УДК 66.069.82

ПОЛУЭМПИРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ СКОРОСТЕЙ ФАЗ ПРИ ПСЕВДООЖИЖЕНИИ И ОСАЖДЕНИИ В АВТОМОДЕЛЬНОЙ ОБЛАСТИ

© 2023 г. А. М. Трушин^{а,} *, М. А. Носырев^а, Л. В. Равичев^а, С. И. Фролова^а, Л. С. Сальникова^а, В. Е. Яшин^а

^аРоссийский химико-технологический университет им. Д.И. Менделеева, Москва, Россия *e-mail: vnissok@list.ru Поступила в редакцию 30.03.2023 г. После доработки 10.04.2023 г.

Принята к публикации 20.04.2023 г.

Получено выражение для определения безразмерной скорости в процессах осаждения и псевдоожижения для сферических, цилиндрических и кубических частиц в автомодельной области.

Ключевые слова: безразмерная скорость осаждения, псевдоожижения, порозность, сферические, и несферические частицы, автомодельная область движения

DOI: 10.31857/S0040357123040140, EDN: VJTNVR

введение

В расчетах аппаратуры процессов со взвешенным слоем безразмерная приведенная скорость жидкости (отношение приведенной скорости жидкости к скорости витания) в однородном псевдоожиженном слое сферических и несферических частиц в автомодельной области движения (Re > 500) определяется по эмпирическим степенным зависимостям от порозности слоя полученным экспериментальным путем без теоретических предпосылок [1]. Безразмерная скорость стесненного осаждения сферических частиц (отношение скорости стесненного движения к скорости одиночной частицы)в поле силы тяжести в силу аналогии осаждения и псевдоожижения может определяться по тем же степенным зависимостям от порозности.

Целью данной работы является определение безразмерных скоростей в процессах осаждения и псевдоожижения в автомодельной области полуэмпирическим путем, основанным на уравнении гидродинамики внешней задачи определяющего силу сопротивления при движении частицы в жидкости.

СКОРОСТЬ ОСАЖДЕНИЯ СФЕРИЧЕСКИХ ЧАСТИЦ

Получим в общем виде безразмерную скорость осаждения на основе баланса сил. При свободном осаждении сферической частицы равновесие сил приводит к следующему уравнению:

$$\frac{3}{4}\xi_0 \frac{\rho w_0^2}{d} = (\rho_{\pi} - \rho_c)g.$$
 (1)

При составлении баланса сил для стесненного осаждения примем следующие допущения:

1) порозность равномерно распределена по слою дисперсных частиц;

2) сопротивление, испытываемое группой частиц равно сумме сопротивлений, рассчитанных для каждой частицы подобным методом, как и для одиночной частицы. При этом коэффициент сопротивления ξ_0 заменяется на ξ_{cr} , учитывающий изменение поля скоростей и давлений, а также столкновение частиц при стесненном движении. Скорость движения частицы относительно стенок аппарата w_0 заменяется на относительную скорость фаз w_{ort} ;

3) выталкивающая сила Архимеда становится пропорциональной плотности слоя, а не плотности сплошной фазы как в случае одиночной частицы.

Из второго и третьего допущений получим баланс сил для каждой частицы слоя:

$$\xi_{\rm cr} \frac{\pi d^2}{4} \frac{w_{\rm or}^2 \rho}{2} = \frac{\pi d^3}{6} (\rho_{\rm \pi} - \rho_{\rm c\pi}) g.$$
 (2)

Относительная скорость фаз может быть выражена через скорость движения частиц относительно стенок аппарата и порозность:

$$w_{\rm ot} = \frac{w_{\rm ct}}{\varepsilon}.$$
 (3)

Разницу плотностей частиц и слоя можно представить следующим образом:

$$(\rho_{\pi} - \rho_{c\pi}) = \varepsilon (\rho_{\pi} - \rho_{c}). \tag{4}$$

Из уравнений (2)-(4) получим:

$$\frac{3}{4}\xi_{\rm cr}\frac{w_{\rm cr}^2\rho}{\epsilon^2 d} = \epsilon(\rho_{\rm g}-\rho_{\rm c})g.$$
 (5)

