ВЕСТНИК ВОЕННОГО ИННОВАЦИОННОГО ТЕХНОПОЛИСА «ЭРА», 2022, том 3, № 2, с. 157–162

_ ЭНЕРГЕТИЧЕСКИЕ ТЕХНОЛОГИИ _____ И ФОТОНИКА

УДК 538.945

ОСОБЕННОСТИ ЭВОЛЮЦИИ НАПРЯЖЕНИЯ ПРИ ЛИНЕЙНОМ ВВОДЕ ТОКА В СВЕРХПРОВОДЯЩИЙ МАГНИТ С НЕИЗОЛИРОВАННОЙ ОБМОТКОЙ

© 2022 г. Д. С. Яшкин^{1,*}, А. А. Картамышев¹

¹Национальный исследовательский центр "Курчатовский институт", Москва, Россия

**E-mail: yashkin_ds@nrcki.ru* Поступила в редакцию 23.03.2022 г. После доработки 23.03.2022 г. Принята к публикации 05.04.2022 г.

Измерено электрическое напряжение на выводах сверхпроводникового магнита с неизолированной обмоткой в процессе ввода тока и после завершения этого процесса. При вводе тока с постоянной скоростью напряжение не выходило на константу, а росло в течение всего процесса. После завершения ввода тока процесс уменьшения напряжения включал в себя две стадии: быстрое экспоненциальное затухание сменялось более медленным процессом. Предложена эквивалентная схема сверхпроводящей катушки из ленты ВТСП-2 (высокотемпературный сверхпроводник второго поколения) с неизолированной обмоткой. Проведено сравнение результатов моделирования с экспериментом. Предложенная схема относительно проста для расчета и позволяет описывать указанные два эффекта при токах ниже критического количественно, при токе порядка критического – качественно.

DOI: 10.56304/S2782375X22020188

введение

За последние десять с лишним лет, прошедшие с публикации [1] о магнитах из ленты на основе высокотемпературного сверхпроводника второго поколения (ВТСП-2) без изоляции (неизолированная сверхпроводящая обмотка НИСО), интерес к таким магнитам лишь усиливается. Регулярно выходят сообщения об устройствах на их основе, обзоры. Такие магниты неприхотливы в изготовлении и устойчивы в работе, поскольку не подвержены перегоранию при незначительном превышении током критического значения. Они очень перспективны уже не как предмет исследования, а как полноценный рабочий инструмент, который должен быть досконально изучен и по возможности хорошо предсказуем. Поэтому в литературе можно найти большое количество эквивалентных электрических схем, позволяющих описывать и моделировать те или иные процессы, происходящие в НИСО.

Простейшая схема, введенная в [1], показана на рис. 1. Здесь НИСО представлена в виде индуктивной нагрузки L с нелинейным активным сопротивлением, шунтированной резистивным элементом R_n . Плечо с индуктивной нагрузкой соответствует току, текущему по сверхпроводнику (азимутальный ток), плечо с чисто резистивной нагрузкой – току, текущему по медному стабилизатору поперек лент (радиальный ток). Нелинейное активное сопротивление выражается

зависимостью $R_s = U_0/I_c \cdot |I/I_c|^{n-1}$, где I – азимутальный ток, I_c – критический ток катушки, $U_0 = I \cdot E_0$, l – длина исходной ленты, $E_0 = 1$ мкВ/см. Эта схема, несмотря на простоту, позволяет экспериментально определять основные параметры НИСО [2], а также качественно описывать процессы в НИСО. Количественное описание по данной схеме также возможно при токе существенно ниже критического, но оно приближенно, хотя и достаточно для некоторых инженерных применений [3]. В такой схеме все переходные процессы при токе ниже критического имеют экспоненциальный характер со временем $\tau = L/R$.

Более точное количественное описание позволяет сделать учет замкнутых сверхпроводящих то-

Рис. 1. Базовая эквивалентная схема НИСО.

