УДК 550.4.46(575.2)

ВОЗМОЖНОСТИ ПРОГНОЗИРОВАНИЯ И ОЦЕНКИ УГЛЕРОДНОГО СЛЕДА В ПРОЦЕССЕ СЖИГАНИЯ МАЗУТА В КОТЛОАГРЕГАТАХ СРЕДНЕЙ И МАЛОЙ МОЩНОСТИ

© 2023 г. Т. З. Маймеков^{*a*, *}, Д. А. Самбаева^{*b*}, М. Б. Молдобаев^{*c*}, Т. С. Бажиров^{*d*}, З. К. Маймеков^{*c*, *}

^аМосковский физико-технический институт, г. Долгопрудный, Россия ^bКыргызский государственный технический университет им. И. Раззакова, г. Бишкек, КР ^cКыргызско-Турецкий университет "Манас", г. Бишкек, КР ^dЮжно-Казахстанский государственный университет им. М. Ауэзова, г. Шымкент, РК *e-mail: zarlyk.maymekov@manas.edu.kg Поступила в редакцию 18.07.2023 г. После доработки 19.07.2023 г. Принята к публикации 23.07.2023 г.

С целью прогнозирования и оценки величины углеродного следа в газовой фазе изучен процесс окисление мазута в избытке воздуха (альфа-фактор 1.3) в широких пределах изменения температуры (T = 298-3000 K, P = 0.1 МПа). Рассчитаны равновесные термодинамические параметры (энтропия, энтальпия и внутренняя энергия) и определены концентрационные распределения C, S, N, O, H – содержащих компонентов и активных частиц в газовой фазе. На основе суммарного концентрационного распределения C, S, N, O, H – содержащих компонентов и активных частиц в газовой фазе. На основе суммарного концентрационного распределения C, S, N, O, H – содержащих компонентов и активных частиц в газовой фазе в газовой фазе. Разовой фазе в газовой фазе. Результаты работы позволили оценить величины углеродного следа в газовой фазе в процессе горения топлива, в частности мазута в воздухе. Снижение техногенной нагрузки оксидов углерода (CO, CO₂) в газовой фазе достигнуто модифицированием и сжиганием мазута в виде обратных водомазутных эмульсий в промышленных котлоагрегатах типа E-1/9M.

Ключевые слова: мазут-воздух, концентрационное распределение, газовая фаза, техногенная нагрузка, углеродный след

DOI: 10.31857/S0040357123050147, EDN: MFXFSS

введение

В настояшее время оценка величины углеродоемкости осуществляется на основе анализа межстрановых таблиц "затраты-выпуск" с учетом продукции по видам экономической деятельности (экспорта и импорта выбросов) [1]. При этом расчеты производятся по трем категориям (Scope 1, 2 и 3). Прямые выбросы (Scope 1) от: собственной генерации энергии (пара. тепла): производственных процессов; обращения с отходами, а также фугитивные выбросы (организованные постоянные или залповые выбросы) в результате удаления технологических газов, например, метана. Энергетические выбросы (Scope 2) – выбросы парниковых газов в атмосферу в результате производства потребленной компанией электроэнергии, пара, тепла и холода (энергии для охлаждения, и энергия, которая закупается, а не генерируется на собственных мощностях). Косвенные выбросы (Scope 3) – прочие выбросы парниковых газов, образованных в результате эксплуатации транспортных средств; выбросы от складирования продукции в сторонних логистических центрах, энергия, потребляемая при использовании клиентами продукции компании, выбросы парниковых газов от утилизации отходов продукции [2, 3].

Совокупность указанных выше выбросов парниковых газов, прямо и косвенно произведенных организацией или продуктом составляет ее (его) углеродный след (англ.: carbon footprint) [4]. С целью реализации этой задачи страны составляют национальные кадастры по техногенным нагрузкам потоков [1]. Задача сложная, поскольку требуется строгий учет удельных прямых выбросов парниковых газов при производстве продукции, величины которых определяются: с учетом годо-

Рис. 1. Схема расчета углеродного следа для системы мазут-воздух.

вого объема прямых выбросов при производстве продукции (тСО₂экв); годового объема производства продукции (тонн): число и вида использованного топлива; фактического годового потребления каждого вида топлива в условных единицах при производстве продукции (т. усл. т); коэффициентов выбросов (CO2, CH4, N2O) при сжигании каждого вида топлива; множителей потенциалов глобального потепления парниковых газов. Здесь возможны два основных способа оценки углеродного следа: прямой расчет углеродного следа продукции; расчет по бенчмаркам (эталонным значениям) [5–13]. Соответственно, требуется строгие методы осуществления химической диагностики и анализа концепций наилучших доступных технологий и зеленой химии [14, 15].

Исходя из изложенных выше положений, в настоящей работе осуществлено термодинамическое моделирование системы [16–21]: жидкое топливо-воздух при избытке окислителя (альфафактор 1.3) в широких пределах изменения температуры (T = 298-3000 K, P = 0.1 МПа) с целью прямого расчета углеродного следа на основе концентрационного распределения: конденсированных веществ; C, S, N, O, H – содержащих компонентов и активных частиц в газовой фазе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе рассмотрена система по схеме (рис. 1): жидкое топливо-воздух при среднем химическом составе топочного мазута (%): C(83-87), H(10-12), S(1-3.5), N + O(0.2-0.9) с избыточным количеством воздуха (альфа-фактор 1.3); общая химическая матрица расчетной модели включила (%): (C - 84.8) + (H - 11.2) + (S - 2.0) + (N - 0.5) + + (O - 1.5) + (O - 3.3) + (N - 12.43); (моль/кг) C - 61.006, H - 96.018, S - 0.539, N - 7.977, O - 2.592.

