УДК 66.048.623

РЕКТИФИКАЦИОННОЕ РАЗДЕЛЕНИЕ ПРОМЫШЛЕННОЙ СМЕСИ ИЗОБУТИЛАЦЕТАТ–УКСУСНАЯ КИСЛОТА–ИЗОАМИЛАЦЕТАТ

© 2023 г. А. В. Полковниченко^{*a*,} *, Т. В. Челюскина^{*b*,} **

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия ^bМИРЭА – Российский технологический университет (Институт тонких химических технологий имени М.В. Ломоносова), Москва, Россия *e-mail: anzakhlevniy@rambler.ru **e-mail: chelyuskina@mirea.ru Поступила в редакцию 15.05.2023 г. После доработки 01.06.2023 г. Принята к публикации 06.06.2023 г.

Рассмотрен процесс ректификационного разделения промышленной смеси изобутилацетат (ИБА)–уксусная кислота (УК)–изоамилацетат (ИАА), являющейся продуктом переработки многотоннажного отхода спиртовой промышленности. Предложены варианты принципиальной технологической схемы разделения (ПТСР) и определены параметры работы ректификационных колонн, обеспечивающие выделение ИАА и ИБА чистотой не менее 99.5 мол.% из промышленной смеси ИБА–УК–ИАА. ПТСР включает комплекс экстрактивной ректификации с использованием сульфолана (СФ). Проведена собственная оценка параметров бинарного взаимодействия модели NRTL-HOC для систем ИБА–УК, ИБА–ИАА, ИБА–СФ, УК–СФ. Для регрессии параметров получены новые экспериментальные данные о фазовом равновесии жидкость–пар в системах ИБА– СФ и УК–СФ при 200 мм рт. ст.

Ключевые слова: изоамилацетат, изобутилацетат, уксусная кислота, сульфолан, парожидкостное равновесие, экстрактивная ректификация, биазеотропия, математическое моделирование **DOI:** 10.31857/S0040357123040097, **EDN:** VGCJLH

1. ВВЕДЕНИЕ

Промышленная смесь изобутилацетат (ИБА)уксусная кислота (УК)-изоамилацетат (ИАА) является продуктом переработки многотоннажного отхода спиртовой промышленности, а именно: сивушных масел [1, 2]. Сивушные масла выступают в качестве прекурсора высокоэффективных компонентов смесевых растворителей повышенного качества с низкой себестоимостью и высоким выходом продукта [1]. Эти масла представляют собой смесь одноатомных насыщенных спиртов С₃-С₉, из которых главным компонентом является изоамиловый спирт [2]; в состав также входят изобутиловый спирт и изопропиловый спирт, в незначительных количествах высшие спирты, а также алифатические альдегиды, жирные кислоты и фурфурол. Целевым компонентом переработки сивушных масел выступает ИАА, в качестве дополнительного товарного продукта – ИБА. В связи с этим, практическая значимость разработки процесса разделения промышленной смеси ИБА-УК-ИАА очевидна. Компоненты смеси ИБА-УК-ИАА используются в пищевой промышленности; в виде душистых эссенций; в качестве растворителей лакокрасочных материалов, ацетил- и нитроцеллюлозы; для экстрагирования; для получения БАДов и лекарственных препаратов.

Одним из наиболее высокопроизводительных в основном органическом синтезе является процесс ректификации. Он же наиболее энергоемкий метод разделения. Синтез энергосберегающих схем разделения смесей сложной физико-химической природы требует комплексного подхода как на теоретическом, так и на прикладном уровне. Основной задачей в данном случае является снятие ограничений физико-химического характера, накладываемых на процесс ректификационного разделения бинарных и многокомпонентных смесей, в том числе биазеотропных [3]. Указанные ограничения можно преодолеть несколькими методами, включая методы азеотропной и экстрактивной ректификации [4-12]. Другой подход базируется на направленном изменетехнологических параметров процесса нии (приводящем к преобразованию структур диаграмм фазового равновесия) с целью создания

Наименование	<i>Т</i> _к , °С	$T_{\rm kp}$, °C	$P_{\rm кр}$, мм рт. ст.	M, г/моль
ИБА	116.65	287.65	22576.9	116.16
УК	117.90	318.80	43398.6	60.05
ИАА	142.00	312.95	20701.7	130.19
СФ	287.30	579.85	37728.1	120.17

Таблица 1. Свойства чистых веществ^а

^аВзяты из базы данных программного комплекса Aspen Plus[®].

Таблица 2. Коэффициенты расширенного уравнения Антуана^а

i	C_{1i}	C_{2i}	C_{3i}	C_{4i}	C_{5i}	C_{6i}	C_{7i}
ИБА	67.4172	-6944.3	0	0	-7.298	3.7892×10^{-6}	2
УК	48.3772	-6304.5	0	0	-4.2985	8.8865×10^{-18}	6
ИАА	94.6652	-8876.8	0	0	-11.075	2.4723×10^{-17}	6
СΦ	145.767	-13283.0	0	0	-19.429	0.013441	1

^аВзяты из базы данных программного комплекса Aspen Plus[®].

наиболее благоприятных условий ректификационного разделения.

Экспериментальное исследование процесса ректификации ввиду большого количества рабочих параметров — довольно продолжительная и дорогостоящая процедура. В свою очередь, моделирование с использованием современных программных комплексов позволяет прогнозировать данные и оптимизировать рабочие параметры процесса [13]. При этом, необходимым этапом является получение данных о фазовых равновесиях и построение адекватных математических моделей.

Целью настоящей работы является расчет процесса ректификационного разделения промышленной смеси ИБА—УК—ИАА на чистые компоненты и определение рабочих параметров ректификационных колонн, обеспечивающих получение целевых продуктов требуемого качества с наименьшими энергетическими затратами.

