УДК 666.3-127.2:66.074.3:621.039.7

ЛОКАЛИЗАЦИЯ ПАРОВ ИОДИДА ЦЕЗИЯ НА КЕРАМИЧЕСКИХ БЛОЧНО-ЯЧЕИСТЫХ КОНТАКТНЫХ ЭЛЕМЕНТАХ В ОКИСЛИТЕЛЬНОЙ СРЕДЕ

© 2023 г. М. Д. Гаспарян^{а, *}, В. Н. Грунский^а, Ю. С. Мочалов^b, Л. П. Суханов^b, А. В. Титов^a, С. В. Тищенко^a, Е. О. Обухов^a

^а Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия ^b Акционерное общество "Прорыв", Москва, Россия *e-mail: migas 56@yandex.ru Поступила в релакцию 17.08.2023 г.

После доработки 24.09.2023 г. Принята к публикации 26.09.2023 г.

Исследована эффективность раздельного улавливания оксида цезия и молекулярного иода, образующихся при окислительном термолизе иодида цезия, в процессе хемосорбции на керамических высокопористых блочно-ячеистых контактных элементах. Определена динамическая сорбционная емкость контактных элементов с нанесенным алюмосиликатным сорбционно-активным слоем и с активным слоем нитрата серебра по цезию и иоду соответственно. Разработанные контактные элементы рекомендуются для использования в системах локальной газоочистки высокотемпературных переделов переработки облученного ядерного топлива.

Ключевые слова: керамические высокопористые ячеистые материалы, контактные элементы, сорбционно-активный слой, иодид и оксид цезия, молекулярный иод, высокотемпературная хемосорбция, сорбционная емкость, эффективность улавливания, окислительная среда, радиоактивные отходы

DOI: 10.31857/S0040357123060064, EDN: IHABNA

введение

Цезий является самым значимым как в количественном отношении, так и в отношении активности и энерговыделения летучим продуктом деления (ЛПД), во многом определяющим условия длительного хранения и технологию переработки облученного ядерного топлива (OЯT) [1]. Современные технологии переработки смешанного оксидного или смешанного нитридного уран-плутониевого (СНУП) топлива реакторов на быстрых нейтронах предусматривают максимальное выделение и локализацию соединений цезия в головных процессах, например, при высокотемпературной обработке (ВТО) фрагментированного ОЯТ на пирохимическом переделе.

Суммарное содержание изотопов цезия, в том числе радиоактивных Cs-137, Cs-134, Cs-135 и стабильного Cs-133, составляет около 6.5 г на 1 кг СНУП ОЯТ с выгоранием 8% т.а. и послереакторной выдержкой 1 год. Наиболее эффективными и технологичными контактными элементами для локализации изотопов цезия в парогазовой фазе являются твердые хемосорбенты, улавливающие цезий в форме оксида с образованием его устойчивых алюмосиликатов. Кроме высокой эффективности улавливания, основное требование к таким материалам — максимальная сорбционная емкость и, соответственно, минимальное количество образующихся вторичных твердых радиоактивных отходов (**ТРО**).

Улавливанию оксида цезия, выделяющегося при термолизе его солей (нитрат, карбонат, силикат), твердыми пористыми неорганическими сорбентами в газовой фазе посвящено немало работ [2-4]. В ходе предыдущих наших исследований разработаны керамические фильтры-сорбенты для улавливания Cs₂O, образующегося в воздушной среде из нитрата стабильного цезия-133 [5-7] при температурах выше 700°С. Основой этих контактных элементов (КЭ) являлись корундовые высокопористые ячеистые материалы (ВПЯМ), содержащие более 95% α-Al₂O₃ (наполнитель – электрокорунд марки F-360, основное связующее — глинозем ГН-1), на которые нанесен алюмосиликатный активный слой с массовым соотношением γ -Al₂O₃/SiO₂ = = 30/70. Активный слой в процессе хемосорбции насыщается оксидом цезия практически полностью с образованием его устойчивых алюмосиликатов по реакциям:

$$Cs_2O + Al_2O_3 + 2SiO_2 \rightarrow$$

$$\rightarrow 2CsAlSiO_4(Cs_2O \cdot Al_2O_3 \cdot 2SiO_2),$$
(1)

$$CsAlSiO_4 + SiO_2 \rightarrow \rightarrow CsAlSi_2O_6(Cs_2O \cdot Al_2O_3 \cdot 4SiO_2).$$
(2)

Продукт реакции (2) – поллуцит – является наиболее устойчивой и предпочтительной формой фиксации изотопов цезия. При высокой эффективности улавливания (>99%), сорбционная емкость в интервале температур 700–1000°С в ста-

тических условиях не превышает 0.2 г Cs₂O/г KЭ.

