УДК 678.021

ОБОБЩЕННЫЕ ПАРАМЕТРЫ СТРУКТУРЫ АРМИРОВАННЫХ ПЛАСТИКОВ, ИХ КЛАССИФИКАЦИЯ И СВОЙСТВА

© 2021 г. И. Д. Симонов-Емельянов^{*a*}, Н. В. Апексимов^{*a*}, *, С. И. Шалгунов^{*b*}

^аМИРЭА — Российский технологический университет (Институт тонких химических технологий им. М.В. Ломоносова), Москва, Россия ^bAO "НПО Стеклопластик", Андреевка, Московская область, Россия

*e-mail: heknegative@mail.ru Поступила в редакцию 26.11.2020 г. После доработки 18.02.2021 г. Принята к публикации 23.03.2021 г.

Впервые предлагается модель и описание монолитной структуры армированных пластиков в одном направлении (1D-структура) в новых обобщенных и приведенных параметрах (Θ , Θ/B и Θ/S_f), которые позволяют рассматривать структурообразование, с одной стороны, с позиции армирующего волокна с учетом его размеров, упаковки, величины поверхности и содержания, а с другой, полимерной матрицы, представляя ее в виде трех функциональных составляющих: $\phi_n = \Theta + B + M$. Такой подход к созданию структуры армированных полимерных композиционных материалов (АрПКМ), включающий армирующую фазу волокнистого наполнителя и функциональные составляющие полимерной матрицы, более полно учитывает особенности формирования разных типов структур, позволяет провести их классификацию и представлять зависимости свойств в новых обобщенных параметрах, а также проектировать составы с комплексом заданных свойств. Проведена классификация АрПКМ по структурному принципу: неармированные, слабоармированные, среднеармированные, армированные, высокоармированные, предельно армированные и сверхвысокоармированные пластики. Установлены критические значения новых обобщенных и приведенных параметров переходов АрПКМ от одного типа структуры к другому согласно классификации и показано, что структурный переход сопровождается изменением технологических и эксплуатационных свойств армированных пластиков.

Ключевые слова: армированные пластики, структура, обобщенные параметры структуры, свойства **DOI:** 10.31857/S0040357121040151

введение

Для создания высокопрочных армированных в одном направлении полимерных композиционных материалов (1D-структура) в полимерные матрицы вводят волокнистые наполнители разной природы (стеклянные, углеродные, кварцевые, базальтовые, керамические, металлические, полимерные и др.) и структуры (нити, ленты, жгуты и др.) [1].

В зависимости от содержания волокон в армированных пластиках формируется 1D-структура разных типов. В работе [2] было предложено описать структурообразование с помощью геометрических обобщенных параметров – $a_{cp.f}$, $a_{cp.fl}$, $a_{cp.fl}/d$ и $a_{cp.fl}/d$, где $a_{cp.f}$ – среднестатистическое расстояние между волокнами, $a_{cp.fl}$ – среднестатистическое расстояние между волокнами в сечении по диагонали и d – диаметр волокна). Впервые была предложена модель и классификация армированных полимерных композиционных ма-

териалов (АрПКМ) по геометрическому обобщенному параметру $a_{cp,f}/d$: неармированные с $a_{cp,f}/d \ge 3.0$; слабоармированные с $3.0 \ge a_{cp,f}/d \ge 1.0$; среднеармированные с $1.0 \ge a_{cp,f}/d \ge 0.5$; армированные с $0.5 \ge a_{cp,f}/d \ge 0.25$; высокоармированные с $0.25 \ge a_{cp,f}/d \ge 0.125$; предельно армированные с $0.125 \ge a_{cp,f}/d \ge 0.0$; сверхвысокоармированные с $a_{cp,f}/d < 0.0$. Показано, что технология получения и свойства АрПКМ определяются типом и параметрами формирующихся 1D-структур.