В расчетных экспериментах использовано термодинамическое моделирование процесса окисление топочного мазута при максимуме энтропии системы на основе программного комплекса "Терра" в широких пределах изменения температуры (T = 298 - 3000 K, P = 0.1 МПа) [22, 23].

Модифицирование топочного мазута в виде водомазутных эмульсий в промышленных котлоагрегатах типа Е-1/9М с целью снижения концентрации вредных веществ осуществлено составлением принципиальной технологической схемы (рис. 3) приготовления обратных эмульсий с оптимальным количеством воды в мазуте (15%), которое не приводит к его обводнению [16, 21]. Размеры частиц водомазутной эмульсии (9-60 мкм) найдены методом седиментационного анализа с использованием торзионного веса модификации BT-500. Отбор пробы из дымовой трубы осуществлен газоуловителем типа Vortex Ultra Flow, мультифункциональным газоанализатором Visit 01-L/LR, а также переносным газоанализатором типа УГ-2. Пробы анализированы по стандартной методике 5506 и 5515 "NIOSH Manual of Analytical Methods" с последующим использованием

Рис. 2. Концентрационное распределение С, S, O, H, N – содержащих частиц, молекул и конденсированной фазы (моль/кг) в газовой фазе в зависимости от температуры окисления системы: мазут–воздух, *T* = 298–3000 K, *P* = 0.1 МПа.

гравиметрических методов для определения содержание сажи в дымовых газах котлоагрегатов типа E-1/9M [16].

На основе определения суммарного концентрационного распределения С, S, N, O, H – содержащих компонентов и активных частиц в газовой фазе рассчитано весовое содержание углерода. С учетом химической матрицы системы мазут—воздух и весового содержания углерода осуществлена оценка величины углеродного следа в газовой фазе при температурах (K): 298, 798 и 1298.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В процессе окисления мазута в воздухе (T == 298-3000 K, P = 0.1 МПа) образуются углеродсодержащие конденсированные фазы, простые и сложные компоненты и активные частицы (табл. 1). Кривые их распределения (рис. 2) позволили оценить равновесные данные молекул и частиц, на основе которых были рассчитаны общие весовые содержания углерода в газовой фазе по схеме: например, CS (*M* = 44 г-моль) в кг газовой фазе: из табл. 1 видно, что CS = 1.93 × 10⁻²² моль, или 8.5×10^{-21} г. При этом количество углерода в CS равно: 8.5 × 10⁻²¹ × 12/44 = 2.3 × 10⁻²¹ г. Аналогичным образом рассчитаны содержание углерода во всех компонентах и частицах. содержашихся в газовой фазе (P = 0.1 МПа, T = 298, 798, 1298 K, табл. 2): CS, CS₂, COS, CO, CS₂, CO₂, C₂O, C₃O₂, C(c), C, C₂, C₃, C₄, C₅, CH, CH, CH₃, CH₄, C₂H,

 C_2H_3 , C_2H , C_2H_5 , C_2H_6 , C_3H , C_3 , C_3H_6 , C_3H_8 , C_4H , C_4H_2 , C_4H_4 , C_4H_6 , C_4H_{10} , C_5H_6 , C_6H_6 , CHO, CHO, C_3HN , C_5HN , C_7HN , C_9HN , N_2C , C^+ , C_2^+ , C_2^- , CO^+ , CH^+ , CHO^+ , CN^- .

Из табл. 2 видно, что общее содержание углерода (С) в дымовом газе составляет: T = 298 K, 489.62 г; T = 798 K, 590.33 г; T = 1298 K, 732.01 г. Исходный элементный химический состав мазута представлен в виде (%): С (83–87), Н (10–12), S (1–3.5), N + O (0.2–0.9). Химическая матрица системы мазут–воздух (альфа-фактор = 1.3): (С – 84.8) + + (H – 11.2) + (S – 2.0) + (N – 0.5) + (O – 1.5) + + (O – 3.3) + (N – 12.43); в моль/кг: С – 61.006, H – 96.018, S – 0.539, N – 7.977, O – 2.592.

С учетом содержание углерода в исходном мазуте: С – 61.006 моль/кг, или 732 г С найдена расчетная величина углеродного следа (техногенная нагрузка) в газовой фазе при различных температурах: T = 298 K, 489.62/732 = 0.67; T = 798 K, 590.33/732 = 0.8; T = 1298 K, 732.01/732 = 1. Таким образом, величина углеродного следа изменяется от 0.67 до 1. Здесь следует заметить, что при высоких температурах, практически равной теоретической температуре горения топливо, углеродная техногенная нагрузка максимальная, т.е. равна единице.

С целью снижения техногенной нагрузки вредных веществ, в том числе сажи и оксидов углерода (CO, CO₂) в газовой фазе изучены процессы приготовления и сжигания водомазутной

Рис. 3. Принципиальная технологическая схема приготовления и сжигания водомазутной эмульсии в котлоагрегатах типа E-1/9-M: I – подогреватель мазута; II, III, IV – фильтры грубой очистки; V, VI, VII – фильтры тонкой очистки; VII, IX – роторно-пульсационные аппараты; X – бак для воды; *1–20, 22–24, 26–29* – вентили; *21, 25* – обратные клапаны.