2. МАТЕРИАЛЫ И МЕТОДЫ

Расчет процесса ректификационного разделения смеси ИБА–УК–ИАА проводили в программном комплексе Aspen Plus[®]. Процесс разделения был ориентирован на достижение чистоты целевых продуктов – ИАА и ИБА – не менее 99.5 мол %. Для расчета и подбора режима работы ректификационных и экстрактивных колонн использовали модуль Sensitivity. Варьировали высоту колонны ($N_{\rm TT}$), уровень подачи потока питания ($N_{\rm F}$) и разделяющего агента ($N_{\rm PA}$), флегмовое число (R). Физикохимические свойства чистых компонентов представлены в табл. 1. При моделировании парожидкостного равновесия (ПЖР) изучаемых систем давление насыщенных паров рассчитывали по расширенному уравнению Антуана:

$$\ln p_i = C_{1i} + \frac{C_{2i}}{T + C_{3i}} + C_{4i}T + C_{5i}\ln T + C_{6i}T^{C_{7i}}, \quad (1)$$

где p_i — парциальное давление чистого компонента *i* в мм рт. ст., *T* — температура в °С, C_{1i} — C_{7i} — коэффициенты расширенного уравнения Антуана (табл. 2).

Для описания отклонения от идеального поведения жидкой фазы в системе ИБА-УК-ИАА использовали уравнение Non-Random Two-Liquid (NRTL) [14], рекомендованное авторами [15, 16] для биазеотропных систем. В программном комплексе Aspen Plus[®] уравнение NRTL приведено в следующем виде:

$$\ln \gamma_{i} = \frac{\sum_{j} x_{j} \tau_{ji} G_{ji}}{\sum_{k} x_{k} G_{ki}} + \sum_{j} \frac{x_{j} G_{ij}}{\sum_{k} x_{k} G_{kj}} \left(\tau_{ij} - \frac{\sum_{m} x_{m} \tau_{mj} G_{mj}}{\sum_{k} x_{k} G_{kj}} \right),$$

$$(2)$$

где $G_{ij} = \exp(-\alpha_{ij}\tau_{ij}); \tau_{ij} = a_{ij} + b_{ij}/T + e_{ij} \ln T + f_{ij}T;$ $\alpha_{ij} = c_{ij} + d_{ij} (T - 273.15 \text{ K}); \tau_{ii} = 0; G_{ij} = 1; a_{ij}, b_{ij},$ $c_{ij}, d_{ij}, e_{ij}, f_{ij}$ – коэффициенты бинарного взаимодействия уравнения NRTL. Уравнение NRTL было дополнено уравнением Hayden–O'Connell (HOC) [17] для учета отклонения от идеального поведения паровой фазы.

Вещество	Артикул	Производитель	Чистота ГХ ^а (масс. д.)	Содержание воды КФ ^b (масс. д.)
ИБА	CAS-No 110-19-0	GmBh	>0.990	≤0.0005
УК	ГОСТ 61-75(х. ч.)	ООО "Русский Химик"	>0.998	< 0.0002
СΦ	CAS-No 126-33-0	Merck KGaA	>0.990	< 0.0020

Таблица 3. Сведения об используемых веществах

^{*а*} Газовая хроматография.

^{*b*} Титрование по Карлу Фишеру.

Система ИБА-УК-ИАА включает бинарную составляющую ИБА-УК, которая при атмосферном давлении характеризуется наличием двух азеотропов, а при пониженном давлении – значениями коэффициента относительной летучести компонентов близкими к единице. Разделение азеотропных смесей или смесей с близкой летучестью компонентов с применением только последовательно соединенных колонн невозможно в силу физико-химических ограничений [4, 18]. Здесь необходимо применение специальных методов разделения [4, 11, 12]. В настоящей работе для разделения бинарной составляющей ИБА-УК предложен процесс экстрактивной ректификации, который является наиболее эффективным способом разделения смесей сложной физикохимической природы [16, 19-21], характеризуется сушественно меньшими энергетическими затратами по сравнению с азеотропной ректификацией и разделением, основанным на варьировании давления [22, 23].

Одним из основных факторов, влияющих на качество выделяемых в процессе экстрактивной ректификации продуктов, является подбор эффективного разделяющего агента (РА). Список легкокипящих и тяжелокипящих разделяющих агентов сформирован в работе [15] на основании данных работ [24–26]. В качестве потенциального РА в настоящей работе рассмотрен сульфолан (СФ). Использованию СФ в качестве тяжелокипящего экстрактивного агента посвящена серия работ [27–30]. Этот РА зарекомендовал себя как весьма эффективный [31].

Для оценки параметров бинарного взаимодействия уравнения NRTL были получены собственные экспериментальные данные о ПЖР в бинарных системах ИБА-СФ и УК-СФ. Согласно информации, приведенной в работе [31], сульфолан разлагается при температуре выше 230°С. В связи с этим эксперимент проводили при пониженном давлении (200 мм рт. ст.). Чистота реактивов, используемых в настоящей работе, приведена в табл. 3.

Экспериментальные данные о ПЖР в исследуемых системах были получены по методике, подробно описанной в работе [32], на эбулиометре Свентославского, снабженном насосом Коттреля (рис. 1).

Контроль давления осуществляли с помощью вакууметра "VACUU·VIE extended" с точностью ± 2 мм рт. ст. Равновесную температуру измеряли ртутным термометром TL-4 0...50–105, 0...100–155 и 0...150–205 с точностью $\pm 0.1^{\circ}$ С. Масса навесок измерялась на аналитических весах Mass Comparator MC-1000 с точностью ± 0.0005 г. Пробы анализировали рефрактометрическим методом на приборе ИРФ-454 Б2М при 30°С, диапа-

Рис. 1. Модифицированный эбулиометр Свентославского. *1* – кипятильник; *2* – трубка Коттреля; *3* – гильза термометра; *4* – обратный холодильник; *5* – счетчик капель; *6* – сборник пробы парового конденсата; *7*–*8* – вентили для отбора проб парового конденсата и жидкости; *9* – обмотка электрообогрева.

