УДК 532.517.2

УДЕРЖИВАЮЩАЯ СПОСОБНОСТЬ ПО ЖИДКОСТИ И ПРОДОЛЬНОЕ ПЕРЕМЕШИВАНИЕ В СМЕШАННОМ СЛОЕ ГИДРОФОБНОГО КАТАЛИЗАТОРА И ГИДРОФИЛЬНОЙ НАСАДКИ

© 2021 г. А. Н. Букин^{*a*, *}, В. С. Мосеева^{*a*}, А. В. Овчаров^{*a*}, С. А. Марунич^{*a*}, Ю. С. Пак^{*a*}, М. Б. Розенкевич^{*a*}

^аРоссийский химико-технологический университет им. Д.И. Менделеева, Москва, Россия

*e-mail: aleks.bukin88@gmail.com Поступила в редакцию 07.08.2020 г. После доработки 15.02.2021 г. Принята к публикации 23.03.2021 г.

Исследованы особенности динамики движения жидкости в смешанном слое гидрофобного катализатора РХТУ-3 СМ и гидрофильной насадки СПН 3 × 3 × 0.2 мм. Показано, что исходное состояние смешанного слоя оказывает существенное влияние на количество удерживаемой воды и равномерность движения потока жидкости. Если колонна была предварительно затоплена, то увеличение доли катализатора приводит к линейному росту удерживающей способности слоя и снижению числа Боденштейна. Для сухого заполнения колонны такой корреляции не обнаружено.

Ключевые слова: продольное перемешивание, импульсный ввод трассера, гидродинамика, динамическая задержка, статическая задержка

DOI: 10.31857/S0040357121040035

введение

Реакторы со смешанным слоем катализатора и насадки нашли широкое применение в химической промышленности. Особенностью реализации таких процессов являются гидродинамические трудности в организации пленочного движения жидкости по поверхности насадочных элементов. Чередование насадочных и каталитических слоев приводит к пульсациям потока жидкости и его струйному типу движения. В таких условиях моделирование процесса массообмена является сложной залачей и требует учета следующих переменных: задержка разделительной колонны по жидкой фазе (ΔH), эффективность смачивания материала насадки и катализатора, линейная скорость движения жидкости (w), характерный размер контактных элементов (d_{eq}) , плотность орошения (L_{va}) и т.д. Подробный обзор литературы по данному типу реакторов представлен в [1].

Принято выделять два основных подхода к описанию гидродинамических процессов в колоннах со смешанным слоем катализатора и насадки. Первый основан на получении эмпирических зависимостей путем обработки результатов эксперимента по методу анализа размерностей. Для масштабирования полученных закономерностей необходимо учитывать особенности постановки экспериментов и физический смысл выбранных для экстраполяции переменных. Например, если рассматривать равномерность потоков газа или жидкости в пределах единичного элемента катализатора или насадки, то это может привести к серьезным ошибкам в оценках неравномерности движения потоков во всем насадочно-каталитическом слое.

Второй подход основан на рассмотрении движения потоков газа и жидкости через насадочнокаталитический слой как стохастического процесса. Флуктуации потока по сечению и высоте аппарата возникают в результате случайного распределения. В качестве параметров для этой модели берутся усредненные по всему объему колонны значения [2].

Исследование гидродинамического режима в разделительных колоннах основано на интерпретации экспериментальных данных и их сравнении с разработанными моделями. Например, методами компьютерной рентгеновской томографии определяют локальные изменения порозности насадочного слоя и количество удерживаемой жидкости [3, 4]. Сравнение результатов массообменных экспериментов позволяет сделать вывод о величине активной поверхности контакта фаз [5] или об эффективности смачивания контактных элементов. Наиболее распространенным методом исследо-

Параметр	Значение	Ед. изм.	
	Насадка		
Материал	Проволока из легированной стали		
Стадии подготовки	 Отжиг на воздухе при температуре 700°С; Травление в растворе HCl + HNO₃ 		
ρ	7740	кг/м ³	
δ	2×10^{-3}	М	
ε _{pack}	0.907	M^3/M^3	
a _{spec}	1863	M^2/M^3	
$d_{ m eq}$	1.95×10^{-3}	М	
	Катализатор		
Материал	СДВБ		
d	$(0.8-1.2) \times 10^{-3}$ M		

Таблица 1. Параметры контактных элементов

вания является анализ кривых отклика на внесенное возмущение. В зависимости от способа внесения возмущения подбирается математическая модель, которая дает наиболее близкое совпадение с экспериментальными данными [6].