эмульсии, и полученные расчетные результаты апробированы согласно разработанной принципиальной технологической схеме в котлоагрегатах типа Е-1/9М Мостостроительного отряда Кыргызской железной дороги, г. Бишкек (рис. 3, табл. 3-5). По схеме (рис. 3) мазут после прохождения подогревателя мазута, фильтров грубой и тонкой очистки, насосами подаются роторнопульсационные аппараты (РПА) [15, 20]. Вода из бака поступает в РПА и на основе смеси, состоящей из 85% мазута и 15% воды образуются полидисперсные водомазутные эмульсии и они направляются в зону горения. Управление расхода потоков на трубопроводах осуществляется вентилями и обратными клапанами. Технические характеристики установки: электродвигатель, кВт (об/мин) 4.0 (1500); расход мазута, 0.1–0.15 м³/ч; расход воды, 0.01-0.015 м³/ч; температура воды и ВМЭ, 40-45°С (прерывистая линия (рис. 3) – путь водомазутной эмульсии) [16, 21].

Измерения и расчет концентраций загрязняющих веществ в дымовых газах проводили в процессах сжигания мазута (табл. 3) и водомазутных эмульсий (табл. 4) с учетом параметров дымовой трубы: H = 18 м, D = 0.5 м, объема газовоздушной смеси $V_{\text{g.m.}} = 0.889 \text{ м}^3/\text{с}$, температуры дымовых газов $t_{\text{f.g.}} = 220^{\circ}\text{C}$, скорости осаждения частиц F = 1, скорости ветра v = 5.0 м/c [16].

Процессы приготовления и сжигания водомазутной эмульсии, апробированные на промышленных котлоагрегатов типа E-1/9-1M показали снижения концентраций оксидов азота, углерода, углеводородов нефти и сажи при сжигании водомазутной эмульсии в среднем на 63–75%, а диоксида серы незначительно (4.06%). Результаты проведенных исследований показывают, что в эмульсиях обратного типа (вода в мазуте), когда вода в виде мельчайших капелек диаметром 9–60 мкм равномерно распределена по всей массе мазута, способствует более эффективному процессу сгорания жидкого топлива, снижению сажеобразования и уменьшению содержания в выбросах C, S, O, H, N – содержащих вредных веществ (табл. 3–5) [16].

Сравнение термодинамических параметров системы: мазут—воздух и мазут—вода—воздух показали высоких значений энтропии в обратной эмульсии (табл. 6), обусловленные более хаотичным движением взаимодействующих частиц [16].

МАЙМЕКОВ и др.

Таблица 1. Концентрационное распределение углеродсодержащих частиц, молекул и конденсированной фазы (моль/кг) в газовой фазе в зависимости от температуры окисления системы: мазут–воздух, *T* = 298–3000 K, *P* = 0.1 МПа

