СТРУКТУРА И СВОЙСТВА

УДК 541.64:539.3

ВЛИЯНИЕ СТРУКТУРЫ ЖЕСТКОГО СЕГМЕНТА НА ТЕРМОМЕХАНИЧЕСКИЕ СВОЙСТВА ПОЛИУРЕТАНИМИДОВ

© 2019 г. Д. А. Кузнецов^{*a*,*}, А. Л. Диденко^{*a*}, В. М. Светличный^{*a*}, В. Е. Смирнова^{*a*}, Е. Н. Попова^{*a*}, Г. В. Ваганов^{*a*}, В. Е. Юдин^{*a*}, В. В. Кудрявцев^{*a*}

^аИнститут высокомолекулярных соединений Российской академии наук 199004 Санкт-Петербург, Большой пр., 31, Россия * e-mail: deraff@yandex.ru Поступила в редакцию 19.06.2018 г.

После доработки 25.10.2018 г. Принята к публикации 08.11.2018 г.

Синтезированы новые сегментированные полиуретанимиды, содержащие гибкие сегменты полидиэтиленгликольадипината и жесткие сегменты бисуретанимида. Сополимеры получены на основе полидиэтиленгликольадипината ($M_n = 2.5 \times 10^3$) терминированного 2,4-толуилендиизоцианатом, двух ароматических диангидридов и шести ароматических диаминов. Структура синтезированных полимеров подтверждена методами ИК- и ЯМР-спектроскопии. Термические свойства сополимеров охарактеризованы методами ТГА и ДСК. Исследовано влияние длины жесткого сегмента и положения заместителя в диамином фрагменте на термические и механические свойства синтезированных полиуретанимидов.

DOI: 10.1134/S230811201902007X

введение

Блок-сополимеры известны с серелины ХХ века, но интерес к ним не ослабевает, поскольку в результате их синтеза оказывается возможным совместить в одном материале макроскопические свойства двух различных полимеров или достичь синергических эффектов. Строение блок-сополимеров многовариантно в архитектурном отношении, и, блок-сополимеры типа [А–В], обычно относят к мультиблочным (сегментированным) полимерам [1, 2]. По определению в каждом повторяющемся звене таких полимеров содержится жесткий блок мономера А и блок гибкоцепного полимера В, причем блоки А и В термодинамически несовместимы. Характерной особенностью мультиблочных сополимеров типа [А-В], является микрофазовое разделение блоков А и В, сопровождающееся образованием в объеме сополимера соответствующих нано- и микрообластей.

Типичные представители мультиблочных блок-сополимеров – полиуретаны. Полиуретаны относятся к числу промышленно выпускаемых эластомеров и используются во многих областях техники. На их основе получают материалы со свойствами от очень мягких пен до упругих эластомеров и износостойких покрытий [1]. Однако практическое применение полиуретанов ограничивается их невысокой термостойкостью, термическая деструкция полиуретанов начинается уже около 200°C [3]. Перспективным методом для повышения термостойкости и прочности полиуретановых эластомеров является их химическая модификация, заключающаяся во введении фрагментов гетероцепных высокотермостойких полимеров в структуру повторяющихся звеньев цепей. В настоящее время в литературе этому направлению модификации полиуретанов уделяется большое внимание [3-8]. В частности, в последние годы успешно исследуются мультиблочные полиэфиримилы и полиуретанимилы (ПУИ) [9-14], содержащие фрагменты ароматических имидов. Введение имидных фрагментов обусловлено тем, что полиимиды обладают высокой термической, радиационной стабильностью, стойкостью к растворителям и механической прочностью [15, 16]. Модификация полиуретанов имидными блоками позволяет, с одной стороны, рассматривать ПУИ как продукты химической модификации полиуретанов, в которых агентами удлинения цепи являются ароматические диангидриды. С другой стороны, это продукты модификации термостойких полиимидов, в структуру повторяющихся звеньев которых введены блоки алифатических полиэфиров.