В настоящей работе в качестве прекурсора оксида цезия использовался иодид цезия. Его выбор обусловлен данными из [8, 9], согласно которым при вскрытии твэлов после выдержки для переработки топлива, особенно с высоким выгоранием, радионуклиды цезия и йода выделяются преимущественно в виде термодинамически стабильного соединения CsI — продукта взаимодействия элементарных I и Cs внутри оболочки по реакции:

$$Cs_{(r)} + I_{(r)} \leftrightarrow CsI.$$
 (3)

Отсюда вытекает цель исследований — определение эффективности контактных элементов нового поколения на основе керамических ВПЯМ в процессе локализации CsI в условиях, приближенных к реальным условиям процессов переработки ОЯТ. В настоящей работе моделируются условия проведения операции ВТО в окислительной среде (Ar + O_2 , воздух) [10].

Существует ряд эффективных гранулированных сорбентов, разработанных для локализации иода в условиях эксплуатации АЭС [11] и способных улавливать аэрозоли иодида цезия, включающие радиоизотопы (¹³⁷Cs¹³¹I) за счет физической адсорбции без разложения на атомарные цезий и иод.

Мы предлагаем технологическую схему локализации CsI, включающую его термолиз, селективное улавливание изотопов Cs и I и дальнейшую раздельную иммобилизацию КЭ, насыщенных цезием и иодом в процессе хемосорбции. Отметим, что в России твердые хемосорбенты цезия, в отличие от иодных сорбентов, специально не производятся и в системах газоочистки существующих в России технологий переработки ОЯТ [7, 12] не применяются.

В работе [7] показано, что благодаря своим уникальным структурно-физическим характеристикам, в первую очередь это чрезвычайно высокая внешняя доступная удельная объемная поверхность (до 4000 м²/м³) и общая пористость до 95%, КЭ на основе керамических ВПЯМ имеют емкость по улавливаемым в процессе хемосорбции различным ЛПД, в 1.5–2 раза превышающую

емкость традиционных гранулированных КЭ. Их применение в составе локальных систем газоочистки (ЛСГО) на различных высокотемпературных переделах переработки ОЯТ позволит в такой же степени снизить количество вторичных ТРО.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез КЭ. Образцы контактных элементов, селективно улавливающих соединения цезия, синтезировались по известной технологии дублирования структуры ретикулированного пенополиуретана (**ППУ**) с плотностью пор 30 *ppi* [5, 7]. В качестве наполнителя керамического шликера использовали электрокорунд марки F-360, основным связующим служила полуфарфоровая литьевая масса (ПФЛ-1), содержащая ~20 мас. % Al₂O₃ и ~70% SiO₂ [13]. После пропитки ППУ водным шликером и последующего высокотемпературного обжига в интервале температур 1180-1220°С на полученный керамический каркас из ВПЯМ методом мультислойной пропитки и термообработки наносился активный слой (АС) из аморфных γ -Al₂O₃ и SiO₂, взятых в уже отмеченном оптимальном массовом соотношении 30/70, с общим содержанием 25-35 мас. %. Размеры синтезированных образцов КЭ составляли 35–50 (d) \times \times 50 (h) мм, средняя плотность 0.45–0.55 г/см³, открытая пористость 70-80%.

На рис. 1 показана ячеистая структура образца синтезированных ВПЯМ (а) и микроструктура участка перемычки ячейки (б). Средний размер ячейки (1.0–1.2 мм) соответствует плотности пор исходного ППУ. На поверхности перемычки выделяются зерна наполнителя исходного размера (20–25 мкм) и частицы связующего размером <5 мкм.

Замена связующего глинозема, применяемого в наших прежних работах, на массу ПФЛ-1 имела целью вовлечение в процесс хемосорбции оксида цезия, не только нанесенного АС, но и материала керамической основы, что должно было повысить сорбционную емкость КЭ. Такая же тенденция наблюдается в разрабатываемых южнокорейским институтом "KAERI" зольных фильтрах (fly-ash filters) аналогичного состава и структуры [2, 3], используемых для локализации цезия и рубидия в комплексной системе газоочистки головного процесса пирохимической технологии переработки ОЯТ легководных реакторов - высокотемпературной волоксидации [14]. Кроме того, использование массы ПФЛ-1 с низкой температурой обжига облегчает дальнейшую утилизацию отработавших КЭ по технологии остекловывания.