Молекулы и	Температура, К							
частицы	298	798	1298	1798	2298	2798	2998	
CS	1.9×10^{-22}	2.4×10^{-13}	6.3×10^{-6}	1.3×10^{-2}	2.9×10^{-1}	4.8×10^{-1}	4.9×10^{-1}	
CS ₂	3.7×10^{-17}	7.3×10^{-8}	3.1×10^{-4}	1.8×10^{-2}	1.7×10^{-2}	9.0×10^{-4}	3.2×10^{-4}	
COS	2.1×10^{-9}	2.7×10^{-4}	1.2×10^{-3}	1.0×10^{-3}	3.1×10^{-4}	3.3×10^{-5}	1.7×10^{-5}	
СО	7.5×10^{-12}	1.8×10^{-1}	2.5	2.5	2.5	2.5	2.5	
CO ₂	2.1×10^{-3}	9.2×10^{-2}	6.4×10^{-4}	9.3×10^{-6}	9.1×10^{-7}	2.1×10^{-7}	1.6×10^{-7}	
C ₂ O	1.9×10^{-22}	1.9×10^{-22}	9.7×10^{-15}	3.3×10^{-10}	1.2×10^{-7}	5.6×10^{-6}	1.5×10^{-5}	
C ₃ O ₂	1.9×10^{-22}	2.2×10^{-18}	4.5×10^{-13}	1.2×10^{-11}	8.0×10^{-11}	2.6×10^{-10}	3.1×10^{-10}	
C _(c)	38.56	47.68	58.10	58.23	56.52	7.51	5.7×10^{-29}	
С	1.9×10^{-22}	1.9×10^{-22}	1.1×10^{-19}	1.3×10^{-11}	4.4×10^{-7}	3.6×10^{-4}	2.4×10^{-3}	
C ₂	1.9×10^{-22}	1.9×10^{-22}	2.3×10^{-22}	4.6×10^{-13}	7.5×10^{-8}	1.6×10^{-4}	1.2×10^{-3}	
C ₃	1.9×10^{-22}	1.9×10^{-22}	3.1×10^{-21}	5.8×10^{-12}	8.8×10^{-7}	1.7×10^{-3}	1.0×10^{-2}	
C ₄	1.9×10^{-22}	1.9×10^{-22}	1.9×10^{-22}	7.6×10^{-17}	2.2×10^{-10}	3.1×10^{-6}	2.9×10^{-5}	
C ₅	1.9×10^{-22}	1.9×10^{-22}	1.9×10^{-22}	2.5×10^{-16}	1.0×10^{-9}	1.6×10^{-5}	1.3×10^{-4}	
CH	1.9×10^{-22}	1.9×10^{-22}	3.3×10^{-17}	1.5×10^{-10}	8.4×10^{-7}	2.0×10^{-4}	8.9×10^{-4}	
CH ₂	1.9×10^{-22}	4.5×10^{-22}	5.7×10^{-12}	1.0×10^{-7}	2.5×10^{-5}	7.5×10^{-4}	1.7×10^{-3}	
CH ₃	1.9×10^{-22}	7.7×10^{-10}	7.7×10^{-6}	2.5×10^{-4}	1.7×10^{-3}	4.7×10^{-3}	5.0×10^{-3}	
CH ₄	22	13	3.2×10^{-1}	3.2×10^{-2}	8.9×10^{-3}	3.0×10^{-3}	1.6×10^{-3}	
C ₂ H	1.9×10^{-22}	1.9×10^{-22}	1.4×10^{-13}	1.2×10^{-7}	2.8×10^{-4}	3.7×10^{-2}	1.1×10^{-1}	
C_2H_2	1.9×10^{-22}	2.5×10^{-11}	2.8×10^{-5}	8.7×10^{-3}	2.1×10^{-1}	1.4	1.7	
C_2H_3	1.9×10^{-22}	1.1×10^{-15}	6.9×10^{-9}	3.8×10^{-6}	1.2×10^{-4}	9.4×10^{-4}	1.1×10^{-3}	
C_2H_4	3.2×10^{-20}	1.7×10^{-6}	6.8×10^{-5}	1.7×10^{-4}	2.7×10^{-4}	2.8×10^{-4}	1.8×10^{-4}	
C_2H_5	1.9×10^{-22}	3.3×10^{-12}	3.1×10^{-9}	2.8×10^{-8}	9.1×10^{-8}	1.3×10^{-7}	9.4×10^{-8}	
C_2H_6	4.1×10^{-7}	1.7×10^{-4}	3.0×10^{-6}	1.9×10^{-7}	4.0×10^{-8}	9.5×10^{-9}	3.7×10^{-9}	
C ₃ H	1.9×10^{-22}	1.9×10^{-22}	6.4×10^{-13}	9.2×10^{-7}	2.5×10^{-3}	3.8×10^{-1}	1.0	
C_3H_4	1.9×10^{-22}	3.4×10^{-20}	7.1×10^{-13}	6.3×10^{-10}	2.7×10^{-8}	2.3×10^{-7}	2.4×10^{-7}	
C_3H_6	1.9×10^{-22}	2.3×10^{-13}	1.2×10^{-11}	3.0×10^{-11}	4.8×10^{-11}	4.3×10^{-11}	2.1×10^{-11}	
C_3H_8	4.2×10^{-13}	1.1×10^{-8}	8.2×10^{-11}	2.9×10^{-12}	4.0×10^{-13}	5.7×10^{-14}	1.5×10^{-14}	
C_4H	1.9×10^{-22}	1.9×10^{-22}	4.3×10^{-20}	8.4×10^{-12}	3.7×10^{-7}	3.2×10^{-4}	1.2×10^{-3}	
C_4H_2	1.9×10^{-22}	1.3×10^{-20}	4.6×10^{-10}	1.3×10^{-5}	4.3×10^{-3}	1.4×10^{-1}	2.0×10^{-1}	
C_4H_4	1.9×10^{-22}	1.9×10^{-22}	4.3×10^{-17}	6.1×10^{-13}	1.2×10^{-10}	2.9×10^{-9}	3.4×10^{-9}	
C_4H_6	1.9×10^{-22}	3.9×10^{-19}	8.6×10^{-15}	2.9×10^{-13}	2.1×10^{-12}	5.0×10^{-12}	2.8×10^{-12}	
C_4H_{10}	8.5×10^{-19}	8.6×10^{-13}	2.6×10^{-15}	5.1×10^{-17}	5.0×10^{-18}	4.9×10^{-19}	9.1×10^{-20}	
C ₅ H ₆	1.9×10^{-22}	4.7×10^{-17}	2.5×10^{-13}	4.6×10^{-12}	2.3×10^{-11}	4.3×10^{-11}	1.9×10^{-11}	
C_6H_6	1.9×10^{-22}	1.7×10^{-14}	5.2×10^{-12}	2.6×10^{-11}	6.2×10^{-11}	7.0×10^{-11}	2.2×10^{-11}	
СНО	1.9×10^{-22}	9.5×10^{-14}	1.0×10^{-8}	5.0×10^{-7}	4.5×10^{-6}	1.7×10^{-5}	2.5×10^{-5}	

