НАУЧНАЯ СЕССИЯ ОБЩЕГО СОБРАНИЯ ЧЛЕНОВ РАН "ПЕРИОДИЧЕСКАЯ ТАБЛИЦА – УНИВЕРСАЛЬНЫЙ ЯЗЫК ЕСТЕСТВОЗНАНИЯ"

ПЕРИОДИЧЕСКАЯ ТАБЛИЦА ЧЕРЕЗ 150 ЛЕТ

© 2020 г. Ю. Ц. Оганесян

Объединённый институт ядерных исследований, Дубна, Россия

E-mail: oganessian@jinr.ru

Поступила в редакцию 20.01.2020 г. После доработки 20.01.2020 г. Принята к публикации 31.01.2020 г.

К началу 2019 г., провозглашённого ООН и ЮНЕСКО Международным годом Периодической таблицы химических элементов, 7-й период таблицы был уже заполнен новыми, самыми тяжёлыми элементами. Согласно предсказаниям теории, изотопы сверхтяжёлых элементов, обладающие повышенной стабильностью, образуют на карте нуклидов большую зону в виде острова с вершиной, расположенной вблизи "магических" чисел протонов Z = 114 и нейтронов N = 184. Новые элементы с атомными номерами от 114 до 118 были синтезированы в Лаборатории ядерных реакций им. Г.Н. Флёрова Объединённого института ядерных исследований (ОИЯИ) в Дубне в 2000–2012 гг. в реакциях слияния ядер мишени — тяжёлых изотопов актиноидов (Z = 94-98) — с бомбардирующими ионами кальция-48. Из полученных экспериментальных результатов следует, что могут существовать ядра/элементы с атомными номерами более 118 и массами более 300 а.е.м. Для исследования ядерной и электронной структур новых элементов, а также их химических свойств, равно как и синтеза элементов начала 8-го периода Периодической таблицы, в Дубне создан новый экспериментальный комплекс Фабрика сверхтяжёлых элементов (Фабрика СТЭ), где уже состоялся пуск нового ускорителя DC-280 и в ближайшее время начнутся эксперименты. Вводная и заключительная части моего выступления на научной сессии Общего собрания членов РАН относились к открытию периодического закона, опубликованного Д.И. Менделеевым 150 лет назад. Действие этого закона в свойствах тяжелейших элементов представляет и сегодня одну из актуальных и интересных задач естествознания.

Ключевые слова: Периодическая таблица Д.И. Менделеева, сверхтяжёлые элементы, "остров" стабильности, Фабрика сверхтяжёлых элементов, спонтанное деление.

DOI: 10.31857/S086958732004009X

ПРОЛОГ

Предание гласит, что всё началось с письма, которое сэр Мартин Поляков, профессор Ноттингемского университета (Великобритания) и иностранный член РАН, направил 28 июля 2016 г.

ОГАНЕСЯН Юрий Цолакович – академик РАН, научный руководитель Лаборатории ядерных реакций им. Г.Н. Флёрова ОИЯИ. президенту Международного союза чистой и прикладной химии (ИЮПАК) члену-корреспонденту РАН Наталии Павловне Тарасовой:

"Уважаемая Наталия,

надеюсь, что Вы в порядке.

Как я понимаю, 2019 год станет 150-й годовщиной публикации Менделеевым Периодической таблицы. Было бы интересно знать, можно ли поднять вопрос о том, чтобы объявить 2019 год Международным годом Периодической таблицы. Чувствую, что это предложение может получить большую поддержку. Как Вы думаете?

С наилучшими пожеланиями,

Мартин Поляков".

Н.П. Тарасова поставила этот вопрос на заседании Исполнительного комитета ИЮПАК, который, как ей показалось, со здоровым скептицизмом поддержал идею Международного года Периодической таблицы и предложил России воплотить её в жизнь через ЮНЕСКО. Начиная с этого момента вся деятельность по данному вопросу, проводимая Международным союзом чистой и прикладной химии в течение 18 месяцев, легла на плечи президента ИЮПАК и её коллег.