По аналогичной технологии синтезировались образцы КЭ с нанесенным на промежуточную активную подложку из γ -Al₂O₃ активным слоем AgNO₃ в количестве 15–25 мас. %, показавшие в преды-

Рис. 1. SEM-фотографии структуры ВПЯМ и поверхности перемычки.

дущих исследованиях [15] высокую эффективность локализации соединений иода.

Определение эффективности локализации паров иодида цезия. CsI — кристаллическое вещество с температурой плавления 634° С и кипения 1280° С при 760 мм. рт. ст., при возгонке на воздухе частично диссоциирует с образованием молекулярного иода [16]. Давление паров в мм рт. ст.: 1 (737°С), 10 (872°С), 100 (1056°С) [17]. С учетом этих данных, а также на основании приведенных в различных источниках оптимальных температур процессов хемосорбции отдельно соединений цезия и иода, определяли режим проведения экспериментов. Оптимальной температурой улавливания Cs₂O является 900°С [2, 5, 7, 14]. Для процесса хемосорбции иода в [18] предложена реакция:

$$6AgNO_3 + 3I_2 \rightarrow 4AgI + 2AgIO_3 + 6NO_2^{\uparrow}.$$
 (4)

Оптимальная температура ее протекания составляет примерно 200°С [7, 14, 15, 18], поскольку нитрат серебра начинает разлагаться при температурах выше температуры кипения (210°С) по реакции:

$$2AgNO_3 \rightarrow 2Ag + 2NO_2 + O_2, \tag{5}$$

а образовавшееся металлическое серебро обладает меньшей сорбционной способностью.

Исследование эффективности улавливания и сорбционной емкости контактных элементов проводили на сорбционно-каталитическом стенде (рис. 2), состоящем из 4-х блоков.

Блок подготовки газа-носителя (I) включает баллон с аргоном, концентратор кислорода (КК), воздушный компрессор (К) и регуляторы-расходомеры (РР). Стальной реактор (Р) размещен в следующих 3-х блоках. Два первых оснащены трубчатыми электропечами (ЭП) с терморегуляторами (ТР). Эта зона реактора футерована внутри корундовой трубкой. В блоке II происходит нагрев газа-носителя до температуры эксперимента (800-960°С) и испарение навески иодида цезия в корундовом тигле-лодочке. Далее пары CsI поступают в испытательный блок III, где в реакторе установлены 2 образца КЭ (№ 1 и 2) диаметром 35 мм с алюмосиликатным активным слоем (испытуемый и контрольный) для улавливания цезия. В зоне реактора, расположенной вне электропечей (блок IV) и охлаждаемой вентилятором до заданной температуры (180-220°С), установлены также 2 образца КЭ (№ 3 и 4) диаметром 50 мм с активным слоем AgNO₃, предназначенные для улавливания І₂. Наличие проскока иода качественно наблюдается по изменению цвета раствора крахмала в ловушке (Л), установленной на выходе из реактора. Дифманометр (ДМ) измеряет газодинамическое сопротивление КЭ и всей сборки.

Условия проведения испытаний и усредненные расчетные характеристики для проведенных серий экспериментов приведены в табл. 1.

Динамическая сорбционная емкость образца КЭ по Cs₂O обозначена как A_{Cs_2O} , A_{CsI} – сорбционная емкость по CsI, A_{12} – сорбционная емкость по I₂, E_{CsI} – суммарная эффективность улавливания CsI всеми образцами сборки. Степень использования активного слоя (η) определяется на основании прироста массы КЭ после окончания эксперимента, содержания в нем AC, а также количества и состава продуктов хемосорбции Cs₂O и I₂.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В среде аргонокислородной смеси или воздуха протекает реакция:

$$4CsI + O_2 = 2Cs_2O + 2I_2.$$
 (6)

Рис. 2. Схема сорбционно-каталитического испытательного стенда.

Образовавшийся оксид цезия вступает в реакцию с алюмосиликатным активным слоем КЭ, установленных в высокотемпературной зоне реактора, с образованием преимущественно устойчивого поллуцита (CsAlSi₂O₆). Общую схему процесса хемосорбции можно представить в следующем виде:

$$4\text{CsI} + 2(\text{Al}_2\text{O}_3 \cdot 4\text{SiO}_2) + \text{O}_2 \rightarrow \rightarrow 4\text{CsAlSi}_2\text{O}_6 + 2\text{I}_2.$$
(7)

По данным табл. 1 степень диссоциации иодида цезия в разных экспериментах составляет 85-100% и повышается с увеличением температуры процесса улавливания. Суммарная эффективность улавливания иодида цезия с различной концентрацией при разных расходах газа-носителя полной сборкой КЭ с алюмосиликатным активным слоем и активным слоем AgNO₃, определяемая соотношением прироста массы всех КЭ по Cs₂O (в пересчете на Cs), I и CsI к массе испарившегося иодида цезия, в выбранном интервале температур составила 97.8–99.6%. Эффективность раздельного улавливания цезия находится в таких же пределах.