Диапазон Р,	760	200	200-760	200-760	200-760	200-760
мм рт. ст.						
Компонент і	ИБА	ИБА	УК	ИБА	ИБА	УК
Компонент <i>ј</i>	УК	УК	ИАА	ИАА	СΦ	СΦ
Источник	Оценка из эксп. [34]	Оценка из эксп. [34]	Взято из работы [41]	Оценка из эксп. [40]	Оценка из эксп. табл. 5	Оценка из эксп. табл. 6
Т	°C	°C	°C	°C	°C	°C
a _{ij}	0	0	-0.6992	0	-5.6085	-4.72697
a _{ji}	0	0	0.0741	0	2.12732	-1.20441
b _{ij}	138.908	367.921	74.071	522.666	2385.46	1956.9
b_{ji}	85.2141	-105.598	440.982	-356.456	-500.047	-515.036
c _{ij}	0.3	0.3	0.3	0.3	0.3	0.3
e _{ij}	0	0	0	0	0	0.394509
e_{ji}	0	0	0	0	0	0.181541
RMSD(T/P)	0.7 кПа	0.1 кПа	_	0.2°C	0.4°C	2.8°C
<i>RMSD</i> (у), мол. д.	0.0041	0.0059	_	0.0126	0.0019	0.0121

Таблица 4. Параметры бинарного взаимодействия модели NRTL-HOC

зон показателей преломления n_D^{30} от 1.2 до 1.7 с точностью измерения 1 × 10⁻⁴. Значение температуры при измерении показателя преломления обусловлено температурой плавления сульфолана $T_n = 27.4$ °C [31].

3. РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Оценка параметров бинарного взаимодействия модели NRTL-HOC

Для расчета принципиальной технологической схемы разделения (ПТСР) необходимы параметры бинарного взаимодействия модели NRTL-HOC для бинарных составляющих смесей, образованных разделяемыми компонентами, в том числе с разделяющим агентом.

Исследованию ПЖР в системе ИБА–УК посвящен ряд экспериментальных [33–35] и расчетных работ [36–38]. Система является биазеотропной при атмосферном давлении, а при пониженном давлении характеризуется близкими температурами кипения и малой разницей между составами равновесных фаз. В технологически приемлемом диапазоне давлений система претерпевает изменения, включающие стадию образования внутреннего тангенциального азеотропа [4, 39], который является элементом эволюции биазеотропии при изменении давления (температуры).

В настоящей работе проведена собственная оценка параметров бинарного взаимодействия модели NRTL-HOC для моделирования ПЖР в системе ИБА-УК при двух значениях давления. Для 200 мм рт. ст. оценка параметров проведена по набору экспериментальных данных о ПЖР при 80°С (полный массив данных) [34]. Для 760 мм рт. ст. оценка параметров проведена одновременно по 3 наборам экспериментальных данных данных [34]: по экспериментальным данным о ПЖР при 117°С (полный массив данных); по характеристикам азеотропов и чистых компонентов; по характеристикам азеотропов.

Для бинарной составляющей ИБА–ИАА параметры бинарного взаимодействия оценены из экспериментальных данных работы [40]. Для бинарной составляющей УК–ИАА параметры бинарного взаимодействия взяты из работы [41].

Экспериментальные данные о ПЖР для систем ИБА–СФ и УК–СФ в литературе отсутствуют. В работе [38] оценку параметров бинарного взаимодействия модели NRTL-HOC проводили одновременно по двум наборам данных о ПЖР при 200 и 760 мм рт. ст., полученных с использованием модели UNIFAC-HOC. Расчет ПЖР показал, что системы зеотропны в указанном диапазоне давлений. Так как критерием адекватности математических моделей служит их корреляция с экспериментом, в настоящей работе для оценки параметров бинарного взаимодействия модели NRTL-HOC были получены собственные экспериментальные данные о ПЖР в системах ИБА– СФ и УК–СФ.

Рис. 2. Зависимость показателя преломления от состава $n_D^{30} = f(x_1)$ для системы: (a) ИБА (1)–СФ (2); (б) УК (1)–СФ (2).

Параметры бинарного взаимодействия модели NRTL-HOC, используемые в настоящей работе для расчета ПЖР, представлены в табл. 4. Там же представлены данные о среднеквадратичном отклонении между моделью и экспериментальными данными.

Из данных табл. 4 следует, что модели удовлетворительно описывают экспериментальные данные.

Определение парожидкостного равновесия в системах ИБА-СФ и УК-СФ

Для определения составов парового конденсата (y_i) и жидкой фазы (x_i) для систем ИБА-СФ и УК-СФ были построены зависимости показателя преломления n_D^{30} от состава x_i (рис. 2).

Экспериментальные данные по фазовому равновесию жидкость-пар в бинарных системах ИБА-СФ и УК-СФ приведены в табл. 5 и табл. 6, соответственно.

Корреляция экспериментальных данных о ПЖР в системах ИБА–СФ (табл. 5) и УК–СФ (табл. 6) с данными, рассчитанными по модели NRTL-HOC (табл. 5, табл. 6), представлена на рис. 3.