Российская академия наук и российские химики с большим воодушевлением взялись за дело: написали обращение Менделеевского съезда (2016) и Российского химического общества к мировой научной общественности, президент РАН академик В.Е. Фортов направил письмо министру иностранных дел России С.В. Лаврову, РАН обратилась в ИЮПАК, Н.П. Тарасова написала письмо Генеральному директору ЮНЕСКО и пр. К этому времени подошло другое событие, непосредственно связанное с Периодической таблицей химических элементов. После включения в 2012 г. в таблицу 114-го и 116-го элементов ИЮПАК принял название и утвердил символы ешё четырёх химических элементов, в их числе двух самых тяжёлых. Это случилось 28 ноября 2016 г. Все четыре элемента со своими названиями и символами заполнили и замкнули 7-й ряд Периодической таблицы Д.И. Менделеева. На инаугурации новых химических элементов, состоявшейся 2 марта 2017 г. в Доме учёных РАН, три директора сотрудничающих лабораторий академик РАН Виктор Матвеев (ОИЯИ, Дубна, Россия), профессор Томас Мейсон (Ок-Риджская национальная лаборатория, Ок-Рилж. США) и профессор Вильям Гольдштейн (Ливерморская национальная лаборатория, Ливермор, США) – направили совместное письмо в ЮНЕСКО в поддержку юбилейного года Периодической таблицы. И это далеко не полный перечень шагов, предпринятых научным сообществом в преддверии 2018 г.

А 20 декабря 2017 г. с интересной и необычной формулировкой — "признавая важность глобального расширения знаний о том, как химия способствует устойчивому развитию в области энергетики, образования, сельского хозяйства и здоровья," — Генеральная Ассамблея ООН, затем и ЮНЕСКО провозгласили 2019-й Международным годом Периодической таблицы химических элементов — IYPT-2019.

НОВЫЕ ОБИТАТЕЛИ ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ

В 1928 г. Георгий Антонович Гамов, наш соотечественник, выпускник Ленинградского государственного университета, уже известный к тому времени советский физик, предложил первую теоретическую модель атомного ядра в виде капли заряженной жидкости с плотностью, на 15 порядков превышающей плотность воды [1]. В новой науке, ядерной физике, этой работе суждено было сыграть большую роль. На основе капельной модели ядра Гамов создал теорию альфа-распада (1928) [2], Карл Фридрих фон Вайцзеккер предложил свою знаменитую формулу для расчёта энергии связи ядер (1935) [3], а Нильс Бор и Джон А. Уилер создали теорию ядерного деления (1939) [4]¹.

Согласно Бору и Уилеру, тяжёлое ядро предохраняет от разделения на две части потенциальный барьер. Высота барьера деления ядра урана составляет 6 МэВ. Поэтому если в ядро внести энергию более чем 6 МэВ (например, энергию захвата ядром нейтрона), оно моментально разделится на две части. В этом процессе выделяется энергия около 200 МэВ, что используется в атомных электростанциях. Однако ядро урана может разделиться самопроизвольно (спонтанно) без вноса в ядро дополнительной энергии. Для этого, как было впервые измерено Г.Н. Флёровым и К.А. Петржаком (1940) [6], потребуется огромное время -10^{16} лет! По мере удаления от урана в область более тяжёлых ядер высота барьера деления быстро уменьшается, что приводит к резкому увеличению вероятности спонтанного деления. При исчезновении барьера ядро будет испытывать спонтанное деление за время около 10^{-19} с. В теории Бора и Уилера подобная критическая ситуация наступает при подходе к элементам с атомным номером 100. По сути, это и есть предел существования ядер.

Ещё 60 лет назад такое макроскопическое, и в этом смысле классическое, описание процесса деления не вызывало сомнений. Особенно после синтеза первых искусственных элементов тяжелее урана, прекрасно подтверждающего капельную теорию деления: от урана (Z = 92) до калифорния (Z = 98) период полураспада относительно спонтанного деления уменьшился в 10¹⁴ раз [7]! Сомнения в прогнозах капельной модели деления возникли позже, после открытия в Лаборатории ядерных реакций им. Г.Н. Флёрова ОИЯИ спонтанно делящихся изомеров (1962) [8]. Оказалось, что внутренняя структура ядра, наблюдаемая в основных состояниях, сохраняется и в сильно деформированных конфигурациях на пути к делению, продолжая играть важную роль в вероятности спонтанного деления тяжёлых ядер. Теперь уже более сложное описание коллективного движения в новой микроскопической теории давало одновременно также и новые предсказания границы масс ядер. Результаты оказались весьма неожиданными. Согласно прогнозам, резкое падение стабильности трансурановых нуклидов относительно спонтанного деления должно смениться резким подъёмом в области сверхтяжёлых

¹ В то же время в нашей стране теорию ядерного деления независимо развивал Я.И. Френкель [5].