ков, наводящихся в ленте при вводе и выводе из нее транспортного тока. В [4] исследовано распределение тока по ВТСП-ленте. Показано, что при увеличении тока он заполняет сначала крайние области, затем центральные. При выводе тока из ленты в ней остаются циркулирующие в ее плоскости сверхпроводящие токи. Можно предположить, что похожим образом ток ведет себя в НИСО. В [5] показано, что после вывода тока из НИСО в ней остаются токи, создающие магнитное поле, затухающее медленнее экспоненты (persistent screening current, screening current-induced field, SCIF). В [6] показано наличие таких токов уже при первоначальном вводе внешнего тока в НИСО, а также что они препятствуют достижению целевой величины магнитного поля. Функционирование некоторых ВТСП-2-подшипников в принципе основано на действии экранирующего тока [7].

В [8] предложена эквивалентная схема, позволяющая исследовать влияние экранирующих токов в системах двойных галет (*double pancake*). В [9] каждый виток НИСО разбит на двумерный массив элементов и рассчитан отклик на переменный ток. Получено хорошее согласие с экспериментом и результат проинтерпретирован как индуктивность, зависящая от величины тока. Больше информации о работах можно найти в обзоре [10].

Главный недостаток схемы [9] — ее громоздкость. Структура схемы предполагает трехмерный массив элементов, матрица взаимосвязей которого будет уже шестимерной. Численное решение такой задачи требует значительных вычислительных ресурсов.

В данной работе описаны экспериментальные результаты, не предсказываемые базовой моделью [1], и предлагается относительно простая эквивалентная схема, позволяющая моделировать эти эффекты.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В эксперименте использовали НИСО, изготовленную из коммерчески доступной ленты фирмы SuperOx шириной 4 мм, с медным стабилизирующим покрытием и заявленным критическим током не менее 200 А при 78 К. Внутренний виток обмотки припаян к медному цилиндру, который используется в качестве токоввода. Наружный конец ленты выведен на второй токоввод (рис. 2). Один потенциальный контакт расположен между первым и вторым внутренними витками обмотки, второй припаян к свободному концу ленты. Параметры НИСО представлены в табл. 1. Индуктивность рассчитана по формулам для круговой катушки прямоугольного сечения [11].

Рис. 2. Фотография неизолированной катушки.

При введении в НИСО тока с постоянной скоростью напряжение на обмотке, рассчитанное с использованием эквивалентной схемы на рис. 1, при токах существенно ниже критического должно иметь вид [2]:

$$U = vL \cdot (1 - \exp(-t/\tau)),$$

где *v* — скорость ввода тока, $\tau = L/R$ — постоянная времени для *LR*-цепи. Если учесть линейную зависимость тока от времени и исключить время, можно получить динамическую вольт-амперную характеристику (**BAX**), которая также экспоненциально стремится к константе.

Экспериментальная зависимость отличается от модельной тем, что не выходит на константу, как видно из графиков на рис. 3.

После завершения экспоненциального процесса экспериментальная зависимость принимает форму, которую можно в первом приближении

Длина ленты, м	8
Ширина ленты, мм	4
Внутренний диаметр, мм	32
Внешний диаметр, мм	46
Число витков	65
Расчетная индуктивность, мкГн	230
Критический ток ленты, А	>200
Критический ток катушки (измеренный), А	74
Радиальное сопротивление катушки	~0.5
(оценка), мОм	

Рис. 3. Динамические ВАХ НИСО при различной скорости ввода тока (а). Динамические ВАХ при скорости ввода тока 1 А/с с различной магнитной историей: ввод 1 – ввод тока до 60 А сразу после захолаживания, затем вывод тока до нуля; ввод 2 – повторный ввод тока до 60 А, затем снова полный вывод тока, ввод тока противоположного направления до –60 А, полный вывод тока; ввод 3 – ввод тока до 60 А после выполнения указанных действий (б).

считать линейной. Это явление не может быть объяснено наличием в катушке резистивного участка (в случае повреждения), поскольку угол наклона динамической ВАХ зависит от скорости ввода тока в НИСО (рис. 3).