Здесь следует отметить, что в случае отсутствия эксперимента для оценки параметров бинарного взаимодействия уравнений локальных составов допустимо использование данных, полученных по модели UNIFAC [16]. В этом случае использование групповой модели UNIFAC обосновано обширной базой данных о взаимодействии между функциональными группами рассматриваемых классов соединений [42]. Так, например, с использованием математического моделирования по уравнению UNIFAC-HOC впервые была получена информация о ПЖР и о наличии биазеотропии в системе ИБА–УК [33], а авторами работы [38] модель UNIFAC-HOC была использована для прогнозирования ПЖР в системах ИБА–СФ и УК–СФ. На рис. 4 приведены экспериментальные и рассчитанные данные о ПЖР в системах ИБА–СФ (табл. 5) и УК–СФ (табл. 6).

Из рис. 4 видно, что результаты натурного и вычислительного экспериментов согласованы. Таким образом, на основании проведенного исследования проиллюстрирована возможность применения моделей группового взаимодействия для прогнозирования термодинамических свойств и

Таблица 5. Данные о ПЖР в системе ИБА (1)–СФ (2) при 200 мм рт. ст.

r MOT T	Экспеј	римент	NRTL	-HOC
<i>х</i> ₁ , мол. д.	<i>T</i> , °C	<i>у</i> ₁ , мол. д.	<i>T</i> , °C	<i>у</i> ₁ , мол. д.
0.0921	118.3	0.9901	118.2	0.9858
0.1611	102.6	0.9948	101.7	0.9944
0.2321	93.7	0.9995	94.2	0.9965
0.2476	92.4	0.9984	93.1	0.9968
0.3051	90.2	0.9995	90.0	0.9974
0.3475	88.6	0.9995	88.4	0.9977
0.3545	88.4	0.9953	88.1	0.9977
0.3754	87.6	0.9995	87.5	0.9979
0.5007	85.1	0.9997	85.0	0.9983
0.5937	83.7	0.9995	83.7	0.9985
0.6077	83.3	0.9997	83.5	0.9985
0.7079	82.1	0.9998	82.3	0.9987
0.8160	80.4	0.9999	80.8	0.9990
0.9291	78.1	0.9999	78.8	0.9995

х. мол. л.	Экспеј	оимент	NRTL-HOC			
<i>х</i> ₁ , мол. д.	<i>T</i> , °C	<i>у</i> ₁ , мол. д.	<i>T</i> , °C	<i>у</i> ₁ , мол. д.		
0.0490	197.7	0.7236	193.9	0.6917		
0.1317	164.5	0.9095	163.2	0.9116		
0.2276	138.5	0.9616	142.5	0.9694		
0.3737	119.5	0.9764	121.2	0.9921		
0.4611	110.0	0.9876	111.5	0.9962		
0.5675	99.5	0.9932	101.6	0.9984		
0.6694	92.8	0.9962	94.0	0.9993		
0.7827	85.0	0.9966	87.6	0.9997		
0.8909	80.1	0.9962	83.3	0.9999		
0.9430	77.5	0.9967	81.5	0.9999		

Таблица 6. Данные о ПЖР в системе УК (1)–СФ (2) при 200 мм рт. ст.

фазового равновесия некоторых полярных смесей с участием сульфолана.

Ректификация смеси ИБА-УК-ИАА

Структуры диаграмм фазового равновесия (СДФР) системы ИБА–УК–ИАА при значениях давления 760 мм рт. ст. (класс 3.[2.0.0].0-2а [38, 43]), когда система биазеотропна, и при 200 мм рт. ст. (класс 3.0.0-1 [44]), когда система зеотропна, представлены на рис. 5; отмечен состав потока питания F_0 , который приближен к промышленному ($x_{\rm ИБА} = 0.45$; $x_{\rm YK} = 0.10$; $x_{\rm ИАA} = 0.45$ мол. д. [2, 45]).

При указанных значениях давления в системе отсутствуют тройные азеотропы. Результаты расчета ректификационной колонны при 760 и 200 мм рт. ст. (составы потоков (*x*); величины потоков питания (F_0), кубового продукта (W), дистиллята (D); нагрузка на кипятильник (Q_{reb})) представлены в табл. 7.

Из приведенных в табл. 7 данных следует, что требуемая чистота ИАА в кубе колонны достигнута. Сравнение затрат энергии на кипятильник ректификационных колонн показывает, что при пониженном давлении экономия составляет 10%.

Отметим, что в ходе процесса разделения в потоке дистиллята выделяется смесь ИБА и УК, имеющая промышленное значение. Помимо процессов этерификации, она встречается в технологии обезвоживания органических кислот [46, 47]. Целевым компонентом здесь выступает ИБА.

Анализ концентрационного симплекса трехкомпонентной системы ИБА–УК–СФ

С использованием оцененных параметров бинарного взаимодействия модели NRTL-HOC (табл. 4) проведено математическое моделирование ПЖР производной трехкомпонентной системы ИБА-УК-СФ и рассчитаны коэффициенты относительной летучести компонентов смеси ИБА–УК в присутствии СФ $\left(\alpha_{\text{ИБА/УК}}^{C\Phi} = \frac{y_{\text{ИБА}}x_{\text{УК}}}{x_{\text{ИБА}}y_{\text{УК}}}\right)$

при различных давлениях (рис. 6). $x_{\rm ИБA}y_{\rm YI}$

Из полученных результатов следует, что СФ увеличивает летучесть ИБА относительно УК (рис. 6), причем этот эффект проявляется в боль-

Рис. 3. Сравнение экспериментальных и рассчитанных по модели NRTL-HOC данных о ПЖР при 200 мм рт. ст. (табл. 5 и табл. 6). (а) – ИБА(1)–СФ(2); (б) – УК(1)–СФ(2). Точки – экспериментальные данные; линия – данные, полученные по модели NRTL-HOC.

