}^{i}(D^{i})$ по (4).

 $\operatorname{MHI}_{1}^{**}$: M_{0} no (27); $D_{1} \leq D^{i} \leq D_{2}$, D_{1} , D_{2} no (5), $D_{1} < D_{2}$; $S'(D^{i}) = S'_{2}(D^{i})$ no (4).

$$\begin{split} & \text{MH2}_1^{**}\text{:} \quad \text{M}_0 \quad \text{по} \quad (27); \quad D_1 \leq D^i \leq D_3^1; \quad D_1, \quad D_2 \quad \text{по} \quad (5), \\ & D_1 < D_2; \quad D_3^1, \quad D_3^2 \quad \text{по решению} \quad S_2^{'}(D) - \frac{k_M}{D + k_M} M_0 = 0; \\ & D_3^1 < D_3^2; \quad S^{'}\left(D^i\right) = S_2^{'}\left(D^i\right) \quad \text{по} \quad (4). \end{split}$$

Мн3₁**: М₀ по (27); $D_3^2 \le D^i \le D_2$; D_1 , D_2 по (5), $D_1 < D_2$; D_3^1 , D_3^2 по решению $S_2'(D) - \frac{k_M}{D + k_M} M_0 = 0$; $D_3^2 < D_3^1$; $S'(D^i) = S_2'(D^i)$ по (4).

Пример числового расчет компонент множеств S_0^i для Mhl_1 и Mhl_1^* . Пользователь задает M_0 и значения D^i для $Q_P=6$ г/(л ч) < max $Q_P=8.1718$ г/(л ч).

Мнl₁: $M_0=670$ г/л по неравенству (25): $349.16 \leq M_0 \leq 773.1$; $D_1^1=0.13$ ч $^{-1}$, $D_1^2=0.241$ ч $^{-1}$ по решению уравнения $S_1^i(D)-\frac{k_M}{D+k_M}M_0=0$. Формирование множества принято из трех элементов по D^i : $D^1=0.15$ ч $^{-1}$, $D^2=0.19$ ч $^{-1}$, $D^3=0.23$ ч $^{-1}$. Значения $S^i(D^i)$: $S^i(D^1)=141.16$ г/л; $S^i(D^2)=141.16$

= 119.37 г/л; $S'(D^3)$ = 92.24 г/л. Компоненты множества: S_0^1 = 14.4 г/л, S_0^2 = 15.15 г/л, S_0^3 = 3.75 г/л.

Мн I_1^* : $M_0=321.2$ г/л по неравенству (26): 295.28 \leq $\leq M_0 \leq 349.16$; $D_2^1=0.09865$ ч $^{-1}$, $D_2=0.3107$ ч $^{-1}$; D_2^1 по решению уравнения $S_1'(D)-\frac{k_M}{D+k_M}M_0=0$; D_2 по (5). Формирование множества принято из трех элементов по D^i : $D^1=0.11$ ч $^{-1}$, $D^2=0.12$ ч $^{-1}$, $D^3=0.13$ ч $^{-1}$. Значения $S'(D^i)$: $S'(D^1)=122.03$ г/л; $S'(D^2)=136.14$ г/л; $S'(D^3)=142.13$ г/л. Компоненты множества: $S_0^1=44.55$ г/л, $S_0^2=63.63$ г/л, $S_0^3=74.0$ г/л.

ЗАКЛЮЧЕНИЕ

Приведены обобщенные соотношения, по которым пользователь имеет возможность оценить множества показателей для "особых" точек, обеспечивающие реальные ограничения в создании технологического процесса. Приведены также обобщенные соотношения, позволяющие производить расчет технологических показателей потока, поступающего на синтез молочной кислоты по заданному значению продуктивности, что дает возможность оценить влияние начальных значений S_0 и M_0 , обеспечивающих реальные условия синтеза

Исследование выполнено при финансовой поддержке РХТУ им. Д.И. Менделеева.

ОБОЗНАЧЕНИЯ

D величина протока, ч⁻¹

 K_i константа ингибирования, г/л

 K_m константа насыщения субстрата, г/л

 k_{M} константа, определяющая количество воспроизведенного субстрата, ч $^{-1}$

M концентрация сырья, дополнительно воспроизводящего субстрат, г/л

P концентрация продукта, г/л

 Q_P продуктивность, г/(л ч)

S концентрация субстрата, г/л

 $Y_{X/S}$ стехиометрический коэффициент, г/г

 μ удельная скорость роста микроорганизмов, ч $^{-1}$

α, β константы

ИНДЕКСЫ

начальное значение
 максимальное значение
 орт оптимальное значение

СПИСОК ЛИТЕРАТУРЫ

1. Gordeeva E.L., Ravichev L.V., Gordeeva Yu.L. Steady states of a fermentation process for lactic acid production at a given concentration of the main substrate // Theor. Found. Chem. Eng. 2020. V. 54. № 4. Р. 569. [Гордеева Е.Л., Равичев Л.В., Гордеева Ю.Л. Стаци-

- онарные состояния ферментативного процесса получения молочной кислоты по заданной концентрации основного субстрата // Теор. осн. хим. технол. Т. 54. № 4. С. 440.]
- 2. Gordeeva Yu.L., Borodkin A.G., Gordeeva E.L., Ruda-kovskaya E.G. Mathematical modeling of continuous fermentation process in lactic acid production // Theor. Found.Chem. Eng. 2019. V. 53. № 4. Р. 501. [Гор-деева Ю.Л., Бородкин А.Г., Гордеева Е.Л., Рудаковская Е.Г. Математическое моделирование процесса непрерывной ферментации при получении молочной кислоты // Теор. осн. хим. технол. 2019. Т. 53. № 4. С. 402.]