Таблица 1.	Окончание
------------	-----------

Молекулы и	Температура, К							
частицы	298	798	1298	1798	2298	2798	2998	
CHO ₂	1.9×10^{-22}	2×10^{-15}	8.1×10^{-13}	1.1×10^{-12}	1.4×10^{-12}	1.6×10^{-12}	2.0×10^{-12}	
CH ₂ O	2.2×10^{-22}	6.0×10^{-8}	1.0×10^{-6}	9.5×10^{-7}	9.0×10^{-7}	7.6×10^{-7}	6. $\times 10^{-7}$	
CH ₂ O ₂	1.8×10^{-15}	2.7×10^{-8}	6.3×10^{-10}	1.2×10^{-11}	1.5×10^{-12}	3.6×10^{-13}	2.6×10^{-13}	
CH ₃ O	1.9×10^{-22}	6.4×10^{-19}	1.4×10^{-14}	2.7×10^{-13}	1.5×10^{-12}	3.6×10^{-12}	4.4×10^{-12}	
$C_2H_4O_2$	6.7×10^{-16}	1.0×10^{-10}	1.3×10^{-13}	6. $\times 10^{-16}$	3.0×10^{-17}	3.3×10^{-18}	1. $\times 10^{-18}$	
C ₃ H ₆ O	1.9×10^{-22}	3.1×10^{-12}	1.6×10^{-13}	6.6×10^{-15}	1.1×10^{-15}	2.2×10^{-16}	8.5×10^{-17}	
CN	1.9×10^{-22}	1.9×10^{-22}	5.6×10^{-12}	4.3×10^{-7}	2.3×10^{-4}	5.8×10^{-3}	1.3×10^{-2}	
CN ₂	1.9×10^{-22}	1.9×10^{-22}	2.5×10^{-14}	8.2×10^{-10}	2.7×10^{-7}	2.2×10^{-6}	3.7×10^{-6}	
C ₂ N	1.9×10^{-22}	1.9×10^{-22}	4.8×10^{-17}	2.9×10^{-10}	1.8×10^{-6}	2.1×10^{-4}	6.7×10^{-4}	
C_2N_2	1.9×10^{-22}	3.6×10^{-18}	2.7×10^{-10}	8.6×10^{-7}	7.5×10^{-5}	2.5×10^{-4}	2.7×10^{-4}	
NCO	1.9×10^{-22}	1.9×10^{-22}	1.3×10^{-15}	2.6×10^{-12}	1.9×10^{-10}	1.3×10^{-9}	2.4×10^{-9}	
HCN	1.9×10^{-22}	1.2×10^{-6}	3.6×10^{-3}	1.0×10^{-1}	6.2×10^{-1}	8.2×10^{-1}	7.5×10^{-1}	
HNC	1.9×10^{-22}	2.0×10^{-17}	1.1×10^{-9}	2.5×10^{-6}	1.8×10^{-4}	1.1×10^{-3}	1.6×10^{-3}	
C ₂ HN	1.9×10^{-22}	1.9×10^{-22}	2.0×10^{-14}	3.0×10^{-9}	2.4×10^{-6}	7.1×10^{-5}	1.4×10^{-4}	
C ₃ HN	1.9×10^{-22}	1.3×10^{-15}	9.6×10^{-8}	2.2×10^{-4}	1.6×10^{-2}	1.0×10^{-1}	1.1×10^{-1}	
C ₅ HN	1.9×10^{-22}	5.2×10^{-21}	9.0×10^{-10}	6.8×10^{-5}	3.5×10^{-2}	7.9×10^{-1}	8.4×10^{-1}	
C ₇ HN	1.9×10^{-22}	1.9×10^{-22}	2.5×10^{-12}	6.1×10^{-6}	2.2×10^{-2}	1.7	1.91	
C ₉ HN	1.9×10^{-22}	1.9×10^{-22}	6.0×10^{-15}	4.6×10^{-7}	1.1×10^{-2}	3.1	3.50	
N ₂ C	1.9×10^{-22}	3.5×10^{-18}	1.7×10^{-10}	4.9×10^{-7}	4.1×10^{-5}	1.3×10^{-4}	1.7×10^{-4}	
C^+	1.9×10^{-22}	1.9×10^{-22}	1.9×10^{-22}	1.9×10^{-22}	7.1×10^{-18}	3.4×10^{-12}	1.4×10^{-10}	
C_2^+	1.9×10^{-22}	1.9×10^{-22}	1.9×10^{-22}	1.9×10^{-22}	2.8×10^{-20}	8.2×10^{-14}	4.8×10^{-12}	
C_2^-	1.9×10^{-22}	1.9×10^{-22}	1.9×10^{-22}	7.5×10^{-20}	1.6×10^{-14}	6.2×10^{-11}	6.5×10^{-10}	
CO^+	1.9×10^{-22}	1.9×10^{-22}	1.9×10^{-22}	1.9×10^{-22}	1.1×10^{-16}	7.7×10^{-13}	1.0×10^{-11}	
CH^+	1.9×10^{-22}	1.9×10^{-22}	1.9×10^{-22}	1.9×10^{-22}	1.1×10^{-16}	9.1×10^{-12}	2.1×10^{-10}	
CHO ⁺	1.9×10^{-22}	1.9×10^{-22}	2.3×10^{-24}	6.4×10^{-15}	1.0×10^{-10}	1.2×10^{-8}	4.7×10^{-8}	
CN ⁻	1.9×10^{-22}	1.9×10^{-22}	1.7×10^{-20}	4.4×10^{-13}	2.2×10^{-10}	7.6×10^{-9}	2.2×10^{-8}	

Величины энтальпии и внутренней энергии отрицательные в пределах температуры от 500 до 750 К для системы мазут—воздух, а для системы мазут—вода—воздух направление химических превращений соответствует к интервалу от 500 до 950 К. Число Прандтля для системы мазут-водавоздух меняется от 0.69 до 0.47, и она более подвержены к разбавлению; доля конденсированной фазы (z) в указанных выше системах составляет 0.79/0.41 при 500 К и 0.78/0.54 при 950 К, соответственно образование конденсированного углерода (C_c) в два раза меньше в системе мазут—вода—воз-

дух. Таким образом, термодинамические параметры и величины число Прандтля тоже показали в эффективности использования системы мазут вода—воздух в процессе снижения техногенных нагрузок газовых выбросов. Отмечено, что концентрация оксида углерода, углеводородов нефти и сажи при сжигании водомазутной эмульсии уменьшилась в среднем на 63—75%. Величины углеродного следа в газовой фазе составили от 0.6 до 1, что и полезна при оценке углеродной емкости на единицу продукции.