Рис. 4. Сравнение экспериментальных и рассчитанных по модели UNIFAC-HOC данных о ПЖР при 200 мм рт. ст. для: (а) – ИБА(1)–СФ(2); (б) – УК(1)–СФ(2). Точки – экспериментальные данные (табл. 5 и табл. 6); линия – данные, полученные по модели UNIFAC-HOC.

Рис. 5. СДФР системы ИБА–УК–ИАА при различных значениях давления.

шей степени при 200 мм рт. ст., чем при атмосферном давлении. В качестве исходного состава взяты данные по потоку дистиллята из расчета на предыдущем этапе (табл. 7). На основании данных о величине коэффициента относительной летучести компонентов разделяемой смеси в присутствии сульфолана выбрано соотношение количеств РА и исходного питания – 2 : 1, которому отвечает мак-

Таблица 7. Параметры работы ректификационной колонны смеси ИБА–УК–ИАА. Нумерация тарелок ведется с верха колонны.

<i>Р</i> , мм рт. ст.	$N_{\rm tt}$	N_F	R	<i>F</i> ₀ , кмоль/ч	<i>D</i> , кмоль/ч	<i>W</i> , кмоль/ч	х МОЈ	_F , I. д.	$x_{ m D},$ мол. д.	<i>х</i> _W , мол. д.	<i>Q</i> _{reb} , кВт
		$T_F = 126.89^{\circ}\text{C}; T_D = 117.49^{\circ}\text{C}; T_W = 141.65^{\circ}\text{C}$									
760							ИБА	0.45	0.8176	0.0007	
	30 13	13	3.23	100	55	45	УК	0.10	0.1783	0.0043	2304.1
							ИАА	0.45	0.0041	0.9950	
				$T_{\rm F} = 85$	5.90°C; <i>T</i> _I	$_{\rm D} = 78.03^{\circ}$	$^{\circ}\mathrm{C}; T_{\mathrm{W}} = 9$	98.28°C			
200							ИБА	0.45	0.8179	0.0003	
200	30	30 12	2.62	100	55	45	УК	0.10	0.1780	0.0047	2072.6
							ИАА	0.45	0.0041	0.9950	

Рис. 6. Ход линий постоянных значений коэффициента относительной летучести компонентов смеси ИБА–УК в присутствии СФ (α^{СΦ}_{ИБА/УК}) при различных давления: (а) – 760 мм рт. ст.; (б) – 200 мм рт. ст.

симальное значение $\alpha_{\rm ИБA/УK}^{C\Phi}$. Преобразование фазовой диаграммы псевдобинарной системы ИБА– УК в присутствии сульфолана при атмосферном и пониженном давлении приведено на рис. 7.

Моделирование процесса экстрактивной ректификации смеси ИБА–УК

Принципиальная схема ЭР смеси ИБА–УК приведена на рис. 8. Были рассмотрены два варианта организации работы комплекса: 1 – когда

Рис. 7. Преобразование фазовой диаграммы псевдобинарной системы ИБА(1)–УК(2) в присутствии сульфолана (СФ : F = 2 : 1) при различных давлениях. \bigcirc – 760 мм рт. ст. при; \triangle – 200 мм рт. ст.

колонна ЭР работает при атмосферном давлении; 2 — когда колонна ЭР работает при пониженном давлении 200 мм рт. ст. Отметим, что при атмосферном давлении при кипении чистый СФ разлагается, поэтому колонна регенерации РА в обоих комплексах работает при пониженном давлении 200 мм рт. ст.

Процесс разделения смеси ИБА–УК был ориентирован на достижение чистоты целевого компонента – ИБА – не менее 99.5 мол. %. В качестве исходного состава взяты данные по потоку дистиллята из расчета на предыдущем этапе (табл. 7). Результаты расчета комплекса ЭР представлены в табл. 8 и табл. 9.

Из приведенных в табл. 8 и табл. 9 данных следует, что в обоих случаях удалось достичь требуе-

Рис. 8. Принципиальная технологическая схема ЭР: *1* – колонна ЭР; *2* – колонна регенерации РА.

№ колонны	<i>Р</i> , мм рт. ст.	$N_{\rm TT}$	$N_{\rm F}$	N _C Φ	R	<i>F</i> ₀ , кмоль/ч	СФ, кмоль/ч	<i>D</i> , кмоль/ч	<i>W</i> , кмоль/ч	х мол	F, 1. д.	<i>х</i> _D , мол. д.	<i>х</i> _W , мол. д.	<i>Q</i> _{reb} , кВт
			$T_{\rm F} = 117.49^{\circ}{\rm C}; \ T_{\rm C\Phi} = 115.00^{\circ}{\rm C}; \ T_{\rm D} = 116.53^{\circ}{\rm C}; \ T_{\rm W} = 232.48^{\circ}{\rm C}$											
1	760	30	17	4	0.5	55	110	45	120	ИБА УК ИАА СФ	0.8176 0.1783 0.0041 0	0.9964 0.0025 0.0011 0	0.0011 0.0808 0.0014 0.9167	1529.0
						T	$_{F} = 150^{\circ} \text{C};$	$T_{\rm D} = 79.70^{\circ}$	°C; $T_{\rm W} = 2$	29.25°C				
2	200	10	5	_	1.25	120	110	9.8	110.2	ИБА УК ИАА СФ	0.0011 0.0808 0.0014 0.9167	0.0139 0.9684 0.0177 0	0 0.0018 0 0.9982	678.4

Таблица 8. Параметры работы комплекса экстрактивной ректификации смеси ИБА–УК с применением СФ в качестве РА (давление в колонне ЭР 760 мм рт. ст.)

Таблица 9. Параметры работы комплекса экстрактивной ректификации смеси ИБА–УК с применением СФ в качестве РА (давление в колонне ЭР 200 мм рт. ст.)