Логарифм периодов спонтанного деления, годы

Рис. 1. Периоды полураспада ядер с $Z \ge 96$ относительно спонтанного деления. Чёрные кружки — экспериментальные значения для актиноидов и изотопов 104-го элемента. Открытые кружки — один из вариантов предсказаний для ядер с $Z \ge 106$ и $N \ge 150$. С правой стороны: периоды спонтанного деления изотопов 114-го элемента, рассчитанные в макромикроскопической модели ядра

элементов при подходе к "магическим" ядрам с числом протонов Z = 114 и нейтронов N = 184. Эти нуклиды, обладающие большим избытком нейтронов, более связаны. Они отделены от известной области ядер. Их достаточно много. На карте ядер они представляют собой подобие некого "острова" весьма тяжёлых (сверхтяжёлых) элементов, у которых могут быть очень долгоживущие изотопы. В научных статьях и докладах начала 1970-х годов можно найти различные иллюстрации, подобные той, что представлена на рис. 1.

Многие лаборатории мира буквально ринулись на поиски этих долгоживущих тяжеловесов. Но, к сожалению, все экстенсивные попытки найти их в природе, космических лучах и даже путём искусственного синтеза сверхтяжёлых элементов, предпринятые в течение 15 лет (1970-1985), не дали результатов. Оставляя пока вопрос о вероятности образования ядер с массой около 300 а.е.м. в процессах природного ядерного синтеза, отметим, что время жизни сверхтяжёлых долгожителей заметно меньше возраста Солнечной системы (4.5×10^9 лет) и они не дожили до наших дней. Что же касается искусственного синтеза, то все методы синтеза двадцати известных к тому времени искусственных элементов тяжелее урана, к сожалению, не пригодны для этих целей. Они "не дотягивают" до "острова" стабильности прежде всего из-за дефицита нейтронов в системе сливающихся ядер.

После 1985 г. мы кардинально изменили подход к синтезу сверхтяжёлых элементов. Для того чтобы добраться до "острова" и увидеть резкий подъём стабильности, предсказанный теорией, пришлось существенно усложнить эксперимент. Теперь вместо использования стабильных ядер в качестве материала мишени были выбраны тяжёлые изотопы трансурановых элементов (такие, как плутоний-244 или кюрий-248), полученные в высокопоточном ядерном реакторе. Мишени из этих материалов подвергались бомбардировке ускоренными ионами кальция-48, исключительно редкого и дорогого изотопа природного кальция. Содержание кальция-48 в естественной смеси по отношению к основному изотопу кальшию-40 составляет всего 0.2%. Преимущества этой реакции прямо следуют из сравнения результатов экспериментов по синтезу 113-го элемента Nh, проведённого в RIKEN (Япония) и 114-го элемента Fl – в ОИЯИ (Дубна). Элемент Nh был синтезирован при слиянии ядер висмута-209 и цинка-70 [9]. Составная система после слияния двух атомных ядер содержит 113 протонов и 165 нейтронов. В этой реакции в течение девяти лет были получены три атома 113-го элемента. Элемент Fl (Z = 114), полученный в Дубне в реакции плутоний-244 + кальций-48, имел в составном ядре 114 протонов и 178 нейтронов [10] – на 13 нейтронов больше, чем в предыдущем случае. Эти 13 нейтронов, как следует из дальнейшего, и сыграли решающую роль.