Цель настоящей работы — синтез и исследование свойств (термических и механических) новых ПУИ, в химической структуре которых содержится один и тот же гибкий сегмент — полидиэтиленгликольадипинат и варьируются имидоароматические группировки, представляющие собой жесткие сегменты, в которые входят ароматические диамины, различающиеся числом оксифениленовых фрагментов и структурной изомерией. Рассмотрено влияние размера жесткого сегмента и структурной изомерии на свойства получаемого пленочного полимерного материала.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные реагенты

2,4-Толуилендиизоцианат (95% "Aldrich") перегоняли в вакууме. N-метил-2-пирролидон (**МП**) (98% "Aldrich") выдерживали над гидридом кальция и перегоняли в вакууме. Пиромеллитовый диангидрид (97% "Aldrich") (1), *n*-фенилендиамин (98% "Aldrich") (а) и *м*-фенилендиамин (99% "Aldrich") (б) возгоняли в вакууме. Полидиэтиленгликольадипинат ($M_n = 2.5 \times 10^3$) (45 мг КОН/г) ("Aldrich"), 4,4'-(4,4'-изопропилидендифенокси)бис(фталевый ангидрид) (97% "Aldrich") (2) и 4,4'-диаминодифениловый эфир (97% "Aldrich") (в) сушили в вакууме. 1,4-Бис-(4-аминофенокси)бензол (98% "Aldrich") (г), 1,3-бис-(4-аминофенокси)бензол (98% "Aldrich") (д) и 4,4'-бис-(4-аминофенокси)дифениловый эфир (е) получали по методике [17] $T_{пл} = 123 - 125^{\circ}$ С (по лит. данным $T_{пл} = 124 - 125^{\circ}$ С). Толуол (ч.д.а., "Вектон"), использовали без дополнительной очистки.

Методы

ИК-спектры пленок ПУИ снимали на фурьеспектрометре "Bruker Vertex" с использованием микроприставки Pike однократного нарушенного полного внутреннего отражения (НПВО); в качестве элементов НПВО использовали кристаллы Zn-Se (угол отражения 45°).

Спектры ЯМР ¹Н и ЯМР ¹³С регистрировали при комнатной температуре на приборе "Bruker Avance 400" в ДМСО- d_6 .

Кривые ТГА получали на термомикровесах TG 209 F1 (NETZSCH, Германия) в диапазоне температур 30–800°С при скорости нагревания 10 град/мин в инертной среде (аргон). Масса образцов 2–3 мг.

Температурные переходы пленочных образцов мультиблочных сополимеров определяли методом ДСК на приборе DSC 204 F1 (NETZSCH, Германия) при скорости подъема температуры 10 град/мин в диапазоне -60...+250°С в инертной среде (аргон). Масса образцов 4–5 мг.

Температурные зависимости динамических модуля упругости E', модуля потерь E'' и тангенса угла механических потерь tgδ пленочных образцов получали методом динамического механического анализа ДМА на установке DMA 242 С (NETZSCH, Германия). Измерения проводили на частоте 1 Гц, амплитуда деформации пленок 0.1%, скорость подъема температуры 5 град/мин.

Кривые растяжения образцов пленок записывали с использованием универсальной испытательной системы "Instron 5940" ("Instron", США) со скоростью деформации 50 мм/мин.

Методика синтеза полиуретанимидов

Общая схема синтеза ПУИ представлена ниже.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А том 61 № 2 2019

КУЗНЕЦОВ и др.

В качестве примера описывается синтез полимера, полученного с использованием диангидрида (1), полидиэтиленгликольадипината ($M_n =$ $= 2.5 \times 10^3$), 2,4-толуилендиизоцианата и *n*-фенилендиамина (**a**).

