НАУЧНАЯ СЕССИЯ ОБЩЕГО СОБРАНИЯ ЧЛЕНОВ РАН "75 ЛЕТ АТОМНОЙ ОТРАСЛИ. ВКЛАД АКАДЕМИИ НАУК"

НОВЫЕ МАТЕРИАЛЫ ДЛЯ ЯДЕРНОЙ ЭНЕРГЕТИКИ

© 2021 г. А. В. Дуб^{а,*}, А. И. Рудской^{b,**}

^а Акционерное общество "Наука и инновации" Государственной корпорации по атомной энергии "Росатом", Москва, Россия

^b Санкт-Петербургский политехнический университет Петра Великого,

Санкт-Петербург, Россия

*E-mail: AlVDub@rosatom.ru

**E-mail: rector@spbstu.ru

Поступила в редакцию 15.01.2021 г. После доработки 20.01.2021 г. Принята к публикации 21.02.2021 г.

В статье, подготовленной по материалам доклада, представленного на Общем собрании членов РАН 8 декабря 2020 г., формулируются новые материаловедческие и технологические подходы для обеспечения безопасности и экономической эффективности эксплуатации ядерно-энергетических установок нового поколения. Подчёркивается важность комплементарного применения многоуровневого моделирования, проведения ускоренных радиационных испытаний свойств материалов и изделий в обоснование конструкторских решений, а также необходимость создания перспективной нормативной базы и стандартов для внедрения новых методов конструирования материалов и производственных технологий. Отмечено, что ряд перспективных проектов по разработке новых материалов успешно реализуется в кооперации с институтами РАН. Перечислены основные направления сотрудничества отраслевых НИИ и академических институтов в интересах ядерной энергетики.

Ключевые слова: отбор кандидатных материалов, компьютерное материаловедение, имитационные испытания, реакторные испытания.

DOI: 10.31857/S0869587321050078

Стратегия развития Госкорпорации "Росатом" предполагает активное освоение в ближайшие 10 лет новых технологий по ряду крупных направлений: традиционные водо-водяные энергетиче-

ДУБ Алексей Владимирович – доктор технических наук, профессор, первый заместитель генерального директора АО "Наука и инновации", научный руководитель приоритетного направления научно-технологического развития Госкорпорации "Росатом" "Материалы и технологии". РУДСКОЙ Андрей Иванович – академик РАН, ректор СПбПУ Петра Великого.

ские реакторы (ВВЭР) и перспективные ВВЭР-С и ВВЭР-СКД, реакторы на быстрых нейтронах БН-1200 и БРЕСТ, жидкосолевые реакторы на расплавах солей, высокотемпературные газоохлаждаемые реакторы, атомные станции малой мощности, конструкционные материалы топлива, аддитивные и другие технологии [1]. Успех/эффективность развития каждого из этих технологических направлений связан с выходом за традиционные базы данных по материалам и необходимостью исследования механизмов их поведения в новых условиях [2]. Неслучайно Научно-технический совет Госкорпорации "Росатом" принял решение выделить отдельную материаловедческую программу, одна из задач которой состоит в том, чтобы существенно сократить сроки разработки новых материалов для их использования в перспективных проектах. Уже перед началом реализации этой программы количество исходных кандидатных материалов превышало сотню. Возможность работы с ними в обозримое время требовала новых подходов. С этой целью было организовано взаимодействие предприятий "Росатома" с институтами РАН и уни-

Рис. 1. Генезис материалов – взаимосвязь структурных уровней

верситетами. Академия наук тесно вплетена во все проекты, связанные с атомным материаловедением.

Подчеркнём, что основные подходы к новым материалам, использовавшиеся в атомной отрасли на рубеже 1970-1980-х годов, фактически исчерпаны. Конструкционные материалы, закладываемые в новые энергетические технологии, должны обеспечивать работоспособность реакторов при высоком давлении, высоких температурах (более 650°С) и высоких повреждающих дозах (более 140 сна¹) [2]. Один из базовых подходов состоит в том, чтобы при материаловедческом обосновании с самого начала технологической цепочки закладывалась связь микро-, мезо- и макропараметров структуры новых материалов, с одной стороны, с их энергетическим состоянием и локальным взаимодействием в условиях эксплуатации – с другой (рис. 1) [3].

Концепция отбора кандидатных материалов представляет собой пирамиду, состоящую из нескольких уровней: компьютерное материаловедение на первом этапе [3–8], ускоренные имитационные испытания на этапе оценки кандидатных материалов [9–14] и, утверждённый Ростехнадзором полный набор исследований, включая реакторные испытания, для окончательного выбора с обоснованием. Чтобы в ограниченное время достичь нужных результатов, работа с подбором кандидатных материалов должна трансформироваться в стандартные процедуры: расчётные коды, программы и методики.