Высадка на берег "острова" в северо-западной его части была действительно впечатляющей. Вероятность образования тяжёлого изотопа 114-го элемента оказалась примерно в 500 раз выше, чем 113-го элемента, полученного в RIKEN. Ещё более сильное отличие наблюдалось в свойствах ядер, в частности, во временах жизни, измеряемых обычно периодами полураспада. Повышение числа нейтронов на 8 единиц в ядрах, синтезированных с ионами кальция-48, увеличило их период полураспада примерно в 100 тысяч раз! Оба фактора – рост вероятности образования ядер и их стабильности – демонстрируют сильный эффект "магической" структуры N = 184, даже несмотря на то, что синтезированный изотоп 114-го элемента содержит всего 175 нейтронов.

После первых результатов по исследованию изотопов 114-го и 116-го элементов в реакциях с ионами кальция-48 (2000–2002) последующие эксперименты по синтезу других элементов с атомными номерами 115, 117 и 118 были проведены по той же методике с мишенями из америция-243, берклия-249 и калифорния-249 соответственно [11–13]. За 15 лет работы (около 100 тыс. часов облучения мишеней пучком ионов кальция-48) были синтезированы 52 новых изотопа [14] от 104-го до 118-го элементов (рис. 2, *a*). На карте нуклидов они простираются до ядер массой 294 а.е.м.

Рис. 2. *а.* Таблица Д.И. Менделеева (площадь 150 м²) на фасаде химического факультета университета в городе Мурсия (Испания, 2017). В красной рамке показаны элементы, полученные в реакциях с пучком ионов кальция-48

Рис. 2. б. Область конца карты нуклидов: показаны изотопы от свинца до элемента 118. Красными квадратами обозначены самые тяжёлые ядра: с массой 252 а.е.м. (No, 1962) и 294 а.е.м. (Og, 2004), полученные впервые в Лаборатории ядерных реакций им. Г.Н. Флёрова ОИЯИ. Жёлтым цветом показана область ядер, полученных в реакциях с использованием мишеней из свинца и висмута. Розовое поле – область ядер, синтезированных в реакциях с пучком ионов кальция-48. Фон – карта потенциальной энергии ядер в зависимости от содержания протонов и нейтронов, полученная в расчётах макро-микроскопической модели. Цифры и цвет указывают амплитуду структурной поправки (в МэВ) к жидко-капельной энергии ядра

(рис. 2, δ). Это предельно тяжёлое ядро было получено в виде двух изобар: как чётно-чётный изотоп 118-го элемента с периодом полураспада около 0.5 миллисекунды и как нечётно-нечётный изотоп 117-го элемента с периодом полураспада около 50 миллисекунды. Оба периода полураспада а в ядерном масштабе — огромные времена! Учитывая, что после образования нового ядра за время 10^{-14} — 10^{-13} секунды вокруг него выстраивается вся электронная система атома, то подобный вывод можно сделать и о существовании элементов. Из данных экспериментов следует, что мы не дошли до предела масс ядер. Определённо, ядра могут иметь массу более 300 а.е.м., а количество элементов может быть свыше 118.

Заключая краткий экскурс в мир сверхтяжёлых, можно отметить, что, уйдя от висмута, последнего стабильного элемента, в область больших масс и зарядов, мы наблюдаем удивительную живучесть атомных ядер. В области предельных кулоновских сил дополнительные связи протонов и нейтронов структурного свойства создают в тяжёлом ядре барьер деления и делают тем самым возможным существование сверхтяжёлых элементов.

Эксперименты проводились на ускорителе У-400 в Лаборатории ядерных реакций им. Г.Н. Флёрова ОИЯИ в сотрудничестве с Всероссийским научно-исследовательским институтом экспериментальной физики (ВНИИЭФ, г. Саров), Научно-исследовательским институтом атомных реакторов (НИИАР, г. Димитровград), а также с Ливерморской и Ок-Риджской национальными лабораториями (США), взявшими на себя труд по наработке мишенного материала и участвовавшими в ряде экспериментов.

ТЯЖЕЛЕЙШИЕ АТОМЫ И ХИМИЯ СВЕРХТЯЖЁЛЫХ ЭЛЕМЕНТОВ

На фотографии (см. рис. 2, a)² изображена самая большая (150 м²) Периодическая таблица химических элементов, встроенная в фасад химического факультета Университета Мурсии (Испания)³. На ней красной рамкой выделены сверхтяжёлые элементы от 112-го до 118-го, полученные в реакциях с кальцием-48, когда в качестве материала мишени использовались тяжёлые изотопы от урана (Z = 92) до калифорния (Z = 98) соответственно⁴.