В рамках настоящей работы исследовался гидродинамический режим в колоннах с гидрофобным катализатором и гидрофильной насадкой. Наличие гидрофобного катализатора создает дополнительное возмущение потоку по сравнению со случаем смешанного слоя, но с гидрофильным катализатором. Такие колонны применяются, например, в процессе разделения изотопов водорода (депротизация, детритизация) методом химического изотопного обмена (ХИО) в системе вода-водород. Гидрофильная насадка необходима для осуществления процесса фазового изотопного обмена (ФИО) между жидкой водой и ее парами, а гидрофобный катализатор – для каталитического изотопного обмена (КИО) между парами воды и водородом. Отметим, что применение гидрофильного катализатора в этом процессе недопустимо, так как жидкая вода блокирует для газообразного водорода поверхность катализатора. Увеличение доли катализатора в колонне приводит к снижению пропускной способности, вызывает существенные неравномерности в плотности орошения насадочного слоя. Разбавление катализатора насадкой, в свою очередь, снижает величину достигаемой степени конверсии. В настоящей работе для исследования гидродинамического режима был выбран нестационарный ввод трассера и обработка кривых отклика по дисперсионной модели.

МЕТОДИЧЕСКАЯ ЧАСТЬ

Гидродинамические исследования были проведены на лабораторной колонне, которая представляет собой цилиндрическую трубу внутренним диаметром d = 0.046 м. Колонну послойно заполняли гидрофильной спирально-призматической насадкой размером 3 × 3 × 0.2 мм и гидрофобным платиновым катализатором РХТУ-3 СМ (носитель СДВБ – сополимер стирола и дивинил бензола – с диаметром гранулы 0.8–1.2 мм) в заданном соотношении. Геометрические характеристики контактных элементов представлены в табл. 1. Загрузку осуществляли таким образом, чтобы при любом соотношении между катализатором и насадкой высота слоя катализатора не превышала 2 мм. Суммарная высота загрузки во всех случаях была одинаковой и составила h = 0.4 м. Свободный объем насадочно-каталитического слоя єсої определялся весовым методом по количеству воды, необходимой для полного затопления исследуемой загрузки.

Перед началом эксперимента проводили подготовку колонны по двум методикам: 1 - смешанный слой перед началом эксперимента полностью высушен; <math>2 - смешанный слой затоплен ивыдержан в таком состоянии 30 мин. Далее в затопленную колонну одновременно подавали поток орошения <math>L и дренировали воду. После установления (не менее 30 мин) равенства расхода жидкости на входе и выходе из колонны в поток жидкости перед входом в колонну производился импульсный ввод трассера (0.5 мл 0.1 М раствора NaCl). Кривая отклика на внесенное возмущение определялась сразу на выходе из колонны с помощью проточной кондуктометрической ячейки (RCL-метра). Способ постановки эксперимента

Рис. 1. Методика проведения эксперимента: (а) – схема ввода метки; (б) – экспериментальная (*1*) и теоретическая (*2*) кривые отклика для предварительно затопленного слоя насадки.

соответствует закрыто-закрытой схеме (33-модель), когда невозможна обратная диффузия трассера в колонну в точках входа и выхода жидкости из колонны. Схема проведения эксперимента и типичный вид кривой отклика представлены на рис. 1.

Для обработки экспериментальных данных была выбрана классическая модель продольного перемешивания: линейная скорость жидкой фазы по сечению насадочно-каталитического слоя принимается постоянной, градиентом концентраций трассера в осевом направлении пренебрегаем, а любые виды возвратного движения потока в продольном направлении (молекулярная диффузия, турбулентные пульсации, застойные или байпасные зоны) объединяются понятием коэффициента продольного перемешивания D_{ax} (м²/с).