Предложенная классификация АрПКМ по геометрическому обобщенному параметру $a_{\rm cp,f}/d$ учитывает характеристики волокнистого наполнителя, его диаметр, упаковку и содержание, однако второй компонент — полимерная матрица, которая формирует монолитный материал, не представлена в модели, что не позволяет в полной мере судить о построении полимерной матрицы и армированной структуры в целом с увеличением содержания армирующей фазы.

Рис. 1. Модель структуры АрПКМ (в сечении) в обобщенных параметрах.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Ранее нами в работах [3, 4] для описания структур дисперсно-наполненных полимерных композиционных материалов (ДНПКМ) впервые была предложена модель и ее описание в обобщенных параметрах, учитывающих построение структуры дисперсной фазы и дисперсионной среды (полимерной матрицы). В модели полимерная матрица была представлена в виде трех функциональных составляющих $\phi_p = \Theta + B + M$ (где Θ – доля полимерной матрицы для формирования прослоек между дисперсными частицами; В – доля полимерной матрицы для заполнения объема между частицами с прослойками; М – доля полимерной матрицы в граничном (межфазном) слое) [3].

Разработанный подход к формированию и описанию структур ДНПКМ [3, 4] нами впервые предлагается использовать для создания новой модели армированных в одном направлении полимерных композиционных материалов, учитывающей как размеры, упаковку и содержание армирующего наполнителя, так и функциональное построение полимерной матрицы, а также для классификации АрПКМ по новым обобщенным параметрам структуры.

Монолитность структуры АрПКМ можно представить как $\phi_f + \phi_p = 1$, где ϕ_f и $\phi_p - доля$ армирующего наполнителя и полимерной матрицы соответственно.

Полимерную матрицу в АрПКМ представим, по аналогии с ДНПКМ, в виде трех функциональных составляющих как

$$\varphi_{\rm p} = \Theta + B + M,$$

где Θ — доля полимерной фазы-матрицы для формирования прослойки между волокнами; В — доля полимерной матрицы для заполнения объема между волокнами с прослойками; М — доля полимерной матрицы в граничных (межфазных) слоях с толщиной δ.

Составляющие полимерной матрицы Θ , В и М различаются по своей функциональной роли в построении структуры и по вкладу в комплекс технологических и эксплуатационных свойств АрПКМ.

Следует учитывать, что волокно в одном направлении непрерывно и его сечение по длине постоянно, что позволяет представить модель структуры АрПКМ в виде сечения, перпендикулярного ориентации волокна.

На рис. 1 приведена модель АрПКМ (сечение по осям перпендикулярно ориентации волокон), которая включает армирующую фазу — волокно и полимерную матрицу в виде трех функциональных составляющих (Θ + B + M).

Обобщенный параметр Θ связан с толщиной формирующихся прослоек полимерной матрицы между волокнами (геометрический обобщенный параметр $a_{\rm cp.f}/d$) и определяет подвижность армированной системы, ее технологические и эксплуатационные свойства.

Ниже приведена формула для расчета обобщенного параметра Θ в АрПКМ:

$$\Theta = (\varphi_{\rm m.f} - f^2 \varphi_{\rm f}) / \varphi_{\rm m.f} \,, \tag{1}$$

где $\varphi_{m.f}$ — максимальная доля волокна в АрПКМ; φ_f — содержание волокна в АрПКМ, $f^2 = (1 + 2\delta/d)$ — коэффициент, учитывающий отношение толщины граничного слоя δ к диаметру волокна d.

В отличие от дисперсного наполнителя, плотность максимальной упаковки ($\phi_{m.f}$) жестких волокон значительно выше и составляет при кубической упаковке — 0.785 об. д., а гексагональной — 0.905 об. д. В расчетах часто принимают среднее значение упаковки волокна, равное ~0.845 об. д.

Для реальных волокнистых наполнителей в работе [2] приведены значения $\phi_{m.f}$, полученные экспериментально.