Почленное деление уравнений (1) и (5) приводит к следующему выражению для безразмерной скорости стесненного осаждения:

$$\frac{w_{\rm cr}}{w_0} = \left(\varepsilon^3 \frac{\xi_0}{\xi_{\rm cr}}\right)^{0.5}.$$
 (6)

Эмпирическая зависимость, связывающая безразмерную приведенную скорость жидкости в однородном псевдоожиженном слое с порозностью в автомодельной области, имеет следующий вид [1]:

$$\frac{w_{\rm np}}{w_{\rm BWT}} = \varepsilon^{2.4}.$$
 (7)

В силу аналогии однородного псевдожижения и осаждения эта зависимость сохраняется и для безразмерной скорости осаждения:

$$\frac{w_{\rm cr}}{w_0} = \varepsilon^{2.4}.\tag{8}$$

Ввиду того, что коэффициент сопротивления для одиночной частицы (ξ_0) применяется в расчетах постоянной величиной (в интервале 0.43–0.5), коэффициент сопротивления при осаждении в стесненных условиях согласно уравнениям (6) и (8) должен выражаться следующим образом:

$$\xi_{\rm cr} = \frac{\xi_0}{\epsilon^{1.8}}.\tag{9}$$

Полученное выражение для коэффициента сопротивления при движении в стесненных условиях очевидно справедливо лишь при равномерном распределении порозности в слое осаждающихся частиц (первое допущение). Поскольку есть многочисленные данные о том, что при осаждении, всплытии пузырьков и псевдоожижении наблюдается групповое движение частиц дисперсной фазы [1–6], причем локальная объемная доля дисперсных частиц в группах ($\phi_{\rm лок}$) превышает среднюю по слою долю (ϕ), а локальная порозность соответственно меньше средней, уравнения (6) и (9) для группового движения неприменимы.

По данным работы [3] среднее соотношение локальной и средней доли твердых частиц (B) при осаждении в интервале значений φ (0–0.6) составляет 1.14. Принимая приближенно среднее соотношение локальной и средней доли твердой фазы постоянным для всех величин порозности, получим выражение для локальной порозности в осаждающихся группах частиц.

$$\varepsilon_{\text{лок}} = [1 - (1 - \varepsilon)1.14]. \tag{10}$$

Для группового осаждения частиц уравнение (6) сохраняет свой вид при замене средней порозности на локальную. В связи с этим возникает необходимость найти зависимость ξ_{cr} от локальной порозности. Поскольку общие закономерности осаждения в слое немного более концентрированным по твердой фазе не претерпят сильных изменений, можно предположить, что зависимость ξ_{cr} от локальной порозности также имеет вид степенной функции:

$$\xi_{\rm cr} = \frac{\xi_0}{\varepsilon_{\rm nok}^n}.$$
 (11)

Уравнение (11) также как уравнение (9) соответствуют граничному условию при переходе от стесненного осаждения к свободному: $\xi_{cr} = \xi_0$ при $\varepsilon = \varepsilon_{\pi\sigma\kappa} = 1$.

Показатель степени n в уравнении (11) можно найти по методу наименьших квадратов:

$$\frac{d}{dB}\left\{\int_{0.44}^{1} \left[\varepsilon^{2.4} - \left[1 - (1 - \varepsilon)B\right]^{(3+n) \times 0.5}\right]^2 d\varepsilon\right\} = 0. \quad (12)$$

Решением уравнения (12) относительно B при различных значениях показателя степени n позволило найти величину n равной единице при условии равенства значения B (с небольшим приближением) ранее найденному соотношению локальной и средней доли твердой фазы (B = 1.14).

Таким образом, из уравнения (6), где средняя порозность заменяется на локальную, а также уравнений (8), (12) получен следующий результат: безразмерная скорость осаждения сферических частиц в автомодельной области равна локальной порозности в квадрате:

$$\frac{w_{\rm cr}}{w_0} = \left[1 - (1 - \varepsilon) \times 1.14\right]^2.$$
 (13)

Ввиду того, что уравнение (13) получено при приближенном равенстве отношений локальной доли твердой фазы к средней, полученных из уравнения (12), а также с учетом допущения о выражении коэффициента сопротивления ξ_{cr} в виде степенной функции от локальной порозности, было проведено сравнение величин безразмерных скоростей осаждения рассчитанных по уравнению (13) и уравнению (8) полученному обработкой экспериментальных данных. Результаты сравнительных расчетов приведены в табл. 1. Коэффициенты детерминации, найденные при сравнении расчетов по уравнения (8) и (13) составляют 0.9997.