Синтез проводился в трехгорлой колбе, снабженной вводом аргона и механической мешалкой, в которую загружали 2.5 г (1 ммоль) полидиэтиленгликольадипината и 0.348 г (2 ммоль) 2,4толуилендиизоцианата. Полученную смесь перемешивали при 100°С в течение 1 ч, затем добавляли 0.436 г (2 ммоль) пиромеллитового диангидрида и перемешивали 2 ч при 180°С. Образовавшийся расплав растворяли в 2 мл МП и охлаждали до комнатной температуры. Затем в полученный раствор макромономера, содержащего концевые ангидридные группы, вводили раствор 0.108 г (1 ммоль) *n*-фенилендиамина в 6 мл МП и перемешивали в течение 18 ч, что приводило к образованию форполимера – полиамидокислоты.

Термическую имидизацию образовавшейся полиамидокислоты осуществляли в той же колбе в растворе МП, нагревая в режиме 160° C – 30 мин, 180° C – 2 ч, 190° C – 1 ч при постоянном токе аргона. Выделяющуюся воду удаляли в виде азеотропа толуол/вода при использовании насадки Дина–Старка. Из образовавшегося раствора ПУИ методом полива на стеклянную подложку формировали покрытия и при последующем удалении растворителя при прогревании в режиме: 100° C – 1 ч, 120° C – 1 ч, 140° C – 1 ч, 160° C – 1 ч, 180° C – 2 ч получали пленки толщиной 200 мкм.

Все остальные ПУИ и пленки из них получали аналогично.

ИК (НПВО) v, см⁻¹: 3446, 3339, 2951, 2872, 1778, 1720, 1599, 1535, 1373, 1123, 725.

ЯМР ¹Н (ДМСО-d₆) δ, м.д.: 9.92, 9.13, 8.42, 7.77–7.02, 4.11, 3.60, 2.31, 2.09, 1.54.

ЯМР ¹³С (ДМСО-d₆) δ, м.д.: 173.1, 165.8, 153.9, 153.6, 137.6, 132.5, 132.2, 131.4, 131.1, 130.4, 127.7, 118.7, 68.7, 63.5, 35.5, 24.3, 17.3.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Синтез ПУИ состоит из двух стадий, которые проводят в одном реакционном сосуде без выделения промежуточных продуктов. Первая стадия представляет собой получение макромономера диангидрида, содержащего уретановые и имидные группы. Синтез макромономера начинается с терминирования диола диизоцианатом с образованием уретановых групп. В полученный макродиизоцианат вволят двойное количество диангидрида, что приводит к образованию имидных циклов с выделением углекислого газа. Вторая стадия - поликонденсация макромономера, содержащего концевые ангидридные группы, с диамином проходит при комнатной температуре в растворе МП с образованием полиамидокислоты, и ее дальнейшей термической имидизацией в растворе с получением целевых полимеров ПУИ.

Структуры синтезированных полимеров были исследованы и подтверждены с помощью ИК- и ЯМР-спектроскопии. ИК-спектр полимера, полученного с использованием диангидрида 1 и *n*фенилендиамина а содержит характеристические полосы поглощения циклических имидов при 1776 см⁻¹ (симметричные валентные колебания C=O), 1373 cm^{-1} (валентные колебания C–N), 725 см⁻¹ (деформационные колебания имилного цикла), полоса от 3300 до 3500 см $^{-1}$ относится к колебаниям NH-групп уретанов [18-20]. Поглощение в области 2800 см⁻¹ относится к CH-колебаниям в гибком эфирном сегменте. Также в спектре присутствует составная полоса 1630-1770 см⁻¹ (валентные колебания С=О сложного эфира, уретановых групп и несимметричных колебаний С=О имилного цикла). Полоса 1123 см⁻¹ относится к колебаниям связи С-О-С простого эфира, входящего в гибкий сегмент [20].