По экспериментальной кривой отклика системы на внесенное возмущение определялась функция распределения времени пребывания трассера в реакторе E(t):

$$E(t) = \frac{c(t)}{\int_{0}^{\infty} c(t) dt}.$$
 (1)

Дальнейшая обработка функции E(t) проводилась по методу моментов [6, 7]. Первый момент функции распределения является математическим ожиданием и характеризует среднее время пребывания частиц трассера в реакторе τ (с):

$$\tau = \int_{0}^{\infty} E(t) dt .$$
 (2)

Отсюда рассчитывается линейная скорость движения потока жидкости *w* (м/с):

$$w = \frac{h}{\tau}, \qquad (3)$$

а также суммарная задержка насадочно-каталитического аппарата ΔH_{sum} (см³):

$$\Delta H_{\rm sum} = L\tau. \tag{4}$$

Суммарная задержка представляет собой то количество жидкости, которое находится в колонне в данный момент, и подразделяется на динамическую и статическую задержки:

$$\Delta H_{\rm sum} = \Delta H_{\rm dyn} + \Delta H_{\rm stat}.$$
 (5)

Динамическая задержка определялась экспериментально по методу отсечек. Взвешивается то количество воды, которое покидает колонну после прекращения подачи потоков газа и жидкости. Статическая задержка рассчитывается как разность суммарной и динамической задержек.

Второй момент функции распределения σ^2 является дисперсией случайной величины и характеризует степень размытия кривой отклика:

$$\sigma^{2} = \int_{0}^{\infty} (t - \tau)^{2} \mathbf{E}(t) dt.$$
 (6)

Постановка эксперимента на колонне соответствует модели процесса с граничными условиями для 33-моделей. Для данного случая значение коэффициента Во может быть рассчитано по уравнению

$$\frac{\sigma^2}{\tau^2} = \frac{2}{Bo} - \frac{2}{Bo^2} \left(1 - e^{-Bo} \right), \tag{7}$$

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 55 № 5 2021

$\label{eq:phi} \begin{split} \phi_{cat} & \times \ 10^{-2}, \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$w \times 10^{-3},$ M/c	$\frac{\Delta H_{\rm stat} \times 10^{-2}}{{\rm m}^3/{\rm m}^3},$	$\frac{\Delta H_{\rm dyn} \times 10^{-2}}{{\rm M}^3/{\rm M}^3},$	$\frac{\Delta H_{\rm sum} \times 10^{-2}}{{\rm m}^3/{\rm m}^3},$	τ, c	$\sigma^{2} \times 10^{4},$ c^{2}	<i>s,</i> c	COV	$D_{\rm ax} \times 10^{-5},$ M^2/c	Во
			Колонна пр	оедварительно	затопл	ена				
0	0.59	5.1	4.9	10.0	680	3.4	8.5	0.27	0.67	35
7.0	0.44	6.6	6.1	12.8	912	10.4	19.1	0.35	0.69	25.3
10.3	0.42	5.9	6.1	12.0	942	10.9	18.1	0.35	0.89	19.1
22.3	0.45	4.7	8.9	13.7	899	19.0	26.2	0.49	0.99	17.9
Колонна предварительно высушена										
0	1.80	2.8	0.8	3.6	223	1.1	11.3	0.48	9.45	7.6
7.0	1.73	2.4	1.3	3.7	231	1.4	11.6	0.51	10.70	6.5
10.3	1.78	2.4	0.8	3.2	225	1.6	12.5	0.56	13.80	5.15
22.3	1.83	1.9	1.4	3.3	218	1.3	11.6	0.53	12.30	5.94

Таблица 2. Экспериментальные данные по зависимости гидродинамики смачивания насадочно-каталитического слоя от его исходного состояния

Критериальное число Во характеризует отношение скорости обратного перемешивания потока (D_{ax}) к скорости движения потока (*w*):

$$Bo = \frac{wh}{D_{ax}}.$$
 (8)

На практике выбор расчетной модели часто зависит не от способа постановки эксперимента, а определяется точностью совпадения экспериментальной и расчетной кривых отклика. Ниже представлено выражение для обработки кривой отклика для закрыто-открытых систем (ЗО) [8]:

$$E(\theta) = \sqrt{\frac{Bo}{\pi\theta}} \exp\left(-\frac{Bo}{4\theta}(1-\theta)^{2}\right) - \frac{Bo}{2} \exp(Bo) \operatorname{erfc}\left(\frac{1+\theta}{2}\sqrt{\frac{Bo}{\theta}}\right).$$
(9)

Применимость уравнения (7) или (9) для расчета критерия Боденштейна определялась путем сравнения экспериментальных и модельных зависимостей по методу наименьших квадратов. При обработке экспериментальных данных было получено, что для описания процесса в предварительно затопленной колонне лучше подходит ЗОмодель (уравнение (9)), а для описания процесса в предварительно высушенной колонне необходимо использовать ЗЗ-модель (уравнение (7)). На рис. 1 представлено сравнение экспериментальных данных на предварительно затопленной колонне и расчетных значений по ЗО-модели.