В белой рамке находятся дочерние нуклиды – продукты альфа-распада ядер из красной рамки. Они заполняют практически все оставшиеся клетки 7-го периода, вплоть до резерфордия (Z = 104). Дочерние ядра, берущие начало от нейтронно-избыточных материнских изотопов сверхтяжёлых элементов, тоже обогащены нейтронами, что значительно повышает их период полураспада и открывает широкие возможности для исследования химических свойств трансак-

² Журнал "Вестник РАН" с цветными изображениями размещается в открытом доступе на сайте https://sciencejournals.ru/journal/vestnik/. Для доступа к полным текстам журнала не требуется регистрации.

³ С 2019 г. самая большая Периодическая таблица химических элементов (660 м²) находится в Государственном университете им. Эдит Коуэн (ЕСU) в г. Перт, Австралия.

⁴ К сожалению, калифорний – самый тяжёлый элемент, который может быть получен в ядерном реакторе в количестве, необходимом для изготовления мишени. Для синтеза 119-го элемента и более тяжёлых придётся увеличивать массу и заряд бомбардирующих ионов.

ОГАНЕСЯН

Рис. 3. *а.* Расчётная плотность электронов 118-го элемента (Og) в зависимости от радиуса (логарифмическая шкала) в двух вариантах расчёта: релятивистском (синяя кривая) и нерелятивистском (красный пунктир) приближениях. Цифрами на графике указаны электронные оболочки (периоды). Видно сильное сжатие внутренних электронных оболочек, в то время как средний радиус внешних (валентных) электронов мало меняется

Рис. 3. *б.* Пространственные распределения (функции локализации) электронов 118-го элемента (Og), полученные в работе [20]. Хорошо видно размытие внешних электронов в сравнении с его гомологами – радоном и ксеноном

тиноидов. Подобные исследования элементов, особенно конца 7-го периода, представляют большой интерес. Их химическое поведение может отличаться от более лёгких гомологов из-за релятивистского возрастания массы электронов с ростом заряда ядра. В более лёгких элементах релятивистский эффект проявляется в свойствах благородных металлов: золото – мягкий металл жёлтого цвета - не окисляется, ртуть тоже металл, но жидкий при комнатной температуре. Благородные металлы способны взаимодействовать друг с другом и создавать соединения типа ртуть/золото (амальгама ртути и золота). С увеличением атомного номера элемента и приближением скорости электронов к скорости света эффект будет быстро возрастать, вследствие чего химическое поведение сверхтяжёлых элементов,

например, 112-го элемента (Cn), может отличаться от своего лёгкого гомолога – ртути (Hg). В первом эксперименте, проведённом в Дубне (2007), исследовалась именно эта пара гомологов [15]. Измерялась адсорбция Сп и Нд на поверхности золота (Au) при различной температуре на предмет наблюдения различия в образовании соединений [Au-Hg] и [Au-Cn]. Наблюдаемое смещение пика адсорбции в область более низких температур было первым прямым экспериментальным наблюдением релятивистского эффекта в трансактиноидах. В целом 112-й элемент продемонстрировал свою принадлежность 12-й группе Периодической таблицы Менделеева. Но из результатов этого эксперимента и проведённых недавно расчётов [16] были выявлены также отличия физико-химических свойств Cn и Hg, в частности, в температурах их фазовых переходов. Как известно, температура плавления ртути составляет -38.8°С, температура кипения -353.7°C, в то время как расчётные значения для Сп заметно отличаются: 10°С и 67°С соответственно. При комнатной температуре, с учётом погрешности измерений, 112-й элемент будет либо сильно летучей жидкостью, либо газообразным.