Сорбционная емкость испытуемых контактных элементов (первых в сборке) по оксиду цезия без учета цезия, содержащегося в CsI, составила 0.12-0.31 г Cs₂O /г KЭ. Повышение ее значений происходит под влиянием нескольких факторов: с ростом температуры эксперимента увеличивается скорость испарения CsI и скорость процесса хемосорбции; также количество испарившегося иодида цезия увеличивается за счет обновления поверхности его навески в тигле при повышении объемного расхода газа-носителя.

Неразложившаяся часть иодида цезия удерживается в структуре ВПЯМ за счет физической адсорбции. Сорбционная емкость по CsI на любом КЭ не превышает 0.03 г/г. Расчет распределения уловленной массы цезия в форме его алюмосиликатов и в составе иодида цезия проводился по данным рентгенофазового анализа (РФА).

Степень использования активного слоя по отношению к теоретической, рассчитанной по материальному балансу уравнения (7), для основной массы экспериментов составляет 60-90%, что свидетельствует о возможности дополнительного улавливания Cs_2O .

Для сравнения отметим, что обозначенная в работе [19] при улавливании CsI в окислительной среде ($N_2 + 21\%O_2$, $4\%H_2/Ar + 10\%O_2$) максимальная сорбционная емкость по цезию составляет 0.18 г Cs/г фильтра.

Типичная дифрактограмма образца КЭ после испытаний при температуре 900°С представлена на рис. 3. Кроме материалов керамической основы – корунда (α -Al₂O₃ – 57.2 мас. %) и муллита (3Al₂O₃·2SiO₂ – 4.8 мас. %), в фазовом составе присутствуют основной продукт хемосорбции – поллуцит (CsAlSi₂O₆ – 36.3 мас. %) и 1.7 мас. % неразложившегося CsI.

При более низкой температуре сорбционная емкость по Cs_2O снижается, что соответствует данным по улавливанию оксида цезия, генерированного кальцинацией $CsNO_3$ [5–7]; а в фазовом составе идентифицируется промежуточный продукт хемо-

№ эксп.	№ обр.	W _G , л/ч	t _{exp} , °C	m _{CsI} , г	С _{СsI} , г/л	<i>А</i> _{Сs2} о, г/г КЭ (г/г АС)	А _{СsI} , г∕г КЭ	<i>А</i> _{I2} г/г КЭ (г/г АС)	η, %	$E_{\rm CsI},$ %	
1	1 2	70	800	6.87	0.0098	0.12 (0.34) 0.01 (0.06)	0.01 0.01		60.8 9.0	97.8	
	3 4		200			_	0.01	0.07 (0.42) 0.01 (0.07)	70.6 6.4		
2	1 2	150	800		0.0050	0.13 (0.61) 0.03 (0.13)	0.03 0.01		78.5 23.3	20.0	
	3 4		200	8.75	0.0058	_	0.01	0.10 (0.48) 0.03 (0.15)	75.9 22.3	98.0	
3	1 2	150	900	9.60	0.0064	0.14 (0.57) 0.04 (0.16)	0.02		73.8 23.7	08.5	
	3 4		200	9.00 0.	0.0004	_	0.01	0.08 (0.43) 0.01 (0.04)	71.8 7.0	20.5	
4	1 2	180	900	11.86 0.0066	0.19 (1.09) 0.06 (0.38)		_	90.2 30.6	99.0		
	3 4		200		0.0000	_	0.01	0.10 (0.42) 0.02 (0.12)	86.7 13.1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
5	1 2	180	100	960	12.50	0.00(0	0.20 (0.90) 0.05(0.20)	_	_	92.2 25.5	06.0
	3 4		200)	0.0009		_ _	0.09 (0.40) 0.03 (0.14)	82.5 21.0	90.9	
6*	1 2	150	960	0.00(7	0.31 (0.99) 0.11 (0.52)	0.01		126.5 75.7	00.2		
	3 4		200	20.10	0.0007		_ _	0.11 (0.60) 0.08 (0.38)	97.8 68.8	99.2	

Таблица 1. Условия проведения и результаты экспериментов по улавливанию паров CsI: газ-носитель – (Ar + 15% O₂), $\tau_{exp} = 10$ ч или воздух ($\tau_{exp} = 20$ ч)*

сорбции — цезиевый нефелин (CsAlSiO₄) — в различных пропорциях с поллуцитом (от 1 : 1 до 1 : 10). На рис. 4 представлен фазовый состав образца КЭ данной серии после испытаний при температуре 800° С, мас. %: корунд (48.1), муллит (8.0), CsAlSi₂O₆ (39.2), CsAlSiO₄ (4.7).