В спектрах ЯМР ¹Н и ЯМР ¹³С полимера 1а присутствуют сигналы 9.92, 9.13 м.д. (N<u>H</u> уретан) и 2.09 м.д. (C<u>H</u>₃), а также сигнал около 166 м.д. (<u>C</u>=O имидные циклы) и сигналы 153.6, 153.9 (<u>C</u>=O уретан) характерные для жестких сегментов

	Содержание жесткого сегмента, мас. %	$T_{\text{макс}}E$ ", °C	$T_{\rm makc}$ tgð, °C	$T_{\rm c}$, °C	<i>T</i> _{пл} , °С	ΔH , Дж/г	τ ₅ , °C
11911		ДМА		ДСК			ΤΓΑ
1a	23.7	-46	-31	-36	64	6.9	355
1б	23.7	-48	-32	-35	60	7.8	335
1в	25.8	-42	-27	-33	62	7.7	356
1г	27.8	-44	-29	-33	61	4.8	351
1д	27.8	-40	-23	-31	54	7.2	360
1e	29.7	-38	-22	-30	60	5.9	358
2a	35.5	-24	2	-18	54	2.9	340
2б	35.5	-26	6	-17	61	2.4	346
2в	37.0	-28	13	-13	56	5.2	353
2г	38.4	-23	8	-13	52	3.4	346
2д	38.4	-22	9	-20	59	2.6	350
2e	39.7	-23	12	-15	56	3.6	339

Таблица 1. Термические и термомеханические характеристики синтезированных ПУИ

Примечание. *T*_{макс}*E*'' – температура максимума модуля потерь, *T*_{макс}tgδ – температура максимума тангенса угла механических потерь, *τ*₅ – температура 5%-ной потери массы.

ПУИ [21, 22]. К гибкому полиэфирному сегменту относятся широкие интенсивные сигналы в спектре ЯМР ¹Н около 4.11, 3.60, 2.31, 1.54 м.д. (протоны групп С \underline{H}_2), и сигнал характерный для сложноэфирных групп <u>С</u>=О при 173.1 м.д.

Термомеханические характеристики синтезированных полимеров, определенные двумя независимыми методами — ДМА и ДСК, представлены в табл. 1. Видно, что температуры стеклования повышаются с ростом содержания жестких сегментов, эта тенденция наблюдается для температур, определенных как по максимуму модуля потерь, так и по максимуму тангенса угла механических потерь. При подъеме температуры синтезированные полимеры переходят в высокоэластическое состояние (модуль упругости перестает зависеть от температуры). На рис. 1 представлены данные термомеханического анализа пленочных образцов полимеров 1а и 2а. Видно, что около 50°С модуль накопления выходит на плато, продолжающееся до разрыва образца около 170°С (полимеры 1), либо до плавления около 250°С (полимеры 2). Меньшая теплостойкость ПУИ, полученных с использованием пиромеллитового диангидрида, вероятно, связана с недостаточным размером жестких сегментов для образования прочной сетки физических сшивок [23].

Определенные методом ДСК величины температуры стеклования T_{c} , температуры плавления $T_{пл}$ и энтальпии плавления ΔH блок-сополимеров

Рис. 1. Температурные зависимости модуля накопления (а) и тангенса угла механических потерь (б) пленочных образцов полимеров 1a (I) и 2a (2).

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А том 61 № 2 2019

Рис. 2. Термограммы ДСК первого (1) и второго (2) сканирования полимера 2а.

содержатся в табл. 1. На рис. 2 в качестве примеров приведены кривые ДСК блок-сополимера 2а. На кривых ДСК проявляются переходы плавления (первое сканирование) и переходы стеклования (второе сканирование). Применительно к полученным в работе сегментированным блоксополимерам метод ДСК характеризует процессы стеклования и плавления микрокристаллической фазы, образованной блоками алифатических полиэфиров, т.е. блоками полидиэтиленгликольадипината. Из приведенных данных следует, что с ростом содержания жестких сегментов происходит повышение температуры стеклования и снижение температуры и энтальпии плавления (т.е. понижение степени кристалличности). По-видимому, увеличение длины жестких сегментов приводит к смешению гибких и жестких сегментов, в

Рис. 3. Кривые ТГА полимеров 1a (1) и 2a (2).