Создание монолитного АрПКМ и заполнение объема между волокнами с полимерными прослойками осуществляется с помощью доли полимерной матрицы, которая описывается обобщенным параметром В и рассчитывается как

$$B = [(1 - \varphi_{m.f}) / \varphi_{m.f}] f^2 \varphi_f.$$
 (2)

При развитой поверхности волокна учитывается также доля граничного слоя и значение обобщенного параметра М, которое рассчитывается по формуле

$$M = \left(f^2 - 1\right)\varphi_{\rm f}.\tag{3}$$

Следует отметить, что для большинства волокнистых наполнителей с диаметром волокна более ~ 10 мкм доля граничного слоя в АрПКМ не пре-

Рис. 2. Зависимость обобщенных и приведенных параметров $a_{cp,f}/d$ (a), Θ (б), Θ/B (в) и $\Theta/S_f(r)$ структуры АрПКМ от содержания армирующего волокна φ_f диаметром 5 (*I*), 10 (*2*) и 20 (*3*) мкм при кубической упаковке ($\varphi_{m,f} = 0.785$ об. д.).

вышает ~5 об. % и ею в расчетах можно пренебречь.

Для описания построения полимерной матрицы (связующего) в АрПКМ представляет несомненный интерес ввести новый приведенный структурный параметр Θ/B , который учитывает соотношение ее различных составляющих при изменении содержания армирующего волокна.

В многочисленных работах по созданию армированных пластиков и анализу их структуры практически не используется параметр — поверхность волокнистого наполнителя в единице объема АрПКМ (параметр S_f), который указывает на протяженность реальной границы раздела фаз и отражает ее участие в построении структуры.

Для учета поверхности наполнителя и ее влияния на свойства АрПКМ нами предложено ввести новый параметр *S*_f для описания армированной структуры, который при условии постоянства сечения элементарного волокна можно рассчитать как

$$S_{\rm f} = \pi \varphi_{\rm f}^2 / d\varphi_{\rm m.f} \, (\pi \varphi_{\rm f} + 1). \tag{4}$$

Новый приведенный параметр Θ/S_f для описания структуры АрПКМ позволяет учитывать одновременно как полимерную составляющую, так и поверхность волокна, а также их соотношение.

На рис. 2 представлены зависимости обобщенных и новых приведенных параметров ($a_{cp.f}/d$, Θ , Θ/B и Θ/S_f) структуры АрПКМ от содержания волокон φ_f с диаметром 5 (1), 10 (2) и 20 (3) мкм при их кубической упаковке ($\varphi_{m.f} = 0.785$ об. д.).

Представленные на рис. 2 зависимости показывают, что структурные переходы в АрПКМ при изменении содержания волокна, ранее определенные по приведенному геометрическому пара-

Рис. 3. Зависимость обобщенных и приведенных параметров Θ (а), Θ/B (б) и Θ/S_f (в) структуры АрПКМ от $a_{cp,f}/d$.

метру *a*_{ср.f}/*d* [2], хорошо коррелируют с приведенными параметрами Θ/В и Θ/*S*_f.

Линейная зависимость обобщенного параметра Θ от ϕ_f для волокон различных диаметров позволяет определять составы армированных пластиков с разной структурой с учетом зависимости $\Theta = f(a_{cp.f}/d)$.

При переходе к новым обобщающим параметрам структуры АрПКМ, учитывая их классификацию по обобщенному геометрическому параметру $a_{\rm cp.f}/d$, необходимо установить корреляционные зависимости обобщенных и приведенных параметров (Θ , Θ /B и Θ / $S_{\rm f}$) от $a_{\rm cp.f}/d$, а также определить критические точки переходов одного типа структуры в другой.

На рис. 3 приведены зависимости между обобщенным (Θ) и приведенными параметрами (Θ/B и Θ/S_f) структуры АрПКМ для волокон диаметром 10 мкм от параметра $a_{cp.f}/d$.

Представленные зависимости между обобщенными (Θ) и приведенными параметрами (Θ /В и Θ / S_f) структуры АрПКМ для волокон диаметром 10 мкм от параметра $a_{cp.f}/d$ нелинейны. Перегибы на кривых отвечают структурным переходам в АрПКМ при увеличении содержания армирующего волокна.