№ колонны	<i>Р</i> , мм рт. ст.	$N_{\rm tt}$	$N_{\rm F}$	N _C Φ	R	<i>F</i> ₀ , кмоль/ч	СФ, кмоль/ч	D, кмоль/ч	<i>W</i> , кмоль/ч	X] MOJ	F, 1. д.	<i>х</i> _D , мол. д.	<i>х</i> _W , мол. д.	<i>Q</i> _{reb} , кВт
			$T_{\rm F} = 78.03^{\circ}{\rm C}; \ T_{\rm C\Phi} = 75^{\circ}{\rm C}; \ T_{\rm D} = 77.14^{\circ}{\rm C}; \ T_{\rm W} = 177.72^{\circ}{\rm C}$											
1	200									ИБА	0.8179	0.9969	0.0010	
1	200 2	20 15	4	0.2	55	110	45	120	ук ИАА	0.1780	0.0001	0.0815	1279.9	
										СΦ	0	0	0.9167	
						$T_{\rm F} = 177$	7.72°C; <i>T</i> _I	$p = 79.57^{\circ}$	C; $T_{\rm W} = 2$	229.24°C				
										ИБА	0.0010	0.0128	0	
2	2 200	10	5	_	1.67	120	110	9.8	110.2	УК	0.0815	0.9778	0.0018	505.2
		10	10 5 -		1.07	120	110	2.0	110.2	ИАА	0.0008	0.0094	0	505.2
											СΦ	0.9167	0	0.9982

мой чистоты ИБА в дистилляте колонны ЭР. В колонне регенерации РА в виде дистиллята получена уксусная кислота 2-го сорта, в виде кубового потока получен СФ чистотой выше 99.8 мол. %, что позволяет избежать накопления компонентов разделяемой смеси в схеме. Сравнивая затраты энергии на кипятильники колонн, установили, что при пониженном давлении ($\Sigma Q_{reb} = 1785.1 \text{ kBT}$) разделение смеси энергетически более выгодно, чем при атмосферном давлении ($\Sigma Q_{reb} = 2207.4 \text{ kBT}$); экономия составляет около 19%. Таким образом, процесс экстрактивной ректификации смеси ИБА–УК, энергетически более выгодно проводить при пониженном давлении.

Принципиальная технологическая схема разделения смеси ИБА–УК–ИАА на чистые компоненты

ПТСР промышленной смеси ИБА–УК–ИАА на чистые компоненты приведена на рис. 9. Сравнение затрат энергии на работу кипятильников ректификационных колонн приведено в табл. 10.

Данные табл. 10 показывают, что понижение давления во всех ректификационных колоннах (вариант 2) позволило снизить общие энергозатраты на 14.5% по сравнению со схемой, работающей при 760 мм рт. ст. (вариант 1).

Рис. 9. ПТСР смеси ИБА–УК–ИАА на чистые компоненты, включающая комплекс ЭР. *1* – ректификационная колонна; *2* – колонна ЭР; *3* – колонна регенерации РА.

№ колоннь	1	2	3	ΣQ , кВт	Δабс, кВт	%	
Вариант 1	<i>P</i> , мм рт. ст. <i>Q</i> _{reb} , кВт	760 2304.1	760 1529.0	200 678.4	4511.5	652.8	14.5
Вариант 2	<i>P</i> , мм рт. ст. <i>Q</i> _{reb} , кВт	200 2072.6	200 1279.9	200 505.2	3857.7	055.0	14.5

Таблица 10. Затраты энергии на кипятильники ректификационных колонн

4. ЗАКЛЮЧЕНИЕ

Рассмотрен процесс ректификационного разделения промышленной смеси ИБА–УК–ИАА, являющейся продуктом переработки многотоннажного отхода спиртовой промышленности. Система включает бинарную составляющую ИБА–УК, также имеющую промышленное значение. Помимо процессов этерификации, она встречается в технологии обезвоживания органических кислот. Разделение смеси ИБА–УК обычной ректификацией практически невозможно и требует применения специальных методов. Для разделения этой смеси предложен процесс экстрактивной ректификации с использованием СФ.

Для расчета ПТСР проведена собственная оценка параметров модели NRTL-HOC для систем ИБА–УК, ИБА–ИАА, ИБА–СФ, УК–СФ. В работе получены новые экспериментальные данные о ПЖР в системах ИБА–СФ и УК–СФ при 200 мм рт. ст. Данные натурного эксперимента хорошо согласуются с полученными по модели UNIFAC-HOC. Сравнение результатов моделирования ПЖР в системах ИБА–СФ и УК–СФ при 200 мм рт. ст. по модели UNIFAC-HOC с данными натурного эксперимента иллюстрирует возможность применения моделей группового взаимодействия для прогнозирования термодинамических свойств и фазового равновесия некоторых полярных смесей с участием СФ.

В работе предложены варианты ПТСР и определены параметры работы ректификационных колонн, обеспечивающие выделение ИАА и ИБА чистотой более 99.5 мол. % из промышленной смеси ИБА–УК–ИАА. Проведение ректификационного разделения при пониженном давлении позволило снизить энергозатраты на выделение ИАА на 10%, ИБА на 19%, на полное разделение смеси ИБА–УК–ИАА на 14.5%.

Совокупность полученных результатов обладает прогностическими возможностями и вносит вклад в теоретические основы процессов ректификационного разделения смесей сложной физико-химической природы.

Экспериментальная часть работы выполнена при финансовой поддержке Минобрнауки Рос-

сии в рамках государственного задания ИОНХ РАН.