СКОРОСТЬ ОСАЖДЕНИЯ НЕСФЕРИЧЕСКИХ ЧАСТИЦ

В силу аналогии осаждения и псевдоожижения при равномерном распределении порозности в слое безразмерную скорость осаждения частиц

	Коэффициент детерминации		0.9997		0.9994		9666.0		0.9997		0.9997		8666.0		9666.0	
		0.95	0.8840	0.8890	0.8890	0.8810	0.8890	0.8830	0.8890	0,8840	0.8890	0.8849	0.8890	0.8860	0.8810	0.8870
	Порозность, ε	0.90	0.7765	0.7850	0.7850	0.7709	0.7850	0.7746	0.7850	0.7765	0.7850	0.7779	0.7850	0.7796	0.7709	0.7814
		0.85	0.6770	0.6872	0,6872	0.6695	0.6872	0,6744	0.6872	0.6770	0.6872	0.6782	0.6872	0.6810	0.6695	0.6822
		0.80	0.5853	0.5960	0.5960	0.5764	0.5960	0.5822	0.5960	0.5863	0.5960	0.5874	0.5960	0.5902	0.5764	0.5898
		0.75	0.5013	0.5112	0.5112	0.4915	0.5112	0.4979	0.5112	0.5013	0.5112	0.5040	0.5112	0.5067	0.4915	0.5041
		0.70	0.4250	0.4330	0.4330	0.4145	0.4330	0,4213	0.4330	0.4250	0.4330	0.4273	0.4330	0.4305	0.4145	0.4251
		0.65	0.3556	0.3612	0.3612	0.3452	0.3612	0.3520	0.3612	0.3556	0.3612	0.3581	0.3612	0.3613	0.3452	0.3528
		0.60	0.2930	0.2960	0.2960	0.2883	0.2960	0.2889	0.2960	0.2930	0.2960	0.2959	0.2960	0.2990	0.2883	0.2873
		0.55	0.2382	0.2372	0.2372	0.2285	0.2372	0.2348	0.2372	0.2387	0.2372	0.2404	0.2372	0.2435	0.2285	0.2285
		0.50	0.1895	0.1849	0.1849	0.1806	0.1849	0.1863	0.1849	0.1895	0.1849	0.1915	0.1849	0.1943	0.1806	0.1764
		0.44	0.1394	0.1308	0.1308	0.1317	0.1308	0.1367	0.1308	0.1394	0.1308	0.1413	0.1308	0.1437	0.1317	0.1228
autopiton	Расчетная формула		8	13	13	14	13	14	13	14	13	14	13	14	14	16
denn atont	Форма частиц							L/d = 2		L/d = 2.5		L/d=3		L/d = 4		
			Сфера	Сфера	Сфера	Ky6	Сфера	Цилиндр	Сфера	Цилиндр	Сфера	Цилиндр	Сфера	Цилиндр	Ky6	Ky6
Tavilla	Номер	смеси	-		0		ε		4		S		9		7	

Таблица 1. Зависимость безразмерной скорости осаждения от порозности слоя

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 57 № 4 2023

410

ТРУШИН и др.

цилиндрической и кубической формы в автомодельной области можно определить по степенной зависимости, полученной для процесса псевдоожижения [1]:

$$\frac{w_{\rm cT}}{w_0} = \varepsilon^m. \tag{14}$$

Показатель степени *m* определяется по следующей формуле:

$$m = 2.7 \left[\frac{\pi}{6} \left(\frac{d_s}{d_p} \right)^3 \right]^{0.16},$$
 (15)

где d_s — диаметр сферы с поверхностью равной поверхности несферической частицы; d_p — диаметр круга, равного по площади миделевому сечению частицы.