Установлены критические точки перехода АрПКМ из одного типа структуры в другой по новым параметрам Θ , Θ/B и Θ/S_f , которые связаны с ранее предложенными значениями по геометрическому параметру $a_{cp.f}/d = 3.0, 1.0, 0.5, 0.25, 0.125$ и 0.0, по которым была проведена классификация АрПКМ [2].

Новый подход к описанию и классификации структуры АрПКМ представляется более полным, так как учитывает не только размеры, упаковку непрерывных волокон, а также функциональное построение полимерной матрицы и площадь поверхности волокон (границу раздела фаз).

В табл. 1 приведены в качестве примера составы и значения обобщенных и приведенных параметров структуры АрПКМ ($a_{cp.f}/d$, Θ , Θ/B и Θ/S_f), рассчитанные для стеклопластиков 1D-структуры со стекловолокном марки ВМП (диаметр волокна 10 мкм, $\phi_{m.f} = 0.785$ об. д.) и эпоксидного связующего, а также представлена их классификация по структурному принципу.

В дальнейшем при описании типов структур АрПКМ не будем рассматривать неармированные и слабоармированные типы структур с параметрами $a_{cp,f}/d \ge 3.0$; $1,0 \ge \Theta \ge 0.95$ об. д.; $\Theta/B \ge 70$; $\Theta/S_f \ge 1500$ и $3.0 \ge a_{cp,f}/d \ge 1.0$; $0.95 \ge \Theta \ge 0.75$ об. д.; $70 \ge \Theta/B \ge 15$, $1500 \ge \Theta/S_f \ge 75$, так как они не имеют практического значения.

На основании полученных данных можно представить классификацию армированных материалов 1D-структуры по типам структур и значению обобщенных и приведенных параметров ($a_{cp.f}/d$, Θ , Θ/B , Θ/S_f) при кубической упаковке волокон ($\phi_{m f} = 0.785$ об. д.), приведенную в табл. 2.

В зависимости от структурной организации разные типы структур АрПКМ характеризуются разными технологическими и эксплуатационными свойствами, так как структура и ее параметры определяют свойства материалов.

Следует отметить, что зависимости физикомеханических и других свойств АрПКМ, представленные от содержания армирующего волокна, не позволяют судить о структуре пластика и ее перестройке при увеличении его содержания.

Алгоритм проектирования составов АрПКМ с заданным типом структуры, а следовательно, и с требуемым уровнем технологических, физикомеханических и деформационных свойств заклю-

Содержание волокна	Обобщенные и приведенные параметры структуры АрПКМ						
ф _f , об. д.	Θ, об. д.	В, об. д.	М, об. д.	$a_{\rm cp.f}/d$	Θ/B	Θ/S_{f}	
		Неармиро	ванные пластин	ки			
0.03	0.96	0.01	0.0	3.2	76	3000	
I		Слабоармир	ованные пласт	ики		I	
0.04	0.95	0.01	0.0	3.0	70.0	1500	
0.05	0.94	0.01	0.0	2.5	44	1300	
0.10	0.87	0.03	0.0	2.0	29	350	
ľ		Среднеармир	рованные пласт	ики		1	
0.20	0.75	0.04	0.01	1.0	15.0	75	
0.25	0.68	0.07	0.01	0.77	10.00	52	
0,30	0.62	0.08	0.02	0.60	7.50	35	
ľ		Армирова	анные пластики	1		1	
0.35	0.55	0.08	0.02	0.5	5.0	25	
0.40	0.48	0.10	0.02	0.40	4.48	18	
0.45	0.4	0.12	0.03	0.32	3.46	13	
ľ		Высокоарми	рованные пласт	гики		1	
0.50	0.35	0.12	0.03	0.25	2.5	10	
0.55	0.28	0.14	0.03	0.19	1.98	12	
0.60	0.21	0.16	0.03	0.14	1.4	7	
I		Предельно арм	ированные пла	стики		1	
0.65	0.15	0.16	0.04	0.1	1.0	3.0	
0.70	0.09	0.17	0.04	0.08	0.91	1.6	
0.75	0.02	0.19	0.04	0.06	0.56	0.6	
0.785	0.0	0.18	0.04	0.0	0.0	0.0	
I	(Сверхвысокоар	мированные пл	астики		I	
0.80	0.0	0.16	0.04	0.00	0.0	0.00	

Таблица 1. Составы и классификация армированных пластиков 1D-структуры по обобщенным и приведенным параметрам

Значение ϕ_f и состав рассчитывают по известным формулам.