МАЙМЕКОВ и др.

M	Температура, К							
молекулы и частицы	298	798	1298					
CS	2.3×10^{-21}	2.9×10^{-12}	7.65×10^{-5}					
CS ₂	4.5×10^{-16}	8.7×10^{-7}	3.8×10^{-3}					
COS	2.6×10^{-8}	3.32×10^{-3}	7.75×10^{-3}					
CO	9.04×10^{-11}	2.22	30.84					
CO ₂	0.026	0.22	7.75×10^{-3}					
C ₂ O	4.63×10^{-21}	4.6×10^{-21}	1.17×10^{-14}					
C ₃ O ₂	6.95×10^{-21}	8.2×10^{-17}	5.51×10^{-12}					
C _(c)	462.72	572.16	697.2					
С	2.32×10^{-21}	2.3×10^{-21}	1.43×10^{-18}					
C ₂	4.63×10^{-21}	4.6×10^{-21}	2.87×10^{-21}					
C ₃	6.95×10^{-21}	6.9×10^{-21}	1.12×10^{-19}					
C ₄	9.3×10^{-21}	9.3×10^{-21}	9.3×10^{-21}					
C ₅	1.16×10^{-20}	1.1×10^{-20}	1.16×10^{-20}					
СН	2.32×10^{-21}	2.3×10^{-21}	4.04×10^{-16}					
CH ₂	2×10^{-21}	5×10^{-21}	9×10^{-5}					
CH ₃	2×10^{-21}	9×10^{-9}	6×10^{-11}					
CH ₄	26.88	15.72	3.91					
C ₂ H	4×10^{-21}	4×10^{-21}	3×10^{-12}					
C_2H_2	4×10^{-21}	6×10^{-10}	6×10^{-4}					
C ₂ H ₃	4×10^{-21}	2×10^{-14}	1×10^{-7}					
C_2H_4	7×10^{-19}	4×10^{-5}	1×10^{-3}					
C_2H_5	4×10^{-21}	8×10^{-11}	7×10^{-8}					
C_2H_6	1×10^{-5}	4×10^{-3}	7×10^{-5}					
C ₃ H	6×10^{-21}	6×10^{-21}	2×10^{-11}					
C_3H_4	6×10^{-21}	1×10^{-18}	2×10^{-11}					
C ₃ H ₆	6×10^{-21}	8×10^{-12}	4×10^{-10}					
C ₃ H ₈	1×10^{-11}	3×10^{-7}	2×10^{-9}					
C ₄ H	9×10^{-21}	9×10^{-21}	2×10^{-18}					
C_4H_2	9×10^{-21}	6×10^{-19}	2×10^{-8}					
C_4H_4	9×10^{-21}	9×10^{-21}	2×10^{-15}					
C_4H_6	9×10^{-21}	1×10^{-17}	4×10^{-13}					
C_4H_{10}	5×10^{-17}	4×10^{-11}	1×10^{-13}					
C ₅ H ₆	1×10^{-20}	2×10^{-15}	1×10^{-11}					
C ₆ H ₆	1×10^{-20}	1×10^{-12}	3×10^{-10}					
СНО	2.32×10^{-21}	1.1×10^{-12}	1.3×10^{-6}					
CHO ₂	2.32×10^{-21}	3.4×10^{-14}	9.83×10^{-11}					
CH ₂ O	2.65×10^{-21}	7.24×10^{-7}	1.28×10^{-4}					
CH ₂ O ₂	2.22×10^{-14}	3.36×10^{-7}	7.6×10^{-9}					

Таблица 2. Сжигание мазута в воздухе и содержание углерода (С, г) в различных компонентах и частицах при температурах: 298, 798 и 1298 К

Таблица 2. Окончание

Молекулы и настины	Температура, К						
молекулы и частицы	298	798	1298				
CH ₃ O	2.32×10^{-21}	7.7×10^{-18}	1.73×10^{-13}				
$C_2H_4O_2$	1.62×10^{-14}	2.52×10^{-9}	3.2×10^{-12}				
C ₃ H ₆ O	6.95×10^{-21}	1.1×10^{-10}	5.6×10^{-12}				
CN	2.32×10^{-21}	2.3×10^{-21}	6.83×10^{-11}				
CN ₂	2.32×10^{-21}	2.3×10^{-21}	3.1×10^{-13}				
C_2N	4.63×10^{-21}	4.6×10^{-21}	1.16×10^{-15}				
C_2N_2	4.63×10^{-21}	8.8×10^{-17}	6.7×10^{-9}				
NCO	2.32×10^{-21}	2.3×10^{-21}	1.7×10^{-14}				
N ₂ C	2.32×10^{-21}	4.3×10^{-17}	2.15×10^{-9}				
HCN	2.32×10^{-21}	1.46×10^{-5}	4.43×10^{-2}				
HNC	2.32×10^{-21}	2.4×10^{-16}	1.37×10^{-8}				
C ₂ HN	4.63×10^{-21}	4.6×10^{-21}	7.84×10^{-13}				
C ₃ HN	6.95×10^{-21}	5×10^{-14}	3.47×10^{-13}				
C ₅ HN	1.16×10^{-20}	3.1×10^{-19}	5.4×10^{-8}				
C ₇ HN	1.62×10^{-20}	1.6×10^{-20}	2.13×10^{-10}				
C ₉ HN	1.85×10^{-20}	1.8×10^{-20}	5.85×10^{-13}				
C^+	2.32×10^{-21}	2.3×10^{-21}	2.32×10^{-21}				
C_2^+	4.63×10^{-21}	4.6×10^{-21}	4.63×10^{-21}				
$C_{2}^{}$	4.63×10^{-21}	4.6×10^{-21}	4.63×10^{-21}				
CO^+	2.32×10^{-21}	2.3×10^{-21}	2.3×10^{-21}				
CH^+	2.32×10^{-21}	2.3×10^{-21}	2.32×10^{-21}				
CHO^+	2.32×10^{-21}	2.3×10^{-21}	2.8×10^{-23}				
CN ⁻	2.32×10^{-21}	2.3×10^{-21}	2.1×10^{-19}				
Количество в граммах	489.62	590.33	732.01				