После завершения ввода тока в НИСО простейшая эквивалентная схема предсказывает экспоненциальное затухание напряжения на концах обмотки, соответствующее переходу радиального тока в азимутальный по закону *LR*-цепочки. При этом эксперимент показывает, что экспоненциальное затухание наблюдается только в первые две секунды, а затем сменяется более медленным процессом (рис. 4). Этот процесс хорошо аппроксимируется зависимостью $U = U_{\infty} + k/t$, где U_{∞} – напряжение, которое установится через беско-

Рис. 4. Графики снижения напряжения со временем после стабилизации внешнего тока различной величины: а – логарифм напряжения от времени; б – напряжение от обратного времени.

нечное время, k — некоторая не зависящая от времени величина (рис. 4). Экспоненциальный процесс сначала превалирует, однако вследствие того, что его постоянная времени составляет ~0.5 с, вскоре начинает доминировать процесс, обратно пропорциональный времени.

Такой вид функции для аппроксимации выбран по аналогии с измерениями замкнутого сверхпроводящего кольца. Похожим выражением описывается электродвижущая сила самоиндукции в сверхпроводящем кольце при логарифмической релаксации

$$U = -L\frac{dI}{dt} = -\frac{LIs}{t},$$

где L – индуктивность кольца, I – слабо меняющийся сверхток, $s = \frac{d \ln I}{d \ln t}$ – логарифмическая скорость релаксации. Эксперимент по многократному вводу тока в НИСО без отогрева показал, что поведение системы зависит от ее предыстории (рис. 3). Так, при втором (ввод 2) и последующих введениях тока динамическая ВАХ лежит ниже той, которая была при первом после захолаживания вводе тока (ввод 1). Если ввести в НИСО ток обратного знака, то при последующем вводе опять положительного тока динамическая ВАХ лежит выше первоначальной (ввод 3).

Зависимость от предыстории так же, как и логарифмическая релаксация, характерна для сверхпроводящих контуров. Это позволяет сделать предположение, что в исследуемой системе присутствуют замкнутые сверхпроводящие контуры, влияние которых на описанные процессы не является пренебрежимо малым.

МОДЕЛЬ

Эквивалентная электрическая схема предлагаемой модели представлена на рис. 5. В ней сверхпроводящая ветвь НИСО разбита на *N* параллельных индуктивно связанных между собой участков. Каждый участок соответствует кольцевому слою, включающему в себя области ленты на всех витках катушки, расположенные на одинаковом расстоянии от одного из торцов. Эти участки связаны между собой индуктивно. В реальных катушках распределение тока по ленте должно меняться от витка к витку вследствие влияния создаваемого катушкой магнитного поля, однако в данной модели этим пренебрегаем и считаем распределение тока по ширине ленты однородным вдоль всей ее длины.

Каждый из параллельных участков включает в себя активное переменное сопротивление, определяемое ВАХ катушки $R_{si} = U_0 \left| \frac{I_i^{n-1}}{I_{ci}^n} \right|$, где I_i – ток через *i*-й элемент, $I_{ci} = I_c/N$ – критический ток одного элемента.

Индуктивная компонента схемы представляет собой матрицу $L_{i,j}$, состоящую из собственных (на диагоналях) и взаимных индуктивностей колец (рис. 5), рассчитываемых по формулам для взаимной индуктивности одинаковых плоских катушек либо круговых колец [11]. Полная статическая индуктивность НИСО выражается как среднее арифметическое значение элементов матрицы

$$L = \frac{\sum_{i,j=1}^{N} L_{i,j}}{N^2}.$$

Параллельно индуктивным компонентам подсоединен резистор, соответствующий радиальному сопротивлению и несущий радиальный ток.

Рис. 5. Эквивалентная электрическая схема предлагаемой модели (а); иллюстрация разбиения НИСО на элементы (б).