Таблица 2. Обобщенная классификация армированных пластиков 1D-структуры по обобщенным и приведенным параметрам

T	Обобщенные и приведенные параметры структуры АрПКМ							
Гип структуры	$a_{\rm cp.f}/d$	Θ, об. д.	$S_{\rm f}, {\rm m}^{-1} imes 10^3$	Θ/B	$\Theta/S_{ m f}$			
Среднеармированные (СрАр)	от 1.0 до 0.5	от 0.75 до 0.55	от 1.0 до 22	от 15 до 5	от 75 до 25			
Армированные (Ар)	от 0.5 до 0.25	от 0.55 до 0.35	от 22 до 35	от 5 до 2.5	от 25 до 10			
Высокоармированные (ВАр)	от 0.25 до 0.125	от 0.35 до 0.15	от 35 до 50	от 2.5 до 1.0	от 10 до 3			
Предельно армированные (ПрАр)	от 0.125 до 0.0	от 0.15 до 0.0	от 50 до 80	от 1.0 до 0.0	от 3 до 0.0			
Сверхвысокоармированные (СВАр)	$ \phi_{\rm f} > \phi_{\rm m.f}, $ $ a_{\rm cp.f}/d \le 0.0 $	$\begin{split} \phi_{f} &> \phi_{m.f}, \\ \Theta &\leq 0.0 \end{split}$	$\phi_{\rm f} > \phi_{\rm m.f},$ $S_{\rm f}, \ge 80$	$\begin{split} \phi_{f} &> \phi_{m.f}, \\ \Theta/B &\leq 0.0 \end{split}$				

Рис. 4. Зависимость демпфирующего коэффициента АрПКМ от обобщенных и приведенных параметров $a_{cp,f}/d$ (a), Θ (б), Θ/B (в) и $\Theta/S_{f}(r)$ структуры АрПКМ.

чается в последовательном выполнении следующих операций:

— экспериментально находят значение параметра $\phi_{m,f}$ для волокнистого наполнителя с известным диаметром *d*;

— рассчитывают значение обобщенных и приведенных параметров структуры ($a_{cp.f}/d, \Theta, B, \Theta/B$ и Θ/S_f) при разном содержании волокна при условии, что $\phi_f \leq \phi_m$;

— по значениям обобщенных и приведенных параметров структуры ($a_{cp,f}/d$, Θ , Θ/B и Θ/S_f)

определяют тип структуры АрПКМ (СрАр, Ар, ВАр, ПрАр и СВАр);

– выбирают тип структуры АрПКМ и определяют содержание волокна ϕ_f в объемных единицах (об. д. или об. %), содержание полимерной матрицы (связующего) как $\phi_p = 1 - \phi_f$ и проектируют состав АрПКМ с заданным типом структуры;

 проводят пересчет содержания волокна и полимерной матрицы (связующего) с объемных (об. д. или об. %) в массовые единицы (мас. д. или мас. %).

Рис. 5. Зависимость модуля сдвига G_{xx} для однонаправленного стеклопластика от значений обобщенных параметров $a_{cp.f}/d$ (a), Θ (б), Θ/B (в) и Θ/S_f (г).

Для доказательства корректности предлагаемого подхода к описанию структуры и свойств АрПКМ и их классификации ниже приведены экспериментальные данные по основным свойствам армированных пластиков (1D-структура) в зависимости от содержания волокна, которые ранее были опубликованы в работах [2–5]. Результаты работ и зависимости были пересчитаны и перестроены в терминах обобщенных и приведенных параметров для того чтобы доказать, что разные типы структур АрПКМ, согласно предлагаемой классификации, обладают различными характеристиками и структура действительно определяет свойства материалов.