Для определения степени асимметричности кривой отклика относительно среднего значения рассчитывается третий момент:

$$s^{3} = \frac{1}{\sigma^{3/2}} \int_{0}^{\infty} (t - \tau)^{3} \mathbf{E}(t) dt.$$
 (10)

Если величина $s^3 > 0$, тогда кривая отклика смещена вправо, т.е. основное количество трассера выходит из колонны дольше, чем среднее время пребывания потока в ней. Если $s^3 < 0$, тогда в аппарате наблюдаются байпасные зоны и поток выходит, не взаимодействуя с основным количеством задержки.

Погрешность в определении гидродинамических параметров процесса зависит от начального состояния насадочно-каталитического слоя. Например, при предварительном затоплении колонны (режим 1) на поверхности насалки формируется пленка жидкости, которая в дальнейшем поддерживается потоком питания. При предварительном осушении колонны (режим 2) и дальнейшей подаче потока питания на поверхности насадки случайным образом формируются каналы для движения жидкости. Проведение серии параллельных измерений (по 8 измерений для каждого режима запуска) показало, что погрешность определения гидродинамических параметров при режиме 1 запуска колонны не превышает 5.6%, а для режима 2 - 18.1%.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Результаты экспериментов по влиянию параметров упаковки насадочно-каталитических колонн и их исходного состояния на гидродинамический режим представлены в табл. 2. Все эксперименты проведены без потока газа, т.е. рассматривался только однофазный случай. Удельная плотность орошения поддерживалась в диапазоне $L_{yg} = 220 \pm 30 \text{ кг/(м² ч)}.$

Из представленных в табл. 2 данных видно, что режим предварительной подготовки насадочнокаталитического слоя оказывает существенное влияние на величину коэффициента продольного перемешивания, число Во и задержку по жидкой фазе. Для случая с предварительным затоплением колонны увеличение доли катализатора ϕ_{cat} приводит к пропорциональному росту задержки по жидкой фазе. При этом статическая задержка практически не изменяется и составляет 0.055 м³/м³, а прирост суммарной задержки в основном обусловлен увеличением ее динамической составляющей (рис. 2):

$$\Delta H_{\rm dvn} = 0.181\varphi_{\rm cat} + 0.047. \tag{11}$$

С нашей точки зрения, полученные зависимости объясняются тем, что чередование гидрофобных и гидрофильных слоев в колонне приводит к накоплению жидкости на верхней границе слоя катализатор—насадка. Чем выше слой катализатора или больше его слоев, тем больше количество удерживаемой воды. Размытие пика (увеличение второго момента σ^2) и смещение центра масс кривой отклика в сторону больших значений (увеличение третьего момента *s*) свидетельствуют о том, что дополнительно накопленная вода является неподвижной или движется со скоростью заметно меньшей, чем скорость движения основного потока.

Если насадка перед экспериментом высушена, то при используемом потоке орошения колонны L не наблюдается полного смачивания насадки. Происходит переход из области пленочного течения в область струйного. В этих условиях, как видно из табл. 2, изменение количества катализатора практически не оказывает влияния на режим течения. В сравнении с режимом затопления насадки задержка ΔH_{sum} приблизительно в 3 раза ниже, а величина D_{ax} примерно в 15 раз выше. Не вызывает сомнения, что такой способ запуска окажет существенное влияние на массообменные характеристики осуществляемого в колонне процесса: уменьшатся поверхность контакта фаз и движущая сила процесса массообмена.