Таблица 3. Сжигание мазута и расчет концентраций вредных веществ в газовой фазе

Компоненты газовых	ПДК, мг/м ³	Количество вещест атмос	в, выбрасываемых в сферу	Сумма максимальных приземных концентраций (доли ПЛК) создаваемых выбросами
выбросов		макс., г/с	сум., т/год	источника
СО	3.0	0.071	2.242	0.00356
NO _x	0.085	0.069	2.186	0.12205
SO ₂	0.5	0.444	14.016	0.13351
$C_x H_y$	1.5	1.067	33.638	0.10695
Сажа	0.15	0.046	1.458	0.04611

МАЙМЕКОВ и др.

Компоненты	ПЛК. мг/м ³	Количество вещес в атмо	тв, выбрасываемых осферу	Сумма максимальных приземных концентраций	
газовых выбросов		макс., г/с	сум., т/год	(доли ПДК), создаваемых выбросами источника	
СО	3.0	0.021	0.673	0.00145	
NO _x	0.085	0.023	0.729	0.04953	
SO ₂	0.5	0.427	13.455	0.12299	
$C_x H_y$	1.5	0.391	12.334	0.04901	
Сажа	0.15	0.012	0.364	0.02005	

Таблица 4. Сжигание водомазутных эмульсий и расчет концентраций вредных веществ в газовой фазе

Таблица 5. Снижение концентраций вредных веществ в дымовых газах котлоагрегатов типа E-1/9M на основе сжигания водомазутных эмульсий

	количество вредных веществ						
Компоненты	мазут			водом	азутная эму	льсия	снижение газовых
	мг/м ³	г/с	т/год	мг/м ³	г/с	т/год	выбросов, %
SO ₂	500	0.444	14.016	480	0.427	13.455	4.06
NO _x	78	0.069	2.186	26	0.023	0.729	66.67
CO	80	0.071	2.242	24	0.021	0.673	70.00
$C_x H_y$	1200	1.067	33.638	440	0.391	12.334	63.33
Сажа	52	0.046	1.458	13	0.012	0.364	75.00

Таблица 6. Сравнительные характеристики термодинамических параметров системы: мазут—воздух и мазут—вода—воздух

	Системы			
Термодинамические и физические	мазут—воздух	мазут-вода-воздух		
параметры	Т, К			
	500-750	500-950		
Энтропия <i>S</i> , кДж/(кг К)	2.49-3.28	7.44—11.49		
Энтальпия I, кДж/кг	(-498)-(-94.7)	(-3252)-(-162)		
Внутренняя энергия U, Дж/кг	(-510)-(-125)	(-3307)-(-452)		
Число Прандтля ($\Pr = \gamma/D$)	0.68-0.59	0.69-0.47		
Доля конденсированной фазы (z)	0.79-0.78	0.41-0.54		

ЗАКЛЮЧЕНИЕ

Изучена система мазут–воздух при избытке окислителя (альфа-фактор 1.3) при широких пределах изменения температуры (T = 298-3000 K, P = 0.1 МПа). Рассчитаны равновесные параметры и определены концентрационные распределения C, S, N, O, H – содержащих компонентов и активных частиц в газовой фазе. На основе суммарного концентрационного распределения C, S, N, N, O, H – содержащих компонентов и активных частиц рассчитаны весовое содержание углерода в газовой фазе. С учетом химической матрицы системы мазут—воздух и весового содержания углерода найдена техногенная нагрузка углерода в газовой фазе. Рассчитаны величины углеродного следа (0.6–1) в газовой фазе и отмечено снижение концентрации оксида углерода, углеводородов нефти и сажи при сжигании водомазутной эмульсии в среднем на 63–75%.