Но это первый звонок. Дальнейшее увеличение заряда ядра будет более ощутимым. Поэтому спустя 100 лет после открытия Вильямом Рамзаем радона (1904) [17], последнего, до 2004 г., представителя семейства благородных газов 18-й группы таблицы, мы задаёмся вопросом: окажется ли 118-й элемент благородным газом? Релятивистский эффект наиболее сильно проявляется на ближайших к ядру электронах, скорость которых максимальна [18-20], что приводит к сжатию внутренних орбит (рис. 3, а). Для внешних электронов "релятивистское сжатие" приводит к экранированию положительного заряда ядра. В этой ситуации необходимо учитывать (пока в виде малых поправок) взаимодействие внешних электронов друг с другом, которое мало в природных элементах и которым пренебрегают в нерелятивистских расчётах. Нетрудно предвидеть, что роль этих поправок будет быстро возрастать с увеличением атомного номера в сверхтяжёлых элементах. Сам расчёт поправок - по сути, задача многих тел – требует огромных вычислительных мощностей. Большие надежды здесь связаны с квантовым компьютером. А пока доступными средствами в различном приближении отрабатываются методы расчёта на известных атомах. которые затем используются для предельно тяжёлых систем. Релятивистский расчёт элементов 18-й группы показывает, что пространственное распределение внешних электронов 118-го элемента [21] существенно размыто по сравнению с радоном и тем более с ксеноном (рис. 3, δ). Подобная картина воспроизводится в расчётах

Рис. 4. Таблица Д.И. Менделеева с различными вариантами релятивистских расчётов. В синей рамке — сверхтяжёлые элементы, полученные в реакциях с пучком ионов кальция-48

В.М. Шабаева и его коллег [22], но указывается одновременно, что 118-й элемент на 94% будет благородным газом. Возможно, и не газом, а твёрдым телом при комнатной температуре [16, 23].

На примере 118-го элемента можно видеть, что в конце 7-го периода у элементов, именуемых сегодня сверхтяжёлыми, появляются отличные от лёгких гомологов признаки. Экспериментальные данные, к сожалению, весьма скудны прежде всего из-за малого количества сверхтяжёлых элементов и короткого времени их жизни. Одно из направлений будущих исследований нацелено на изучение атомной структуры и химических свойств уже синтезированных сверхтяжёлых элементов на новом оборудовании (см. далее).

Пока не видно принципиальных ограничений для синтеза 119-го и 120-го элементов – начала 8-го периода таблицы. Несмотря на то, что попытки их получения на старых установках в реакциях с ионами титана, хрома и даже железа, предпринятые в разных лабораториях, не увенчались успехом [24-26], это остаётся делом техники. Сложнее будет изучать их химические свойства из-за короткого периода полураспада, исчисляемого долями миллисекунды. Но здесь не ожидается сюрпризов. Большой скачок в химии будет иметь место при переходе от 118-го к 119-му элементу (от последней колонки таблицы к первой). По всей вероятности, 120-й элемент также в целом будет следовать своим лёгким гомологам второй группы. Отклонения начнутся, скорее всего, после 121-го элемента с различными сценариями дальнейшего продолжения таблицы (рис. 4). Элемент 122 либо откроет новую серию так называемых супер-актиноидов [27], включающую ещё 33 элемента вплоть до 155-го, либо 122-й элемент и все последующие продолжат 8-й период. Но в этом случае групповое различие элементов начнёт быстро исчезать (размываться). Пока же остаётся только гадать, как будет выглядеть химия атомных гигантов за пределами периодического закона.

ФАБРИКА СВЕРХТЯЖЁЛЫХ ЭЛЕМЕНТОВ

После открытия новых элементов, расположенных на "острове" стабильности, дальнейшее развитие исследований в этой области связано прежде всего с получением сверхтяжёлых нуклидов в значительно бо́льших количествах. Спустя 10 лет после первых экспериментов по синтезу 114-го и 116-го элементов по результатам, полученным в опытах с пучком ионов кальшия-48. а также в связи с общим прогрессом в смежных областях науки и техники стало ясно, что светимость экспериментов может быть существенно увеличена. Поэтому с 2012 г. мы сильно сократили экспериментальную программу на действующих установках и стали строить новую лабораторию – Фабрику сверхтяжёлых элементов, которая пока не имеет мировых аналогов. Она определяет и тем самым отражает технический уровень всех этапов работы по получению сверхтяжёлых элементов от создания мишеней из трансурановых элементов до доставки сверхтяжёлых нуклидов к экспериментальным физическим и химическим установкам. По достижению проектных параметров возможности Фабрики СТЭ будут превосходить современный уровень в 50-100 раз.