Если рассмотреть насадочно-каталитический слой как неподвижный смеситель воды и раствора NaCl, то степень гомогенизации суммарного потока жидкости может служить количественной оценкой равномерности движения. Например, в работе [9] такой характеристикой является коэффициент вариации:

$$COV = \frac{\sigma}{\tau}.$$
 (12)

Полное смешение потоков характеризуется величиной COV = 0, тогда как COV = 1 является признаком раздельного движения потоков. Из представленных в табл. 2 данных видно, что увеличение доли катализатора в слое предварительно затопленной насадки приводит к сегрегации потоков. Отдельные струйки жидкости меньше взаимодействуют друг с другом, и эффективность смешения всего потока снижается. Сухая насадка

Рис. 2. Зависимость динамической задержки от объемной доли катализатора.

обладает существенно меньшей эффективностью смешения, и добавление катализатора не приводит к заметному перераспределению потоков.

Для получения эмпирических описания полученных закономерностей рассмотрим случай предварительного затопления насадочно-каталитической колонны. Число Во зависит [10] от линейной скорости движения жидкой фазы w [м/с], характерного размера насадочного элемента d [м], плотности ρ [кг/м³] и вязкости жидкости μ [кг/(м с)], а также свободного объема колонны ε_{col} [м³/м³]:

$$Bo \approx Cwd\rho\mu\varepsilon_{col}.$$
 (13)

Характерный размер d_{eq} рассчитывали из предположения, что насадочно-каталитический слой образует единый регулярный пространственный каркас:

$$d_{\rm eq} = \frac{4\varepsilon_{\rm col}}{a_{\rm spec}} = 4 \frac{\varepsilon_{\rm pack} - \varphi_{\rm cat}}{a_{\rm spec}}.$$
 (14)

Далее по методу анализа размерностей получаем следующее расчетное выражение, учитывающее зависимость числа Боденштейна от объемной доли катализатора ϕ_{cat} :

$$Bo = A \left(\frac{w d_{eq} \rho}{\mu}\right)^{a} \varepsilon_{col}^{b} =$$

$$= A Re^{a} \varepsilon_{col}^{b} = A Re^{a} (\varepsilon_{pack} - \varphi_{cat})^{b}.$$
(15)

Аналогичное уравнение получено в [9]:

$$Bo = A Re^{a} (d_{eq} a_{spec})^{b}.$$
(16)

Коэффициенты *A*, *a* и *b* в уравнении (14) находим путем аппроксимации экспериментальных данных по методу наименьших квадратов:

$$Bo = 32.46 \operatorname{Re}^{0.978} \varepsilon^{0.527}.$$
 (17)

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 55 № 5 2021

Рис. 3. Сравнение экспериментальных и расчетных значений числа Боденштейна.

Сравнение экспериментальных и расчетных значений числа Во представлено на рис. 3.

ЗАКЛЮЧЕНИЕ

Степень разделения изотопов водорода методом ХИО в системе вода-водород является интегральной величиной и определяется сочетанием лвух сталий, олновременно протекающих в разлелительной колонне: фазового обмена и каталитического. В рамках настоящей работы исследовался однофазный случай (без потока газа) движения жидкости через колонну с послойной загрузкой гидрофобного катализатора РХТУ-3СМ и гидрофильной насадки СПН 3 × 3 × 0.2 мм. Из-за ограничения по линейной скорости газа, обусловленного низкой пропускной способностью таких загрузок, процесс проводят при экстремально низких нагрузках по жидкости (удельная плотность орошения в экспериментах составила $L_{\rm vn} = 220 \pm 30$ кг/(м² ч)). Полное смачивание насадки происходит при значительно больших нагрузках [10–12]. Данные по изучению структуры потоков на насадке СПН в литературе практически отсутствуют. В [13] приводится только ориентировочный порядок значений D_{ах} в жидкой фазе $(10^{-4}-10^{-5} \text{ м}^2/\text{c})$ для противоточных колонн, заполненных мелкой спирально-призматической и кольцевой насадками. Влияние стадии ФИО на суммарный процесс ХИО делает критическим важным режим работы колонны, при котором достигается максимальное смачивание насалки.