Так как ветви схемы соединены параллельно, напряжения на них равны между собой и любое из них определяет полное напряжение на выводах НИСО

$$U = R_{si}I_i + \sum_{k=1}^{N} L_{ik} \frac{dI_k}{dt}, \quad \forall i \in [1, N].$$

Это N уравнений относительно N неизвестных токов и неизвестного напряжения. Еще одно уравнение получим из условия равенства напряжения в радиальной цепи общему $U = R_r I_r$, недостающее последнее возьмем из условия равенства суммарного тока силе тока, заданной с внешнего источника I_{ext} , и, соответственно, равенства суммы производных токов по времени скорости ввода внешнего тока

$$I_r + \sum_{k=1}^N I_k = I_{ext}$$

Для облегчения структуры задачи исключим из числа переменных напряжение, вычтя попарно уравнения системы с последовательно идущими индексами. Уравнение на радиальный ток предварительно также включим в систему, присвоив индекс N + 1.

В результате получим систему

$$\begin{pmatrix} L_{21} - L_{11} & L_{22} - L_{12} & \cdots & L_{2N} - L_{1N} & 0 \\ L_{31} - L_{21} & L_{32} - L_{22} & \cdots & L_{3N} - L_{2N} & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ L_{N,1} - L_{N-1,1} & L_{N,2} - L_{N-1,2} & \cdots & L_{N,N} - L_{N-1,N} & 0 \\ -L_{N,1} & -L_{N,2} & \cdots & -L_{N,N} & 0 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix} \underbrace{d}_{I_1} \begin{pmatrix} I_1 \\ I_2 \\ \vdots \\ I_N \\ I_{N+1} \end{pmatrix} = \begin{pmatrix} R_{s1}I_1 - R_{s2}I_2 \\ R_{s2}I_2 - R_{s3}I_3 \\ \vdots \\ R_{sN-1}I_{N-1} - R_{sN}I_N \\ R_{sN}I_N - R_{r}I_{N+1} \\ V \end{pmatrix}$$

Для решения такой системы можно воспользоваться любым подходящим численным методом, к примеру методом Рунге-Кутты четвертого порядка.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Расчет НИСО с параметрами, указанными в табл. 1, показывает результат, отличающийся от экспериментального в пределах нескольких процентов. Корректировка среднего радиуса НИСО от 19.5 до 19.7 мм устраняет и это отличие (рис. 6).

Различие динамических ВАХ и их отличие от константы свидетельствуют о том, что динамическая индуктивность ($L_{\partial} = d\Phi/dI$, где Φ – магнитное потокосцепление катушки) является меняющейся с течением времени величиной. Полное потокосцепление можно выразить формулой

$$\Phi = \sum_{i} \Phi_{i} = \sum_{i} \left(\sum_{j} L_{ij} I_{j} \right) = \sum_{j} I_{j} \left(\sum_{i} L_{ij} \right) = \sum_{j} L_{j} I_{j},$$

где $L_j = \sum_i L_{ij}$ – сумма собственной и взаимных индуктивностей *j*-го элемента модели, являющаяся коэффициентом пропорциональности между напряжением на всей катушке и скоростью изменения тока в данном элементе. Таким образом, динамическая индуктивность представляет собой усредненную индуктивность элементов разбиения, взятых с весами, равными скорости изменения тока в соответствующих элементах:

$$L_{\partial} = \sum_{i} L_{i} dI_{i} / dt$$

В начале процесса ток меняется в основном в крайних элементах с минимальной суммарной индуктивностью. ВАХ ограничивает рост тока вблизи критических значений, вследствие чего область интенсивного роста, вносящая наибольший вклад в динамическую индуктивность, смещается внутрь ленты (рис. 6). Таким образом, динамическая индуктивность растет в процессе изменения тока, что объясняет рост динамической ВАХ.

Предложенная модель позволяет проиллюстрировать распределение плотности тока по ленте в различные моменты эволюции системы. При первом вводе тока после захолаживания его плотность во внешних областях меняется от нуля до величины, близкой к j_c (рис. 6). При выводе тока из катушки его плотность не падает до нуля по всему поперечному сечению: во внешних областях наводится ток противоположного направления, в то время как во внутренних он почти не меняется. При повторном вводе тока плотность меняется от почти $-j_c$ до почти $+j_c$, область изме-

Рис. 6. Экспериментальная (точки) и модельная (линии) ВАХ НИСО при вводе тока: ввод 1 – сразу после захолаживания, ввод 2 – повторный ввод тока без предварительного отогрева (а). Распределение тока по ширине ленты в модели при токе 20 А при вводах 1 и 2 тока (б).