Максимальная сорбционная емкость (0.31 г Cs_2O/r КЭ) получена при повышенной до 960°С температуре в воздушной атмосфере и увеличении продолжительности эксперимента до 20 ч (2 периода испытаний по 10 ч). Таким образом подтверждена возможность повторного использования частично отработавших и не набравших максимальную сорбционную емкость КЭ. При этом, по данным РФА образуется еще один известный устойчивый алюмосиликат цезия с высококремнеземной цеолитной структурой — $CsAlSi_5O_{12}$ [2]. Поллуцит в данном случае является промежуточным соединением и его превращение в форму $Cs_2O\cdotAl_2O_3\cdot10SiO_2$, наблюдаемое в разных экспе-

риментах со степенью до 50%, объясняется избытком оксида кремния в составе основного связующего ВПЯМ, который, очевидно, вовлечен в процесс хемосорбции, а остаток его присутствует в образце в виде кварца. При этом, расчетная степень использования активного слоя составляет более 100%, что означает участие в процессе хемосорбции керамической основы КЭ. Представленные на дифрактограмме образца из данной серии фазы (рис. 5) имеют следующее содержание, мас. %: муллит (28.1), CsAlSi₂O₆ (39.9), CsAlSi₅O₁₂ (20.9), кварц (SiO₂ – 10.2) и CsI (0.9).

Результаты электронно-зондового микроанализа (**ЭЗМА**) участка поверхности образца КЭ из этой серии после испытаний приведены на рис. 6 и в табл. 2. Элементный состав на диаграмме (Cs, Al, Si, O) близок к рассчитанному на основании фазового состава с учетом соотношения CsAlSi₂O₆ к CsAlSi₅O₁₂. Также в нем присутствуют примеси Na и K из материала ВПЯМ. Полученные данные

Рис. 3. Фазовый состав образца КЭ после улавливания Cs_2O при $t_{exp} = 900^{\circ}C$, газ-носитель – (Ar + O_2).

Рис. 4. Фазовый состав образца КЭ после улавливания Cs_2O при $t_{exp} = 800^{\circ}C$, газ-носитель – (Ar + O_2).

позволяют утверждать, что отработавший полностью активный слой КЭ и частично внешний слой керамической основы, имеющей изначально близкое к продуктам хемосорбции содержание оксидов алюминия и кремния, состоят только из алюмосиликатов цезия. Образовавшийся по реакции (4) молекулярный йод поступает в холодную зону реактора, где реагирует с активным слоем AgNO₃ установленных в ней КЭ с образованием основного продукта хемосорбции — иодида серебра:

$$2AgNO_3 + I_2 \rightarrow 2AgI + 2NO_2 + O_2. \tag{8}$$

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 57 № 6 2023

Рис. 5. Фазовый состав образца КЭ после улавливания Cs_2O при $t_{exp} = 960^{\circ}C$, газ-носитель — воздух.

Рис. 6. Диаграмма элементного состава участка поверхности образца КЭ после улавливания оксида цезия.

Дифрактограмма образца КЭ с практически полностью прореагировавшим активным слоем нитрата серебра представлена на рис. 7.

Кроме материалов керамической основы (корунд – 65.9 мас. %, муллит – 14.4 мас. %) и иодида серебра (11.5 мас. %) в продуктах хемосорбции идентифицируется комплексное соединение – нитрат дисереброиода ($Ag_2INO_3 - 5.9$ мас. %),

остаток непрореагировавшего $AgNO_3$ (1.8 мас. %) и следовые количества оксида серебра(III) — Ag_2O_3 (0.5 мас. %).