Рис. 5. *а.* Строение ускорительного комплекса Фабрика СТЭ

Рис. 5. б. Ускоритель тяжёлых ионов – циклотрон DC-280

Новый комплекс с инфраструктурой для работы с высокорадиоактивными материалами расположен в отдельном строении (рис. 5, *a*). Там же находится новый сильноточный ускоритель тяжёлых ионов — циклотрон DC-280 [28], пуск которого состоялся в марте 2019 г. (рис. 5, δ). Ускоритель доставляет пучки ионов в три экспериментальных зала, где размещаются сепарирующие каналы, химические и физические установки, а также другое экспериментальное оборудование. В настоящее время идёт наладка нового сепаратора и подготовка первого эксперимента.

ЭПИЛОГ

За прошедшие 80 лет после открытия нептуния и плутония (1940) — первых искусственных элементов — Периодическая таблица пополнилась ещё 24 рукотворными элементами. Пять самых тяжёлых из них заняли своё место в таблице в последние семь лет. Искусственных элементов, как известно, в природе нет. А сверхтяжёлых элементов, скорее всего, не было и при зарождении Солнечной системы. Они получены в лабораториях в совершенно других условиях (реакциях), чем природные химические элементы. Однако все известные сегодня 118 элементов располагаются в единой таблице в строгом соответствии с периодическим законом, открытым Дмитрием Ивановичем Менделеевым 150 лет назад.

Между тем Международный год Периодической таблицы - ІҮРТ-2019, начавший своё шествие в ЮНЕСКО 29 января 2019 г., закончился в Токио (Япония) 5 декабря. Огромное количество статей в научных, научно-популярных и совсем не научных изданиях, удивительный всплеск очень интересных работ в области ядерной физики, химии, атомной физики, астрофизики, истории науки — все посвящённые 150-летию открытия Периодической таблицы химических элементов. Год был встречен с невероятным энтузиазмом не только научным миром, но и широкой общественностью. Форумы, конференции, симпозиумы, лекции, собрания научных обществ, академий наук многих стран — везде по-разному, но всегда одухотворенно и очень интересно.

Что-то объединяет людей. Быть может, также великие открытия и любовь к науке.

БЛАГОДАРНОСТИ

Считаю приятной обязанностью поблагодарить академика РАН А.Р. Хохлова за приглашение выступить на Общем собрании членов РАН с этим докладом и научного сотрудника нашей лаборатории Е.В. Чернышеву за помощь в подготовке статьи.

СПИСОК ЛИТЕРАТУРЫ

- Gamov G. Discussion on the structure of atomic nuclei // Proc. of the Royal Society A. 1929. № 123. P. 386–387.
- 2. Gamov G. Zur Quantentheorie des Atomkernes // Zeitschrift fur Physik. 1928. V. 51. № 3/4. P. 204–212.
- Von Weizsäcker C.F. Zur Theorie der Kernmassen // Zeitschrift für Physik. 1935. V. 96. P. 431.
- Bohr N., Weeler J.A. The Mechanism of Nuclear Fission // Phys. Rev. 1939. V. 56. P. 426–450.
- Френкель Я.И. Электрокапиллярная теория расщепления тяжёлых ядер медленными нейтронами // ЖЭТФ. 1939. № 6. С. 641–653.
- 6. *Flerov G.N., Petrjak K.A.* Spontaneous Fission of Uranium // Phys. Rev. 1940. V. 58. P. 89.
- Seaborg G.T., Loveland W.D. Transuranium Nuclei // Treatise on Heavy-Ion Science / Edited by D.A. Bromley. V. 4. P. 289. N.Y.: Plenum Press, 1985.
- Polikanov S.M., Druin A.V., Karnaukhov V.A. et al. Spontaneous fission with an anomalously short period // Soviet Physics JETP-USSR. 1962. № 15(6). P. 1016–1021.
- Morita K., Morimoto K., Kaji D. et al. Experiment on the Synthesis of Element 113 in the Reaction ²⁰⁹Bi (⁷⁰Zn,n)²⁷⁸113 // J. Phys. Soc. Jpn. 2004. V. 73. P. 2593–2596.