нения тока движется медленнее, следовательно, динамическая индуктивность оказывается меньше при тех же значениях полного транспортного тока через магнит. Поэтому динамическая BAX такого процесса лежит ниже первоначального.

ЗАКЛЮЧЕНИЕ

Предложенная эквивалентная схема параллельных индуктивностей позволяет моделировать переходные процессы в неизолированных сверхпроводящих обмотках, выполненных из лент ВТСП-2. Динамическая индуктивность всей НИСО не является постоянной величиной, а определяется областями, в которых плотность тока изменяется в данный момент времени. Существенная нелинейность ВАХ сверхпроводника приводит к тому, что ток заполняет ленту не однородно по всему сечению, а от кромок каждого витка. Таким образом, внутренние области оказываются частично экранированными.

После фиксирования внешнего тока обмотки и завершения экспоненциального перехода большей части радиального тока в азимутальный в катушке наблюдается неоднородное распределение плотности тока по поперечному сечению. Это распределение стремится выровняться за счет крипа магнитного потока, что приводит к движению вихрей и изменению потокосцепления, которое по закону Фарадея приводит к появлению измеряемого на выводах катушки напряжения, падающего обратно пропорционально прошедшему времени.

Понимание особенностей электродинамики подобных переходных процессов увеличивает предсказуемость НИСО и открывает широкие перспективы их применения в качестве источников магнитного поля. Авторы выражают благодарность Е.П. Красноперову, П.А. Бражнику, В.В. Сычугову и А.В. Кривых за критические замечания.

Работа выполнена при финансовой поддержке Национального исследовательского центра "Курчатовский институт".

СПИСОК ЛИТЕРАТУРЫ

- 1. *Hahn S., Park D.K., Bascuñán J., Iwasa Y. //* IEEE Trans. Appl. Supercond. 2010. V. 21. № 3. P. 1592. https://doi.org/10.1109/TASC.2010.2093492
- Krasnoperov E.P., Guryev V.V., Sychugov V.V. et al. // Meas. Tech. 2022. P. 1. https://doi.org/10.1007/s11018-022-01998-6
- 3. *Krasnoperov E.P., Sychugov V.V., Guryev V.V. et al.* // Electr. Eng. 2020. V. 102. № 3. P. 1769. https://doi.org/10.1007/s00202-020-00977-w
- 4. *Carrera M., Granados X., Amorós J. et al.* // J. Phys.: Conf. Ser. IOP Publishing. 2010. V. 234. № 1. P. 012009. https://doi.org/10.1088/1742-6596/234/3/032007
- 5. *Yang D.G., Kim K.L., Choi Y.H. et al.* // Supercond. Sci. Technol. 2013. V. 26. № 10. P. 105025. https://doi.org/10.1088/0953-2048/26/10/105025
- 6. *Kim K.L., Hahn S., Choi Y.H. et al.* // J. Supercond. Nov. Magne. 2015. V. 28. № 1. P. 83. https://doi.org/10.1007/s10948-014-2790-y
- 7. Osipov M., Anishenko I., Starikovskii A. et al. // Supercond. Sci. Technol. 2021. V. 34. № 3. P. 035033. https://doi.org/10.1088/1361-6668/abda5a
- 8. *Noguchi S., Imai T., Park D. et al.* // Supercond. Sci. Technol. 2020. V. 33. № 11. P. 115005. https://doi.org/10.1088/1361-6668/abb35b
- 9. *Chen S., Gu C., Li Y. et al.* // IEEE Trans. Appl. Supercond. 2019. V. 29. № 5. P. 1. https://doi.org/10.1109/TASC.2019.2897868
- 10. *Li Y.* // Supercond. Sci. Technol. 2020. V. 33. № 8. P. 080502.
- https://doi.org/10.1088/1361-6668/ab9d8d 11. Калантаров П.Л., Цейтлин Л.А. Расчет индуктив-

ностей. М.: Энергия, 1970.