ОБОЗНАЧЕНИЯ

$a_{ij}, b_{ij}, c_{ij}, d_{ij}$, коэффициенты бинарного взаимодействия
e_{ij}, f_{ij}	уравнения NRTL
$C_{1i} - C_{7i}$	коэффициенты уравнения Антуана
D	дистиллят, кмоль
F	поток питания, кмоль
М	молекулярная масса, г/моль
N _{PA}	номер тарелки подачи разделяющего агента
$N_{\rm tt}$	число теоретических ступеней разделения
$N_{\rm F}$	номер тарелки подачи потока питания
<i>n</i> _D	показатель преломления
Р	давление, мм рт. ст. (кПа)
p_i	парциальное давление чистого компо-
	нента, мм рт. ст.
Q	энергетические затраты, кВт
R	флегмовое число
RMSD	среднеквадратичное отклонение
Т	температура, °С (К)
W	кубовый поток
x	состав потока, мол. д.
x_i	концентрация компонента в жидкой фазе,
	мол. д.
y_i	концентрация компонента в паровой фазе,
	мол. д.
α	коэффициент относительной летучести
γ_i	коэффициент активности
Δ	изменение

ИНДЕКСЫ

К	точка кипения
кр	критический параметр
D	дистиллят
F	исходная смесь

W кубовый продукт

1, 2, 3, i, j номер компонента

СПИСОК ЛИТЕРАТУРЫ

- 1. Пантелеев Е.В., Пантелеев П.Е., Пантелеева Г.В. Способ переработки сивушного масла. 2011. Патент № 2471769
- Patidar P., Mahajani S.M. Esterification of Fusel Oil Using Reactive Distillation. Part II: Process Alternatives // Ind. Eng. Chem. Res. 2013. V. 52. P. 16637– 16647
- Комарова Л.В., Серафимов Л.А., Гарбер Ю.Н. Классификация диаграмм трехкомпонентных смесей, включающих биазеотропные составляющие // Журн. физической химии. 1974. Т. 48. С. 1391
- Жаров В.Т., Серафимов Л.А. Физико-химические основы дистилляции и ректификации. Химия, Л. 1975
- 5. *Gorak A., Schoenmakers H.* Distillation: Operation and Applications, 1st ed. Elsevier, Amsterdam. 2014
- Коган В.Б. Азеотропная и экстрактивная ректификация. Изд. 2-е, перераб. и доп. Химия, Л. 1971
- 7. *Seader J.D., Henley E.J.* Separation process principles. Wiley, New York. 1998
- 8. Doherty M.F., Malone M.F. Conceptual Design of Distillation Systems. McGraw-Hill, New York. 2001
- Lei Z., Li C., Chen B. Extractive Distillation: A Review // Separation & Purification Reviews. 2003. V. 32. P. 121–213.
 https://doi.org/10.1081/SPM_120026627

https://doi.org/10.1081/SPM-120026627

- Wankat P.C. Equilibrium Staged Separations. Prentice Hall, Englewood Cliffs, NJ. 1984
- Фролкова А.К. Разделение азеотропных смесей. Физико-химические основы и технологические приемы. Гуманитар. изд. центр "Владос", М. 2010
- Тимофеев В.С., Серафимов Л.А., Тимошенко А.В. Принципы технологии основного органического и нефтехимического синтеза // Учебное пособие для вузов. Изд. 3-е, перераб. и доп. М.: Высшая школа, 2010. 407 с.
- Muñoz R., Montón J.B., Burguet M.C., de la Torre J. Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: Simulation and optimization // Sep. Purif. Technol. 2006. V. 50. P. 175–183. https://doi.org/10.1016/j.seppur.2005.11.022
- Renon H., Prausnitz J.M. Local compositions in thermodynamic excess functions for liquid mixtures // AIChE J. 1968. V. 14. P. 135–144. https://doi.org/https://doi.org/10.1002/aic.690140124
- Митюшкина И.А. Разделение бинарных биазеотропных смесей с использованием дополнительных веществ различной летучести / Дисс. ... канд. техн. наук. МИТХТ, М. 2011
- Челюскина Т.В. Теоретические основы ректификационного разделения биазеотропных смесей / Дисс. ... докт. техн. наук. МИТХТ, М. 2011
- 17. Hayden J.G., O'Connell J.P. A generalized method for predicting secod virial coefficients // Industrial & En-

gineering Chemistry Process Design and Development. 1975. V. 14. P. 209

- Серафимов Л.А. Теоретические принципы построения технологических смех ректификации неидеальных многокомпонентных смесей / Дисс. ... докт. техн. наук. МИТХТ, М. 1968
- Шутова Г.В. Физико-химические закономерности биазеотропии в бинарных системах / Дисс. ... канд. хим. наук. МИТХТ, М. 1992
- Серафимов Л.А., Фролкова А.К., Челюскина Т.В. Подбор экстрактивных агентов при разделении биазеотропных бинарных смесей экстрактивной ректификацией // Теоретические основы химической технологии. 2009. Т. 43. С. 648
- 21. *Мягкова Т.О.* Физико-химические основы разделения биазеотропных смесей / Дисс. ... канд. техн. наук. МИТХТ, М. 2007
- 22. *Meirelles A., Weiss S., Herfurth H.* Ethanol dehydration by extractive distillation // Journal of Chemical Technology & Biotechnology. 1992. V. 53. P. 181
- 23. Клаузнер П.С., Рудаков Д.Г., Анохина Е.А., Тимошенко А.В. Применение комплекса с частично связанными тепловыми и материальными потоками и тепловых насосов в экстрактивной ректификации смеси аллило- вый спирт – аллилацетат с *н*-бутилпропионатом // Химия и технология органических веществ. 2020. № 4 (16). С. 42–56.
- 24. *Павлов С.Ю*. Выделение и очистка мономеров для синтетического каучука. Химия, Л. 1987
- Зарецкий М.И. Комплексообразование бензола и галогенбензолов с органическими растворителями // Российский химический журн. 1998. Т. XLII. С. 9
- Биттрих Г.Й., Гайле А.А., Лемпе Д., Проскуряков В.А., Семенов Л.В. Разделение углеводородов с использованием селективных растворителей. Химия, Л. 1987
- Челюскина Т.В., Бедретдинов Ф.Н. Математическое моделирование экстрактивной ректификации смеси бутилбутират – масляная кислота // Теоретические основы химической технологии. 2016. Т. 50. С. 516
- 28. Бедретдинов Ф.Н., Челюскина Т.В. Исследование различных изомногообразий в четырехкомпонентных системах, содержащих биазеотропные бинарные составляющие // Тонкие химические технологии. 2018. Т. 13. № 1. С. 45–53.
- 29. *Раева В.М., Громова О.В.* Разделение смеси вода муравьиная кислота уксусная кислота в присутствии сульфолана // Тонкие химические технологии. 2019. Т. 14. № 4. С. 24–32.
- Bedretdinov F., Chelyuskina T., Frolkova A. Modeling of vapor-liquid equilibrium and extractive rectifiction of butyl-propionate-propionic acid mixture // In: 10th International Conference on Distillation and Absorption. Germany. 2014. P. 928.
- Гайле А.А., Сомов В.Е. Сульфолан. Получение и применение в качестве селективного растворителя. 2-е изд., испр. и доп. ХИМИЗДАТ, СПб. 2014
- 32. Иванов И.В., Лотхов В.А., Глебова Ю.А., Челюскина Т.В., Кулов Н.Н. Исследование фазового равновесия в системе бензол-гептан-N-метилпирролидон // Теоретические основы химической технологии. 2014. Т. 48. С. 363.