- Oganessian Yu. Ts., Utyonkov V.K., Lobanov Yu.V. et al. Synthesis of Superheavy Nuclei in the 4⁸Ca+²⁴⁴Pu Reaction // Phys. Rev. Lett. 1999. V. 83. P. 3154–3157.
- Oganessian Yu. Ts., Utyonkoy V.K., Lobanov Yu.V. et al. Experiments on the synthesis of element 115 in the reaction ²⁴³Am(⁴⁸Ca,xn)^{291-x}115 // Phys. Rev. C. 2004. V. 69. № 021601(R).
- 12. Oganessian Yu. Ts., Abdullin F.Sh., Bailey P.D. et al. Synthesis of a New Element with Atomic Number Z = 117 // Phys. Rev. Lett. 2010. V. 104. № 142502.
- Oganessian Yu. Ts., Utyonkov V.K., Lobanov Yu.V. et al. Synthesis of the isotopes of elements 118 and 116 in the ²⁴⁹Cf and ²⁴⁵Cm+⁴⁸Ca fusion reactions // Phys. Rev. C. 2006. V. 74. № 044602.
- 14. Oganessian Yu. Ts., Utyonkov V.K. Super-heavy element research // Rep. Prog. Phys. 2015. V. 78. № 036301.
- Eichler R., Aksenov N.V., Belozerov A.V. et al. Chemical characterization of element 112 // Nature. 2007. V. 447. P. 72–75.
- Mewes J.-M., Smits O.R., Kresse G. et al. Copernicium: A Relativistic Noble Liquid // Angew. Chem. Int. Ed. 2019. V. 58. P.17964–17968.
- Ramsay W., Soddy F. Further Experiments on the Production of Helium from Radium // Proceedings of the Royal Society of London (1854–1905). 1904. V. 73. P. 346–358.
- Pershina V. Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties // Radiochimica Acta. 2019. V. 107. P. 833– 864.
- Eliav E., Borschevsky A., Kaldor U. Electronic Structure at the Edge of the Periodic Table // Nuclear Physics News. 2019. V. 29. P. 16–20.

- Lackenby B.G.C., Dzuba V.A., Flambaum V.V. Atomic structure calculations of superheavy noble element oganesson (Z = 118) // Phys. Rev. A. 2018. V. 98. P. 042512.
- Jerabek P., Schuetrumpf B., Schwerdtfeger P., Nazarewicz W. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit // Phys. Rev. Lett. 2018. V. 120. P. 053001.
- Shabaev V.M., Tupitsyn I.I., Kaygorodov M.Y., Kozhedub Y.S. Localisation of electron states of Oganesson atoms // The 4th International Symposium on Superheavy Elements (SHE2019). Hakone, Japan. Dec. 1–5, 2019.
- Giuliani S. A., Matheson Z., Nazarewicz W. et al. Colloquium: Superheavy elements: Oganesson and beyond // Rev. Mod. Phys. 2019. V. 91. № 1. P.01100.
- Düllmann C.E. Superheavy Element Research at TASCA at GSI // Fission and Properties of Neutron-Rich Nuclei. 2013. V. 44. P. 271–277.
- Hofmann S., Heinz S., Mann R. et al. Review of even element super-heavy nuclei and search for element 120 // Eur. Phys. J. A. 2016. V. 52. P. 180.
- Oganessian Yu.Ts., Utyonkov V.K., Lobanov Yu.V. et al. Attempt to produce element 120 in the_²⁴⁴Pu+⁵⁸Fe reaction // Phys. Rev. C. 2009. V. 79. P. 024603.
- Borschevsky A., Pershina V., Eliav E., Kaldor U. Ab initio predictions of atomic properties of element 120 and its lighter group-2 homologues // Phys. Rev. A. 2013. V. 87. P. 022502.
- Gulbekian G.G., Dmitriev S.N., Itkis M.G. et al. Start-Up of the DC-280 Cyclotron, the Basic Facility of the Factory of Superheavy Elements of the Laboratory of Nuclear Reactions at the Joint Institute for Nuclear Research // Physics of Particles and Nuclei Letters. 2019. V. 16(6). P. 866–875.