ОБОЗНАЧЕНИЯ

Ι	энтальпия, Дж/кг
Р	давление, Па
S	энтропия, Дж/К
Т	температура, К
U	внутренняя энергия, Дж
V	объем, м ³
ρ	плотность, кг/м ³
Pr	число Пранлтля

ИНДЕКСЫ

- с конденсированный
- g.m. газовоздушная смесь
- f.g. дымовые газы

СПИСОК ЛИТЕРАТУРЫ

- Baranov E., Kim I., Staritsyna E. Estimation of Russian constant-price input-output accounts according to NACE/CPA // Higher School of Economics Research Paper. 2011. 7.
- 2. Порфирьев Б.Н., Широв А.А., Колпаков А.Ю., Единак Е.А. Возможности и риски политики климатического регулирования в России // Вопр. экон. 2022. № 1. С. 72
- Durojaye O., Laseinde T., Oluwafemi I. A descriptive review of carbon footprint // Proceeding of 2nd International Conference on Human Systems Engineering and Design (IHSED2019). Munich.: Springer Int. Publishing, 2020. p. 960
- ISO 14067: (2018) "Greenhouse gases Carbon footprint of products – Requirements and guidelines for quantification"
- 5. *Magacho G., Espagne E., Godin A.* Impacts of the CBAM on EU trade partners: consequences for developing countries // Climate Policy. 2023. P. 1
- Lazaryan S., Sudakov S. Impact of EU's CBAM on EAEU Countries: The Case of Russia // Global Challenges of Climate Change. V. 2: Risk Assessment, Political and Social Dimension of the Green Energy Transition. – Cham: Springer International Publishing. 2022. P. 157.
- Eicke L., Weko S., Apergi M., Marian A. Pulling up the carbon ladder? Decarbonization, dependence, and third-country risks from the European carbon border adjustment mechanism // Energy Research & Social Science. 2021. 80. 102240.
- Böhringer C., Fischer C., Rosendahl K.E., Rutherford T.F. Potential impacts and challenges of border carbon adjustments // Nature Climate Change. 2022. 12(1). P. 22.
- 9. IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Kanagawa, Japan.
- 10. *Davis S., Peters G., Caldeira K.* The Supply Chain of CO₂ Emissions // Proceedings of the National Academy of Sciences. 2011. V. 108. №. 45. P. 18554.
- Boitier B. CO₂ emissions production-based accounting vs consumption // Insights from the WIOD databases. Proceeding of WIOD Conference. Brussels. 2012

- 12. Пискулова Н.А., Костюнина Г.М., Абрамова А.В. Климатическая политика основных торговых партнеров России и ее влияние на экспорт ряда российских регионов // Всемирный фонд дикой природы (WWF). М.: 2013
- "Газы парниковые (2014). Определение количества выбросов парниковых газов в организациях и отчетность. Руководство по применению стандарта ИСО 14064-1".
- 14. *Meshalkin V.P.* Current Theoretical and Applied Research on Energy- and Resource-Saving Highly Reliable Chemical Process Systems Engineering // Theor. Found. Chem. Eng. 2021. V. 55. № 4. Р. 563. [*Мешал-кин В.П.* Актуальные теоретические и прикладные исследования по инжинирингу энергоресурсосберегающих высоконадежных химико-технологических систем // Теор. осн. хим. технол. 2021. Т. 55. № 4. С. 399]
- 15. Maimekov Z.K., Sambaeva D.A., Izakov J.B., Shaikieva N.T., Dolaz M., Kobya M. Concentration distribution of molecules and molecules and other species in the model system Fe–NaCl–Na₂S–H₂SO₄–H₂O at various temperatures of the electrocoagulation process // Theor. Found. Chem. Eng. 2023. V. 57. № 2. P. 205. [*Maŭmeков 3.K., Самбаева Д.А., Изаков Ж.Б., Шайкиева Н.Т.,* Долаз М., Кобья М. Концентрационное распределение молекул и частиц в модельной системе: Fe– NaCl–Na₂S–H₂SO₄–H₂O при различных температурах процесса электрокоагуляции // Теор. осн. хим. технол. 2023. Т. 57. № 2. С. 218]
- Sambaeva D.A., Moldobaev M.B., Kemelov K.A., Maymekov Z.K. Water is an effective additive to fuel oil to reduce the concentration of soot in the gas phase // Manas J. Eng. 2022. V. 10. № 2. P. 145
- 17. Кемелов К.А., Молдобаев М.Б., Самбаева Д.А., Маймеков З.К. Влияние воды в водотопливных эмульсиях на процессы снижения концентрации сажи в газовой фазе // Проблемы региональной экологии. 2016. № 4. С. 30.
- Молдобаев М.Б., Самбаева Д.А., Маймеков З.К. Снижение концентрации сажи в газовой фазе на основе использования водотопливных эмульсий в катлоагрегатах типа КЕ_В-4-14 // Инженер. 2015. № 9. С. 354
- Маймеков З.К., Самбаева Д.А., Молдобаев М.Б., Кемелов К.А. Влияние воды в топливных эмульсиях на процессы образования и уменьшения концентрации сажи в газовой фазе // Изв. вузов. 2014. № 5. С. 8
- Самбаева Д.А., Молдобаев М.Б. Модифицирование топлива в виде водотопливных эмульсий с целью снижения концентрации сажи в газовой фазе // Изв. КГТУ им. И. Раззакова. 2014. № 33. С. 399
- Маймеков З.К. Научные основы оптимизации процессов сжигания жидкого топлива и рекарбонизации водно-солевых систем. Бишкек, 2015.
- 22. Синярев Г.Б., Ватолин Н.А., Трусов Б.Г., Моисеев Г.К. Применение ЭВМ для термодинамических расчетов металлургических процессов. М.: Наука, 1982.
- Белов Г.В., Трусов Б.Г. Термодинамическое моделирование химически реагирующих систем. М.: МГТУ имени Н.Э. Баумана, 2013.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 57 № 5 2023