результате чего происходит аморфизация микрокристаллической фазы.

Термостойкость исследованных блок-сополимеров оценивали по значениям индекса термостойкости τ_5 , т.е. по величине температуры, отвечающей 5%-ной потере массы образца в условиях ТГА испытаний (инертная атмосфера) (табл. 1, рис. 3). В целом значения индексов термостойкости близки к значениям для полиалкиленадипинатов [24]. Это свидетельствует о том, что термостойкость образцов лимитируется гибкой полиэфирной составляющей полимеров.

Полученные полимеры обладают хорошими пленкообразующими свойствами. На рис. 4 представлены кривые напряжение—деформация пле-

Рис. 4. Кривые напряжение-деформация пленок полимеров la (*1*), lд (*2*) и 2a (*3*), 2д (*4*).

ПУИ	Содержание жесткого сегмента, мас.%	<i>Е</i> , МПа	σ _p , ΜΠa	$\epsilon_p,\%$
1a	23.7	3.9 ± 0.6	13.6 ± 1.3	1289 ± 105
16	23.7	4.7 ± 1.0	15.4 ± 1.2	1580 ± 168
1в	25.8	5.8 ± 0.1	12.0 ± 0.2	1499 ± 87
1г	27.8	12.6 ± 2.1	20.6 ± 0.8	1429 ± 97
1д	27.8	8.8 ± 0.9	13.9 ± 1.2	2126 ± 133
1e	29.7	7.2 ± 1.4	17.3 ± 1.5	1536 ± 116
2a	35.5	4.1 ± 0.4	27.2 ± 1.5	900 ± 41
26	35.5	$6.8\pm0,7$	37.1 ± 1.2	952 ± 105
2в	37.0	5.9 ± 0.4	22.9 ± 3.7	829 ± 61
2г	38.4	6.5 ± 1.4	21.2 ± 0.7	937 ± 126
2д	38.4	9.0 ± 1.1	35.1 ± 2.4	1235 ± 50
2e	39.7	7.5 ± 0.8	17.3 ± 1.6	747 ± 112

Таблица 2. Механические характеристики пленок полиуретанимидов

ночных образцов. Видно, что их деформация носит эластический характер, удлинение составляет 800-2100%. Модуль упругости Е, прочность при разрыве σ_p и относительное удлинение при разрыве $\varepsilon_{\rm p}$ пленочных образцов приведены в табл. 2, а зависимости указанных параметров от содержания жесткого сегмента в синтезированных ПУИ представлены на рис. 5. Изменение тенденции повышения прочности при разрыве с ростом содержания жестких блоков на обратную при переходе от полимеров 1 к полимерам 2, по-видимому, связано с качественным изменением морфологии полимерной системы, вызванным слиянием отдельных доменов в протяженную фазу жестких сегментов [23]. В целом при переходе от диангидрида 1 к диангидриду 2 (т.е. с повышением содержания жесткого сегмента) у пленок ПУИ удлинение до разрушения и модуль упругости убывают, а прочность при разрыве возрастает, что согласуется с понижением кристалличности из-за увеличения длины жестких сегментов. Повышение всех механических характеристик при переходе от ПУИ на основе пара-замещенных диаминов к мета-замещенным, вероятно, обусловлено повышенной конформационной подвижностью мета-производных.

ЗАКЛЮЧЕНИЕ

В работе осуществлен синтез новых ПУИ на основе полидиэтиленгликольадипината ($M_n = 2.5 \times 10^3$) терминированного 2,4-толуилендиизоцианатом, двух ароматических диангидридов и шести ароматических диаминов. Исследовано влияние длины жесткого сегмента и положения заместителей в диамином удлинителе цепи на механические свойства синтезированных продуктов.

Показано что, по мере увеличения содержания жестких сегментов происходит повышение температуры стеклования и снижение температуры и энтальпии плавления, а термостойкость ПУИ сохраняется на уровне 335—360°С. Синтезированные полимеры образуют прочные эластичные пленки с удлинением до разрыва 800—2100%. Пленки при деформировании ведут себя как типичные эластомеры, и растяжение происходит за счет реализации высокоэластической деформации, почти полностью обратимой непосредственно после снятия нагрузки.