Используя данные работы [2] по демпфирующему коэффициенту K_d стеклопластика, можно показать, что переход от СлАр- к СрАр-структуре АрПКМ происходит при содержании волокна ~0.20 об. д. На рис. 4 представлены зависимости демпфирующего коэффициента $K_{\rm d}$ от значений обобщенных и приведенных параметров $a_{\rm cp.f}/d$, Θ , Θ/B и $\Theta/S_{\rm f}$.

На зависимости $K_d = f(\Theta)$ четко прослеживается переход структуры стеклопластиков от СлАр к СрАр при соответствующих значениях обобщенного и приведенных параметров, что хорошо коррелирует с данными табл. 1 и значениями параметров для классификации АрПКМ по типам структур.

Переход структуры из СрАр в АР и АР в ВАр можно проследить, используя данные работы [4] по зависимости модуля упругости E_{xy} перпендикулярно ориентации волокна и модуля сдвига G_{xx} для однонаправленного стеклопластика от содержания армирующего стекловолокна.

На рис. 5 представлены зависимости модуля сдвига G_{xx} для однонаправленного стеклопласти-

Рис. 6. Зависимость модуля упругости E_{xy} при нагружении поперек волокон однонаправленного стеклопластика от обобщенных и приведенных параметров $a_{cp,f}/d$ (а), Θ (б), Θ/B (в) и Θ/S_f (г) структуры АРПКМ.

ка от значений обобщенных и приведенных параметров $a_{\rm cp.f}/d, \Theta, \Theta/B$ и $\Theta/S_{\rm f}$.

На зависимостях модуля сдвига $G_{\rm xx}$ для однонаправленного стеклопластика, представленных на рис. 5, отражены характерные точки, которые отвечают за переход системы из СрАр в АР ($a_{\rm cp.f}/d \approx$ $\approx 0.5, \Theta \approx 0.55 \Theta/B \approx 5$ и $\Theta/S_{\rm f} \approx 25$).

На рис. 6 представлены зависимости модуля упругости E_{xy} для однонаправленного стеклопластика от значений обобщенных и приведенных параметров $a_{cp,f}/d$, Θ , Θ/B и Θ/S_{f} .

На зависимости модуля упругости при нагружении поперек волокон однонаправленного стеклопластика отражены характерные точки, которые отвечают за переход системы из AP в BAp $(a_{\rm cp.f}/d \approx 0.25, \Theta/B \approx 2.5 \text{ и } \Theta/S_{\rm f} \approx 10)$, что согласуется с данными, представленными в работе [2].

Зависимости модуля сдвига АрПКМ G_{xx} , как и в случае с модулем упругости E_{xy} , отражают переходы одного типа структуры в другой при соответствующих параметрах $a_{cp.f}/d$, Θ , Θ/B и Θ/S_{f} .

В области высоких содержаний волокна (более 50 об. %) в АрПКМ совместная работа полимерной матрицы и волокна в основном определяется соотношением их деформационных характеристик. В связи с этим структурный переход АрПКМ от ВАр к ПрАр можно проследить на зависимостях деформационных характеристик.

Puc. 7. Зависимость $\varepsilon_{xy,p}/\varepsilon_{xy,f}$ в АрПКМ от значений обобщенных параметров $a_{cp,f}/d$ (a), Θ (б), Θ/В (в) и Θ/S_f(r).

На рис. 7 приведены зависимости отношения деформации в полимерной матрице к деформации в волокне ($\varepsilon_{xy.p}/\varepsilon_{xy.f}$), вызванной растяжением вдоль оси *у* [2, 5], от значений обобщенных параметров $a_{cp.f}/d$ (а), Θ (б), Θ/B (в) и Θ/S_f (г).

Они имеют четкий перегиб в области значений параметров $a_{\rm cp.f}/d = 0.25$, $\Theta = 0.35$ об. д. и $\Theta/S_{\rm f} = 10$, отвечающим переходу системы из среднеармированной в высокоармированную.