В ряде образцов, как и в случае с КЭ алюмосиликатного состава, РФА обнаруживает незначительное количество CsI, прошедшего в результате проскока в холодную зону реактора и уловленного КЭ с активным нитратом серебра. Фиксация

ЛОКАЛИЗАЦИЯ ПАРОВ ИОДИДА ЦЕЗИЯ

	Содержание, мас. %					
Элемент	теорети	ическое		расчетное по данным РФА		
	CsAlSi ₂ O ₆	CsAlSi ₅ O ₁₂	диаграмма			
Cs	42.6	27.0	34.4	36.0		
Al	8.7	5.5	7.9	7.6		
Si	17.9	28.5	18.4	21.8		
0	30.8	39.0	37.9	34.6		
К	0.0	0.0	1.2	0.0		
Na	0.0	0.0	0.4	0.0		

Таблица 2. Весовое содержание элементов в активном слое образца КЭ после хемосорбции оксида цезия

иодида цезия обоими типами КЭ при температурах 900 и 200°С свидетельствует о возможности улавливания керамическими ВПЯМ соединений различных ЛПД как в парогазовой фазе, так и в форме образовавшихся после их кристаллизации радиоаэрозолей, по механизму физической адсорбции.

Иодат серебра (AgIO₃), который может образовываться по реакции (4) наряду с иодидом в качестве промежуточного продукта, очевидно, разлагается при температурах выше температуры его кипения (200°C) до AgI:

$$2AgIO_3 \rightarrow 2AgI + 3O_2 \tag{9}$$

и на дифрактограммах образцов КЭ после испытаний не обнаружен.

На рис. 8 и в табл. 3 приведены диаграмма элементного состава и весовое содержание элементов для участка поверхности АС образца КЭ после улавливания І₂. Содержание серебра и иода подтверждает образование иодида серебра и нитрата дисереброиода в соотношении, определенном РФА, при высокой сорбнионной емкости со степенью использования АС данного контактного элемента, близкой к 100%. В отличие от данных ЭЗМА для КЭ алюмосиликатного состава, кроме пиков элементов, составляющих продукты хемосорбции, на диаграмме появляются пики характеристического рентгеновского излучения элементов из внешнего слоя керамической основы (Al, Si, O) и примесного Na, понижающие экспериментальное содержание Ag и I в активном слое по сравнению с расчетным.

Рис. 7. Фазовый состав образца КЭ после улавливания I_2 при $t_{exp} = 200^{\circ}$ С, газ-носитель – (Ar + O₂).

Рис. 8. Диаграмма элементного состава участка поверхности образца КЭ после улавливания иода.

Эффективность улавливания I_2 в форме AgI КЭ с активным слоем AgNO₃ соответствует значениям суммарной эффективности улавливания CsI; сорбционная емкость испытуемых образцов находится в пределах 0.07–0.11 г/г, практически достигая своего максимума с учетом больших размеров КЭ; а рассчитанная по реакции (8) степень использования активного слоя составляет 70– 98%. При расчете к приросту массы образца КЭ добавляется масса выделяющихся газообразных продуктов разложения нитрата серебра.

Газодинамическое сопротивление всей сборки реактора с 4 контактными элементами (рис. 2), равное перепаду давления на входе и выходе из него, при расходе газа-носителя 240 л/ч (линейная скорость потока 8 см/с) составляет 15 Па до начала эксперимента и 22 Па после улавливания CsI, а сопротивление незагруженного реактора – 7 Па. Полученные данные подтверждают одно из основных преимуществ КЭ на основе керамических ВПЯМ – минимальное сопротивление газовому потоку и высокую газопроницаемость, а также неизменность структуры и прочности блочно-ячеистого каркаса в процессе эксплуатации.

Раздельное улавливание радионуклидов цезия и иода контактными элементами с соответствующими сорбционно-активными слоями (Al₂O₃·4SiO₂ и AgNO₃), в отличие от улавливания аэрозолей CsI, позволяет дифференцировать образовавшиеся вторичные TPO, содержащие радионуклиды цезия и иода, по классам опасности и определить технологии их дальнейшей иммобилизации. КЭ, насыщенные цезием, являются тепловыделяющими высокоактивными отходами (PAO I класса)

Таблица 3.	Весовое содержание элемент	в в активном слое образца	КЭ после хемосорбции иода
------------	----------------------------	---------------------------	---------------------------

	Содержание, мас. %						
Элемент	теоре	гическое		расчетное по данным РФА			
	AgI	Ag ₂ INO ₃	диаграмма				
Ag	46.0	53.3	29.2	48.5			
Ι	54.0	31.4	25.8	46.3			
Al	0.0	0.0	10.0	0.0			
Si	0.0	0.0	4.7	0.0			
0	0.0	11.9	28.3	4.0			
Ν	0.0	3,4	1.7	1.2			
Na	0.0	0.0	0.3	0.0			

2

[20] и предпочтительным методом организации их длительного хранения является упаковка в евробидоны с иммобилизацией расплавом стекломассы. Для насыщенных иодом КЭ, являющихся среднеактивными отходами (РАО II класса), рекомендуемая форма хранения — упаковка в стандартные контейнеры с иммобилизацией цементным компаундом.