- Christensen S.P., Olson J.D. Phase equilibria and multiple azeotropy of the acetic acid-isobutyl acetate system // Fluid Phase Equilib. 1992. V. 79. P. 187–199. https://doi.org/10.1016/0378-3812(92)85129-V
- 34. Burguet M.C., Montón J.B., Muñoz R., Wisniak J., Segura H. Polyazeotropy in Associating Systems: The 2-Methylpropyl Ethanoate + Ethanoic Acid System // J. Chem. Eng. Data. 1996. V. 41. p. 1191–1195. https://doi.org/10.1021/je960159k
- 35. Zhang C., Wan H., Xue L., Guan G. Investigation on isobaric vapor liquid equilibrium for acetic acid + water + (n-propyl acetate or iso-butyl acetate) // Fluid Phase Equilib. 2011. V. 305. P. 68–75. https://doi.org/10.1016/j.fluid.2011.03.006
- 36. Челюскина Т.В., Митюшкина И.А., Чернышова М.А., Фролкова А.К. Математическое моделирование эволюции биазеотропии в системе изобутилацетат – уксусная кислота // Вестник МИТХТ. 2011. Т. 6. С. 47.
- Челюскина Т.В., Митюшкина И.А., Фролкова А.К., Чернышова М.А. Разделение биазеотропных смесей с использованием легколетучих дополнительных веществ // Химическая технология. 2011. Т. 12. С. 730.
- 38. Серафимов Л.А., Челюскина Т.В., Полковниченко А.В., Якушев Р.А. Анализ взаимных преобразований структур диаграмм трехкомпонентных систем путем образования бинарных внутренних тангенциальных азеотропов // Теоретические основы химической технологии. 2018. Т. 52. С. 636–648. https://doi.org/10.1134/S0040357118040061
- 39. Серафимов Л.А., Челюскина Т.В., Якушев Р.А. Термодинамико-топологический анализ образования внутренних тангенциальных азеотропов в бинарных двухфазных системах // Тонкие химические технологии. 2015. Т. 10. С. 41.
- Sánchez C.A., Sánchez O.A., Orjuela A., Gil I.D., Rodríguez G. Vapor–Liquid Equilibrium for Binary Mixtures

of Acetates in the Direct Esterification of Fusel Oil // J. Chem. Eng. Data. 2017. V. 62. P. 11–19. https://doi.org/10.1021/acs.jced.6b00221

 Osorio-Viana W., Duque-Bernal M., Quintero-Arias J.D., Dobrosz-Gómez I., Fontalvo J., Gómez-García M.Á. Activity model and consistent thermodynamic features for acetic acid–isoamyl alcohol–isoamyl acetate–water reactive system // Fluid Phase Equilib. 2013. V. 345. P. 68–80.

https://doi.org/10.1016/j.fluid.2013.02.006

- Wittig R., Lohmann J., Gmehling J. Vapor-Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension // Ind. Eng. Chem. Res. 2003. V. 42. P. 183.
- 43. Челюскина Т.В., Полковниченко А.В., Модурова Д.Д. Расширение классификации трехкомпонентных систем, содержащих бинарные биазеотропные составляющие и не имеющих тройных азеотропов // Теоретические основы химической технологии. 2020. Т. 54. С. 738.
- 44. Серафимов Л.А. Термодинамико-топологический анализ диаграмм гетерогенного равновесия многокомпонентных смесей // Журн. физической химии. 2002. Т. 76. С. 1351.
- Patidar P., Mahajani S.M. Esterification of fusel oil using reactive distillation – Part I: Reaction kinetics // Chemical Engineering J. 2012. V. 207–208. P. 377–387. https://doi.org/10.1016/j.cej.2012.06.139
- 46. *Huang X.* Modeling and Optimization of Acetic Acid Dehydration Process in Industrial Heterogeneous Azeotropic Distillation. PhD Thesis, East China University of Science and Technology, Shanghai 2014.
- 47. *Gao H., Zhao F., Zhu L., Yang F., Wang Y., Li D.* Dehydration of a Dilute Acetic Acid-Water Mixture via Batch Heteroazeotropic Distillation // Chem. Eng. Technol. 2021. V. 44. P. 477–487.