На рис. 8 представлены зависимости отношения деформации полимерной матрицы [2, 5] к деформации армированного композита при разрыве ($\gamma_{xy.p}/\gamma_{xy.cm}$) от обобщенных и приведенных параметров $a_{cp.f}/d$ (а), Θ (б), Θ/B (в) и Θ/S_f (г).

На представленных зависимостях наблюдаются характерные точки, соответствующие значениям обобщенных и приведенных параметров $a_{\rm cp.f}/d \approx 0.1; \Theta \approx 0.15$ об. д.; $\Theta/B \approx 1$ и $\Theta/S_{\rm f} \approx 3$, которые отражают переход структуры АрПКМ от ВАр к ПрАр.

Следует отметить, что при переходе АрПКМ от высокоармированных к предельно армированным существенно ухудшается их переработка и возникают трудности по выбору полимерной матрицы с соответствующими деформационными характеристиками.

Наибольший интерес представляют АрПКМ с максимальной прочностью и модулем упругости.

На рис. 9 приведены зависимости разрушающего напряжения при растяжении (σ_p) однонаправленного стеклопластика на основе эпоксидианового олигомера при использовании жгута марки ЖС-24/4 (кривая *I*) и первичной нити

Рис. 8. Зависимость отношения деформации при разрыве полимерной матрицы к деформации АрПКМ $\gamma_{xy.p}/\gamma_{xy.cm}$ от обобщенного и приведенных параметров $a_{cp.f}/d$ (a), Θ (б), Θ/B (в) и Θ/S_f (г).

(кривая 2) от обобщенных параметров $a_{cp,f}/d$ (a), Θ (б), Θ/B (в) и Θ/S_f (г).

Как видно из представленных данных, максимальная прочность соответствует структуре АрПКМ ПрАр при значениях обобщенных и приведенных параметров $a_{cp.f}/d \approx 0.1$; $\Theta \approx 0.15$ об. д.; $\Theta/B \approx 1.0$ и $\Theta/S_f \approx 3$.

Таким образом, используя алгоритм, можно проектировать структуру и состав АрПКМ с максимальной прочностью с использованием реальных волокнистых наполнителей.

Различия в типах и параметрах структуры АрПКМ обусловливают разные технологические и эксплуатационные свойства, что существенно влияет на выбор метода их переработки в изделия.

На основании анализа многочисленных работ [2–6], опыта в области переработки АрПКМ и, используя предложенную классификацию по структурному принципу и значениям обобщенного и приведенных параметров структуры, можно рекомендовать следующие методы формования изделий:

— метод контактного формования — для СрАр с $1.0 \ge a_{cp,f} \ge 0.5$; $0.75 \ge \Theta \ge 0.55$ об. д.; $15 \ge \Theta/B \ge 5$; $75 \ge \Theta/S_f \ge 25$;

Рис. 9. Зависимость разрушающего напряжения при растяжении σ_p однонаправленного эпоксидного стеклопластика от обобщенного и приведенных параметров $a_{cp.f}/d$ (а), Θ (б), Θ/B (в) и Θ/S_f (г): 1 – стеклопластик на основе жгута ЖС-24/4; 2 – стеклопластик на основе первичной нити.

— контактное формование с вакуумированием, пултрузия, намотка — для Ap с $0.5 \ge a_{cp.f} \ge 0.25$; $0.75 \ge \Theta \ge 0.35$ об. д.; $5 \ge \Theta/B \ge 2.5$; $25 \ge \Theta/S_f \ge 10$;

– формование в автоклавах, пултрузия, намотка – для ВАр с $0.25 \ge a_{cp,f} \ge 0.1$; $0.35 \ge \Theta \ge 0.15$ об. д.; $2.5 \ge \Theta/B \ge 1.0$; $10 \ge \Theta/S_f \ge 3$;