Основная задача компьютерного материаловедения – отбор кандидатных материалов из большого числа вариантов. Инструментом здесь служат теория функционала плотности. линамическая теория среднего поля и квантовая химия. Вычислительные инструменты предполагают использование методов машинного обучения для ускоренного поиска материалов с заданными свойствами и верификацию по базам данных [3-8]. Так, нами проведена оценка более 550 тыс. вариантов различных сплавов, которая показала, что многокомпонентные (более 4 элементов) ферритно-мартенситные стали – основной материал для изготовления реакторных корпусов - демонстрируют одновременно существенное увеличение стабильности и пластичности без значительной деградации механических свойств (рис. 2).

Следует отметить, что работы в области компьютерного материаловедения собираются в единой Базе данных по свойствам материалов Госкорпорации "Росатом", которая формируется как отдельный проект.

Для ускоренных имитационных исследований радиационной стойкости конструкционных материалов используется ускоритель заряженных частиц "Тандем" (Физико-энергетический институт им. А.И. Лейпунского) – новая и уникальная для России установка, лучшая в своём классе, позволяющая получить результат быстрее, чем в реакторных экспериментах. Ускорители давно

¹ Смещение на атом (сна) — характеристика, отражающая степень воздействия радиации на конструкционные материалы.

Рис. 2. Роль компьютерного материаловедения в разработке методик отбора кандидатных материалов (*a*); проекты, центры и базы данных в области компьютерного материаловедения (*б*); подбор материалов с наилучшими свойствами (модуль Юнга) (*в*)

применялись для реакторного материаловедения [9–14]. Вопрос состоял в том, чтобы эту методику использовать как стандарт. На специальных типах образцов, облучённых в ускорителе, нам удалось продемонстрировать механизмы и воздействие разных видов облучения не только на структуру материала, но и на их свойства. При этом дозовая нагрузка на образец достигала 200 сна, имитируя деградацию микроструктуры так же, как при реакторном облучении. Однако в условиях реакторных испытаний этот процесс занял бы более 5–10 лет, при облучении на ускорителе – часы.

Изучались все типы металлических материалов для атомной энергетики (рис. 3, 4). На рисунке 4 представлена схема, которая демонстрирует, каким образом можно перейти от ускоренных методов облучения к измерению микротвёрдости и микроиндентированию, провести пересчёт в механические свойства и определить критическую температуру для перехода из вязкого состояния в хрупкое, а также макропоказатели трещиностойкости и при этом подтвердить, что именно такие образцы являются представительными для конкретного типа и класса стали. Важнейший итог этих работ – создание стандарта испытаний на основе предложенной методики, позволившей за счёт непосредственного измерения структурночувствительных параметров материала определить влияние различных температур облучения на радиационную стойкость, а следовательно, и на ресурс материала.

Заключительная часть — ускоренные реакторные испытания. Госкорпорация "Росатом" обладает развитой экспериментальной базой, значительную часть которой составляют действующие исследовательские ядерные установки. Совместная работа институтов Госкорпорации "Росатом" и НИЦ "Курчатовский институт" показала возможность проведения ускоренных реакторных испытаний с увеличением дозы облучения образцов более чем в 10 раз. При этом учитывалось поведение внешней окружающей среды.

Таким образом, всего за два года (!) был отобран основной материал для внутрикорпусных устройств перспективного реактора ВВЭР-СКД, который сейчас проходит реакторные испытания. При этом осуществлён последовательный отбор сплава сначала по критерию поведения при радиационном распухании, затем при коррозионном растрескивании в водной среде сверхвысоких параметров, либо при водородном охрупчивании и тепловом старении. Сопротивление хрупкому разрушению и коррозионная прочность обеспечены после ионного облучения до 200 сна, что соответствует запредельному сроку службы материала в реальных условиях.

Получены образцы перспективного конструкционного материала толерантного топлива на основе карбида кремния. Реализован полный цикл его производства от компьютерного моделирования до экспериментальных изделий, освоен опыт работы с волокнами из SiC. Фактически создана новая отрасль атомной энергетики.

ДУБ, РУДСКОЙ

Рис. 3. Ускоренные имитационные исследования радиационной повреждаемости конструкционных материалов

облучения

Рис. 4. Прогнозирование сопротивления хрупкому разрушению (трещиностойкости) конструкционных материалов по результатам испытаний образцов, облучённых в ионном ускорителе

Подобраны композиции жаропрочных материалов, упрочнение которых обеспечивается за счёт выделения наноразмерных фаз, что позволяет увеличить сроки их эксплуатации при обычных температурах в 100 раз, либо поднять температуру эксплуатации установки на 50°С. Кроме того, показано, что в ферритно-мартенситных сталях за счёт радиационного воздействия появляются высокодисперсные наноразмерные фазы, которые не выделяются при обычных условиях, что приводит к равномерному упрочнению материала. При этом наноразмерные фазы образуются при относительно высоких температурах (более 400– 500°С). Иными словами, создаётся новая радиационная технология упрочнения сплавов ферритно-мартенситного класса, которые можно использовать и в обычных условиях. Ещё одно важное направление — селективное удаление атомов под действием облучения ускоренными частицами, при котором инициируется процесс замены атомов исходного химического соединения на новые атомы, содержащиеся в ионном пучке.