ЗАКЛЮЧЕНИЕ

Синтезированные контактные элементы на основе керамических ВПЯМ с нанесенным алюмосиликатным активным слоем и активным слоем нитрата серебра показали высокую эффективность улавливания (97.8–99.6%) в процессах локализации оксида цезия и молекулярного иода, образовавшихся при разложении иодида цезия (степень диссоциации 85–100%) в окислительной среде. Динамическая сорбционная емкость разработанных КЭ достигает 0.31 г Сs₂O/г КЭ и 0.11 г I₂/г КЭ, что превышает емкость всех известных цезиевых и иодных твердых сорбентов. Показано, что набор сорбционной емкости по цезию до максимального значения возможен при повторном использовании частично отработавших КЭ.

Основными продуктами хемосорбции при оптимальных температурах 900 и 200°С, соответственно, являются поллуцит (CsAlSi₂O₆) и иодид серебра (AgI). При более низких температурах сорбционная емкость снижается, а в продуктах хемосорбции повышается содержание цезиевого нефелина – CsAlSiO₄. При температуре 960°С и увеличении времени эксперимента наблюдается образование еще одного устойчивого алюмосиликата цезия высококремнеземной цеолитной структуры – CsAlSi₅O₁₂, а в образцах КЭ после улавливания иода в значимом количестве присутствует комплексное соединение – нитрат дисереброиода (Ag₂INO₃).

По результатам настоящего исследования поставлена задача дальнейшего повышения сорбционной емкости контактных элементов по изотопам Cs за счет повышения степени использования активного слоя и материала керамической основы до предела, ограниченного нормированной активностью и тепловыделением упаковок с кондиционированными отработавшими КЭ.

После оптимизации эксплуатационных характеристик и масштабирования к заданной производительности блочно-ячеистые КЭ нового поколения могут быть рекомендованы для применения в составе опытно-промышленных ЛСГО высокотемпературных операций в условиях эксплуатации модулей переработки ОЯТ. Их высокая сорбционная емкость с учетом рекомендаций по иммобилизации отработавших КЭ позволит значительно снизить количество вторичных ТРО. Работа выполнена при поддержке Проектного направления "Прорыв".

ОБОЗНАЧЕНИЯ

- A динамическая сорбционная емкость, г/г КЭ (г/г AC)
- С концентрация CsI в газовом потоке, г/л
- *E* суммарная эффективность улавливания CsI всеми образцами сборки, %
- *W* объемный расход газа-носителя, л/ч
- *d* диаметр образца КЭ
- *h* высота образца КЭ
- *m* масса испарившегося CsI, г
- *ppi* количество пор на линейный дюйм
- t температура эксперимента, °C
- τ время проведения эксперимента, ч
- η степень использования активного слоя, %

ИНДЕКСЫ

- ехр эксперимент
- G газ-носитель
- CsI иодид цезия
- Сs₂О оксид цезия

I₂ молекулярный иод

СПИСОК ЛИТЕРАТУРЫ

- 1. Очкин А.В., Бабаев Н.С., Магомедбеков Э.П. Введение в радиоэкологию. М.: ИздАТ, 2003.
- Shin J.M., Park J.J., Song K.-Ch. Cesium Trapping Characteristics on Fly Ash Filter According to Different Carrier Gas // Proceedings of Intern. Conf. "Global'07". Boise. Idaho, USA. 2007. P. 610.
- 3. Jae Hwan Yang, Joo Young Yoon, Ju Ho Lee, Yung-Zun Cho. A kaolinite-based filter to capture gaseous cesium compounds in off-gas released during the pyroprocessing head-end process // Annals of Nuclear Energy. 2017. V. 103. P. 29.
- 4. Баранов С.В., Баторшин Г.Ш., Максименко А.Д., Сизов П.В., Алой А.С., Стрельников А.В., Гаспарян М.Д., Грунский В.Н., Беспалов А.В. Алюмосиликатные фильтры для высокотемпературной хемосорбции паров цезия // Вопросы радиационной безопасности. 2013. № 1. С. 3.
- 5. Гаспарян М.Д., Грунский В.Н., Беспалов А.В., Магомедбеков Э.П., Попова Н.А. Керамические высокопористые блочно-ячеистые фильтры-сорбенты для улавливания паров цезия // Огнеупоры и техническая керамика. 2013. № 7–8. С. 3.
- 6. Гаспарян М.Д., Грунский В.Н., Беспалов А.В., Магомедбеков Э.П., Попова Н.А., Баранов С.В., Баторшин Г.Ш., Бугров К.В., Занора Ю.А., Истомин И.А., Степанов С.В., Макаров О.Н. Перспективы приме-

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 57 № 6 2023

нения керамических высокопористых блочноячеистых фильтров-сорбентов газообразного радиоактивного цезия в решении вопросов обеспечения экологической безопасности производств атомной отрасли // Экология промышленного производства. 2014. № 1. С. 26.