Данные по величине удерживающей способности и коэффициента продольного перемешивания показали существенное различие в гидродинамике движения жидкости в зависимости от способа подготовки разделительной колонны. Если колонна была предварительно высушена, то потока орошения не хватает для равномерного орошения поверхности насадки, а гидрофобный катализатор не оказывает влияния на гидродинамический режим. При предварительном затоплении колонны потока питания хватает для поддержания образованной пленки жидкости на поверхности насадки. Увеличение объемной доли катализатора ϕ_{cat} в колонне в данном случае приводит к линейному росту задержки по жидкой фазе и увеличению эффективности продольного перемешивания. Полученные значения необходимо учитывать при эксплуатации разделительных колонн со смешанным слоем катализатора и насадки.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-08-00452 А.

ОБОЗНАЧЕНИЯ

а	поверхность, M^2/M^3
С	концентрация, моль/л
D _{ax}	коэффициент продольного перемешивания,
	M^2/c
d	диаметр, м
ΔH	задержка, м ³ /м ³
h	высота насадочно-каталитической части, м
L	поток воды, кг/ч
$L_{\rm yg}$	удельный поток воды, кг/(м ² ч)
S	третий момент, с
t	время, с
w	линейная скорость, м/с
δ	толщина проволоки, м
8	свободный объем, м ³ /м ³
θ	отношение времени t к первому моменту τ
λ	мольное соотношение потоков;
μ	вязкость жидкости, кг/(м с)
ρ	плотность, кг/м ³
σ^2	второй момент, с ²
τ	первый момент, с
φ	доля катализатора, м ³ /м ³
	число Боденштейна
COV	коэффициент вариации

ИНДЕКСЫ

calc, exp	расчетный и экспериментальный соот-
	ветственно
cat	катализатор

col	колонна
eq	эквивалентный
pack	насадка
spec	удельный
sum, dyn, stat	суммарная, динамическая, статиче-
	ская задержки соответственно

СПИСОК ЛИТЕРАТУРЫ

- Mederos F.S., Ancheyta J., Chen J. Review on criteria to ensure ideal behaviors in trickle-bed reactors // Appl. Catal., A. 2009. V. 355. P. 1.
- Crine M., Marehot P., L'Homme G. Statistical Hydrodynamics in Trickle Flow Columns // AIChE J. 1992. V. 38. P. 136.
- Nguyen N.L., Reimert R., Hardy E.H. Application of Magnetic Resonance Imaging (MRI) to Determine the Influence of Fluid Dynamics on Desulfurization in Bench Scale Reactors // Chem. Eng. Technol. 2006. V. 29. P. 820.
- Toye D., Marchot P., Crine M. Measurements of Void Fraction and Liquid Hold-Up in Packed Columns Using X-Ray Computed Tomography // Chem. Eng. Process. 1998. V. 37. P. 511.

- 5. *Cortes Garcia G.E., Van Eeten K.M.P., De Beer M.M.* On the Bias in the Danckwerts' Plot Method for the Determination of the Gas–Liquid Mass-Transfer Coefficient and Interfacial Area // Fluids. 2018. V. 3. P. 18.
- Levenspiel O. Tracer Technology // J. Chem. Inf. Model. 2019. P. 1689.
- 7. *Fogler H.S.* Elements of Chemical Reaction Engineering. New York: Prentice Hall, 2006.
- Swaaij W.P.M., Charpentier J.C., Villermaux J. Residence time distribution in the liquid phase of TF in packed beds // Chem. Eng. Sci. 1969. V. 24. P. 1083.
- 9. *Thakur R.K., Vial C., Nigam K.D.P., Nauman E.B., Djelveh G.* Static mixers in the process industries a review // Chem. Eng. Res. Des. 2003. V. 81. P. 787.
- Macías-Salinas R., Fair J.R. Axial mixing in modern packings, gas and liquid phases: I. Single-phase flow // AIChE J. 1999. V. 45. P. 222.
- Grosser K., Carbonell R.G., Sundaresan S. Onset of Pulsing in Two-Phase Cocurrent Downflow through a Packed Bed // AIChE J. 1988. V. 34. P. 1850.
- Dankworth D.C., Kevrekidis I.G., Sundaresan S. Dynamics of Pulsing Flow in Trickle Beds // AIChE J. 1990. V. 36. P. 605.
- 13. Andreev B.M., Magomedbekov E.P., Raitman A.A., Rozenkevich M.B., Sakharovsky Yu.A., Khoroshilov A.V. Separation of Isotopes of Biogenic Elements in Two-Phase Systems. Amsterdam: Elsevier, 2007.