В настоящее время мы располагаем *аддитив*ными технологиями — высокопроизводительной системой селективного лазерного плавления металлических порошков (3D-принтер по металлу), уникальным с точки зрения материаловедения оборудованием российского производства. В относительно малом объёме жидкого расплава концентрируется большая энергия за счёт лазерного или электронного луча. Поэтому без рассеяния или поглощения можно обеспечить целенаправленное воздействие на микроструктуру металла, начиная с формирования первичной кристаллической структуры, за счёт модуляции параметров пучкового излучения, которое помимо теплового воздействия генерирует ультразвуковые колебания.

Идёт поиск конструкционных материалов для одного из инновационных проектов атомной энергетики – жидкосолевого реактора. Топливо в таких установках будут растворять в расплаве солей FLiBe. Но в перспективе реактор могут перевести на более эффективную композицию ФЛИНАК (смесь фторидов лития, натрия и калия LiF-NaF-KF), которая при всей агрессивности способна растворять большее количество минорных актинидов. Уже подобран ряд материалов, подтверждающих возможность обеспечивать скорость их коррозии менее 30 мкм/год после 100 ч эксплуатации при 650°C в среде ФЛИНАК.

Новые условия эксплуатации и механизмы поведения материалов требуют проведения совместных с институтами РАН фундаментальных работ в области атомного материаловедения. К ним в первую очередь относятся работы:

 по изучению сочетания первопринципного моделирования свойств материалов на основе квантовомеханических расчётов с использованием функционала плотности и последующего молекулярного моделирования на основе машинного обучения с использованием результатов этих расчётов на мезо- и макроуровне;

 по исследованию природы радиационного повреждения материалов при воздействии нейтронов и заряженных частиц;

 по изучению кинетических явлений при фазовых переходах и детальному исследованию динамики кристаллизации металлов с возможностью воздействия на неё синхротронным, лазерным и другими видами излучений.

Большой объём фундаментальных исследований будет выполняться в академических институтах. Можно сказать, что научные центры и институты РАН играют важнейшую роль в разработке новых материалов для атомной энергетики.

ЛИТЕРАТУРА

- Ашурко Ю.М. Перспективные реакторные технологии 4-го поколения и их развитие в рамках Международного форума "Поколение IV" // Сборник докладов научно-технической конференции "Теплофизика реакторов нового поколения" (Теплофизика-2018). 16–18 мая 2018 г., Обнинск. Обнинск: ГНЦ РФ-ФЭИ, 2018. С. 22–30.
- Structural materials for generation IV nuclear reactors / By ed. P. Yvon. Sawston, Cambridge: Woodhead Publishing, 2017.
- 3. Yanilkin A.V., Krasnikov V.S., Kuksin A.Yu., Mayer A.E. Dynamics and kinetics of dislocations in Al and Al–Cu alloy under dynamic loading // International Journal of Plasticity. 2014. V. 55. P. 94–107.
- 4. *Wen C., Zhang Y., Wang C. et al.* Machine learning assisted design of high entropy alloys with desired property // Acta Materialia. 2019. V. 170. P. 109–117.
- 5. Jurafsky D., Martin J.H. Speech and language processing. International Edition, 2000.
- 6. *Tesauro G.* Temporal difference learning and TD-Gammon // Communications of the ACM. 1995. V. 38. № 3. P. 58–68.
- 7. *Li Z., Kermode J., De Vita A.* Molecular dynamics with on-the-y machine learning of quantum-mechanical forces // Physical review letters. 2015. V. 114. № 9. P. 096405.
- 8. *Behler J.* Representing potential energy surfaces by high-dimensional neural network potentials // Journal of Physics: Condensed Matter. 2014. V. 26. № 18. P. 183001.
- Accelerator simulation and theoretical modelling of radiation effects in structural materials. IAEA Nuclear Energy Series NF-T-2.2. Vienna, 2018.
- Gary S. Was Fundamentals of Radiation Materials Science. Metals and Alloys. Springer-Verlag Berlin Heidelberg, 2007.
- Taller S., Jiao Z., Field K.G., Was G. Emulation of fast reactor irradiated T91 using dual ion beam irradiation // Journal of Nuclear Materials. 2019. V. 527. P. 151831.
- Taller S., Van Coevering G., Wirth B., Was G. Predicting structural material degradation in advanced nuclear reactors with ion irradiation // Scientific Reports. 2021. V. 11. № 1. P. 2949.
- Was G.S., Jiao Z., Getto E. et al. Emulation of reactor irradiation damage using ion beams // Scripta Materialia. 2014. V. 88. P. 33–36.
- Zinkle S.J., Snead L.L. Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations // Scripta Materialia. 2018. V. 143. P. 154–160.

ВЕСТНИК РОССИЙСКОЙ АКАДЕМИИ НАУК том 91 № 5 2021