- 7. Гаспарян М.Д. Локализация летучих радионуклидов на керамических высокопористых блочноячеистых материалах в процессах обращения с РАО и ОЯТ. Дис. ... докт. техн. наук. М.: 2016.
- Lewis B.J., Iglesias F.C., Cox D.S., Gheorghiu E.A. Model for Fission Gas Release and Fuel Oxidation Behavior for Defected UO₂ Elements // Nuclear Technology. 1990. V. 92. P. 353.
- Крюков Ф.Н., Кислый В.А., Кормилицын М.В., Кузьмин С.В., Маершин А.А., Никитин О.Н., Строжук С.В., Шишалов О.В. Распределение продуктов деления в облученном виброуплотненном оксидном топливе // Атомная энергия. 2005. Т. 99. № 5. С. 380.
- Мазанников М.В., Потапов А.М., Вылков А.И., Суздальцев А.В., Зайков Ю.П. Способ окислительной обработки отработавшего нитридного ядерного топлива. Пат. 2775563 РФ. 2022.
- Кулюхин С.А., Каменская А.Н., Михеев Н.Б., Мелихов И.В., Коновалова Н.А., Румер И.А. Химия радиоактивного йода в газовой среде: фундаментальные и прикладные аспекты // Радиохимия. 2008. Т. 50. № 1. С. 3.
- 12. Устинов О.А., Двоеглазов К.Н., Тучкова А.И., Шадрин А.Ю. Локальная система газоочистки при окислении отработавшего нитридного топлива // Атомная энергия. 2017. Т. 123. № 4. С. 203.
- 13. Грунский В.Н., Беспалов А.В., Гаспарян М.Д., Давидханова М.Г., Кабанов А.Н., Лукин Е.С., Попова Н.А., Харитонов Н.И. Синтез полифункциональных высокопористых блочно-ячеистых материалов на ос-

нове оксидной керамики // Огнеупоры и техническая керамика. 2016. № 6. С. 3.

- 14. Jin Myeong Shin, Jang Jin Park, Jae Won Lee, Sang Ho Na, Young Ja Kim, Geun IL Park. Design of Engineering Scale Off-Gas Trapping system at KAERI // Proceeding of GLOBAL 2011, Makuhari. Japan. Paper № 395956. P. 1.
- Гаспарян М.Д., Грунский В.Н., Магомедбеков Э.П., Беспалов А.В., Игнатов А.В., Лебедев С.М. Локализация радиоактивного йодистого метила на керамических сорбентах // Огнеупоры и техническая керамика. 2011. № 11–12. С. 24.
- Плющев В.Е., Степина С.Б., Федоров П.И. Химия и технология редких и рассеянных элементов. Часть I / Под ред. К.А. Большакова. М.: Высшая школа, 1976.
- 17. *Scheer M.D., Fine G.J.* Entropies, Heats of Sublimation, and Dissociation Energies of the Cesium Halides // J. Chem. Phys. 1962. V. 36. № 6. P. 1647.
- Ровный С.И., Пятин Н.П., Истомин И.А. Улавливание ¹²⁹ Г при переработке отработавшего ядерного топлива энергетических установок // Атомная энергия. 2002. Т. 92. № 6. С. 496.
- Jae Hwan Yang, Joo Young Yoon, Seok-Min Hong, Ju Ho Lee, Yung-Zun Cho. An efficient capture of cesium from cesium iodide (CsI) off-gas by aluminosilicate sorbents in the presence of oxygen // J. Industrial and Engineering Chemistry. 2019. V. 77. P. 146.
- 20. Постановление Правительства РФ от 19 октября 2012 г. № 1069. О критериях отнесения твердых, жидких и газообразных отходов к радиоактивным отходам, критериях отнесения радиоактивных отходов к особым радиоактивным отходам и к удаляемым радиоактивным отходам и критериях классификации удаляемых радиоактивных отходов.