Уравнение (13) полученное для сферических частиц, может быть использовано и для несферических (кубических и цилиндрических) при условии равенства коэффициентов формы (отношений скорости осаждения несферических и сферических частиц для свободного и стесненного осаждения). В этом случае при почленном делении уравнений (1) и (5) получится тоже уравнение (б). Кроме того, необходимо, чтобы коэффициент В оставался прежним (1.14). Эти условия достаточно хорошо выполняются для цилиндрических частиц при соотношениях длины и диаметра больше двух. Результаты безразмерных скоростей, рассчитанных по уравнениям (13) и (14) при этом условии достаточно близки (коэффициенты детерминации составляют 0.9996-0.9998).

В случае кубических частиц величина *B*, характеризующая объединение частиц в группы должна быть больше 1.14, так как при столкновении частиц кубической формы возможно их объединение по плоскостям граней, поэтому коэффициент 1.14 для этого случая в уравнении (13) заменен на 1.16. Таким образом, для кубических частиц предлагается следующее выражение:

$$\frac{w_{\rm cr}}{w_0} = \left[\left(1 - (1 - \varepsilon) \times 1.16 \right) \right]^2.$$
(16)

Сравнению безразмерных скоростей, определенных по уравнениям (14) и (16) соответствует коэффициент детерминации 0.9996.

Исходя из вышеизложенного, безразмерные скорости частиц при осаждении и жидкости при псевдоожижении могут быть определены по уравнению:

$$\frac{w_{\rm cr}}{w_0} = \frac{w_{\rm np}}{w_{\rm BMT}} = \left[\left(1 - (1 - \varepsilon) B \right) \right]^2, \tag{17}$$

где B = 1.14 для сферических и цилиндрических частиц при указанных выше соотношениях L/d; B = 1.16 для кубических частиц.

ЗАКЛЮЧЕНИЕ

С учетом неравномерного распределения порозности в слое осаждающихся и псевдоожиженных частиц, безразмерная скорость стесненного осаждения и безразмерная приведенная скорость жидкости при псевдоожижении могут быть приравнены локальной порозности в квадрате. Такая полуэмпирическая зависимость найдена для сферических, кубических и цилиндрических частиц.

ОБОЗНАЧЕНИЯ

- ξ₀ коэффициент сопротивления при свободном осаждении
- ξ_{ст} коэффициент сопротивления при стесненном осаждении
- ε средняя доля сплошной фазы (порозность), м³/м³
- $\epsilon_{\text{лок}}$ локальная порозность, m^3/m^3
- g ускорение свободного падения, м/с²
- w_0 скорость движения одиночной частицы, м/с
- w_{ст} скорость стесненного движения частиц дисперсной фазы, м/с
- *w*_{от} относительная скорость фаз, м/с
- ρ_д плотность частицы, кг/м³
- ρ_c плотность сплошной фазы, кг/м³
- ρ_{сл} плотность слоя, кг/м³
- *n* показатель степени
- В отношение локальной доли дисперсной фазы к средней доле, м³/м³

СПИСОК ЛИТЕРАТУРЫ

- 1. *Davidson J., Harrison F.* Fluidization. Academic Press. London and New York. 1971. P. 847.
- Couper J.R., Penney W.R., Fair J.R., Walas S.M. // Gulf professional publishing. 2005. P. 801
- 3. *Trushin A.M., Dmitriev E.A., Nosyrev M.A.* The Use of the Variation Method to Define the Velocity of Constrained Turbulent Motion of Disperse Particles in Liquid // Theor. Found. Chem. Eng. 2017. V. 51. № 2. Р. 155–158. [*Трушин А.М., Дмитриев Е.А., Носырев М.А.* Использование вариационного метода для определения скорости стесненного турбулентного движения дисперсных частиц в жидкости // Теорет. основы хим. технологии. 2017. Т. 51. № 2. С. 86–89].
- 4. *Giusti A., Lucci F., Soldati A.* Influence of the lift force in direct numerical simulation of upward/downward turbulent channel flow laden with surfactant contaminated microbubbles // Chemical Engineering Science V. 60. № 6. P. 6176–6187
- 5. *Bakker P.J., Heerties P.M.* Porosity distributions in a fluidized bed // Chemical Engineering Science V. 12. Nº 4. 1960. P. 260–271
- 6. *Равичев Л.В., Беспалов А.В.* К расчету порозности псевдоожиженного зернистого катализаторного слоя // Химическая промышленность сегодня. 2007. № 1. С. 4–9.