— прессование, намотка, формование в гидроклавах и пресс-камерах — для ПрАр с $0.1 \ge a_{cp,f} \ge 0.0$; $15 \ge \Theta \ge 0$ об. д.; $1.0 \ge \Theta/B \ge 0$; $3 \ge \Theta/S_f \ge 0$ и СВАр с $\phi_f \ge \phi_{m,f}$; $a_{cp,f} \le 0$; $\Theta \le 0$ об. д.; $\Theta/B \le 0$ и $\Theta/S_f \le 0$. На основании представленных экспериментальных данных, а также анализа многочисленных литературных источников, можно заключить, что переходы структуры АрПКМ из СрАр в АР, АР в ВАр и ВАр в ПрАр хорошо описываются в терминах новых обобщенных и приведенных параметров.

ЗАКЛЮЧЕНИЕ

Новые обобщенные и приведенные параметры, модель структуры и классификация АрПКМ (1D-структура) по структурному принципу пол-

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 55 № 4 2021

ностью отражают процессы структурообразования и изменения свойств с увеличением содержания армирующего наполнителя, что подтверждается экспериментальными данными и технологией переработки армированных пластиков в изделия различными методами.

Полученные данные позволяют по предлагаемому алгоритму проектировать составы АрПКМ с заданной структурной организацией и требуемым уровнем технологических и эксплуатационных свойств, а также рекомендовать методы их переработки в изделия.

ОБОЗНАЧЕНИЯ

- *a*_{cp.f} среднестатистическое расстояние между волокнами, мкм
- *a*_{cp.fl} среднестатистическое расстояние между волокнами в сечении по диагонали, мкм
- *d* диаметр волокна, мкм
- *E*_{ху} модуль упругости перпендикулярно ориентации волокна для однонаправленного стеклопластика, ГПа
- f² коэффициент, учитывающий отношение толщины граничного слоя δ к диаметру волокна d
- *G*_{xx} модуль сдвига для однонаправленного стеклопластика, ГПа
- *K*_d демпфирующий коэффициент АрПКМ, %
- S_f поверхность волокнистого наполнителя в единице объема АрПКМ, м
- В доля полимерной матрицы для заполнения объема между волокнами с прослойками, об. д.
- ү_{ху.ст} показатель деформации АрПКМ, %
- γ_{xy.p} показатель деформации при разрыве полимерной матрицы в АрПКМ, %

- $\epsilon_{xy,f}$ показатель деформации в волокне растяжением вдоль оси, %
- ε_{ху.р} показатель деформации в полимерной матрице, вызванной растяжением вдоль оси *y*, %
- Θ доля полимерной фазы-матрицы для формирования прослойки между волокнами, об. д.
- M доля полимерной матрицы в граничных (межфазных) слоях с толщиной δ, об. д.
- σ_p разрушающее напряжение при растяжении однонаправленного эпоксидного стеклопластика, МПа
- ϕ_{f} содержание волокна в АрПКМ, об. д.
- $\phi_{m.f}$ максимальная доля волокна в АрПКМ, об. д.

φ_p содержание полимера в АрПКМ, об. д

СПИСОК ЛИТЕРАТУРЫ

- 1. *Головкин Г.С., Бунаков В.А.* Армированные пластики. М.: МАИ, 1997.
- 2. Симонов-Емельянов И.Д. Армированные пластики и их классификация по структурному принципу и перерабатываемости // Пласт. массы. 2016. № 5-6. С. 3.
- 3. *Симонов-Емельянов И.Д.* Построение структур в дисперсно-наполненных полимерах и свойства композиционных материалов // Пласт. массы. 2015. № 9–10. С. 29.
- 4. *Симонов-Емельянов И.Д.* Параметры решетки и структуры дисперсно-наполненных полимерных композиционных материалов с регулируемым комплексом свойств // Констр. композ. матер. 2019. № 3. С. 37.
- 5. *Кортен Х.Т.* Разрушение армированных пластиков. М.: Химия, 1967.
- Полимерные композиционные материалы. Свойства. Структура. Технологии / Под ред. Берлина А.А. СПб.: Профессия, 2008.