Особый интерес для использования в качестве термоэластопластов представляют ПУИ, полученные в настоящей работе с использованием четырехъядерного диангидрида и *мета*-замещенных диаминов, которые переходят в вязкотекучее состояние и обладают наиболее высокими механическими характеристиками.

Рис. 5. Зависимость удлинения при разрыве ε_p (a), а также модуля упругости *E* (1, 2) и прочности при разрыве σ_p (*3*, *4*) (б) от содержания жестких сегментов (HS) для пленочных образцов ПУИ на основе *пара*-(1, 3) и *мета*-замещенных (2, *4*) диаминов.

Авторы выражают благодарность Е.Н. Власовой за проведение исследований методом ИКспектроскопии и А.В. Добродумову за регистрацию спектров ЯМР.

СПИСОК ЛИТЕРАТУРЫ

1. *Gerkin R.M., Hilker B.L.* // Encyclopedia of Materials: Science and Technology, 2008. P. 730.

- Yilgör I., Yilgör E., Wilkes G. L. // Polym. J. 2014. V. 58. P. 1.
- Chattopadhyay D.K., Webster D.C. // Prog. Polym. Sci. 2009. V. 34. P. 1068.
- Lee D.-J., Kong J.-S., Kim H.-D. // J. Fiber. Polym. 2008. V. 1. P. 12.
- Radhakrishnan Nair P., Reghunadhan Nair C.P., Francis D.J. // Eur. Polym. J. 1996. V. 32. P. 1415.
- Yeganeh H., Jamshidi S., Talemi P. H. // Eur. Polym. J. 2006. V. 42. P. 1743.
- 7. *Mallakpour S., Rafiemanzelat F. //* High Perform. Polym. 2008. V. 20. P. 146.
- 8. Gaymans R.J. // Prog. Polym. Sci. 2011. V. 36. P. 713.
- 9. Yudin V.E., Smirnova V.E., Didenko A.L., Popova E.N., Gofman I.V., Zarbuev A.V., Svetlichnyi V.M., Kudryavtsev V.V. // Russ. J. Appl. Chem. 2013. V. 86. P. 920.
- Yudin V.E., Bugrov A.N., Didenko A.L., Smirnova V.E., Gofman I.V., Kononova S.V., Kremnev R.V., Popova E.N., Svetlichnyi V.M., Kudryavtsev V.V. // Polymer Science B. 2014. V. 56. № 6. P. 919.
- 11. Nikonorova N.A., Didenko A.L., Kudryavtsev V.V., Castro R.A. // J. Non-Cryst. Solids. 2016. V. 447. P. 117.
- Kobykhno I., Tolochko O., Vasilyeva E., Didenko A., Kuznetcov D., Vaganov G., Ivanov A., Kudryavtsev V. // Key Eng. Mater. 2017. V. 721. P. 23.
- Ueda T., Nishio T., Inoue S. // Open J. Organic Polym. Mater. 2017. V. 7. P. 47.
- 14. *Ueda T., Inoue S.-I.* // Open J. Organic Polym. Mater. 2018. V. 8. P. 1.
- Бессонов М.И., Котон М.М., Кудрявцев В.В., Лайус Л.А. Полиимиды – класс термостойких полимеров. Л.: Наука, 1983.
- Liaw D.-J., Wang K.-L., Huanga Y.-C., Leec K.-R., Lai J.-Y., Ha C.-S. // Prog. Polym. Sci. 2012. V. 37. P. 907.
- Адрова Н.А., Дубнова А.М., Котон М.М., Кузнецов Н.П. // Высокомолек. соед. Б. 1974. Т. 16. № 7. С. 504.
- 18. Liu J., Ma D., Li Z. // Eur. Polym. J. 2002. V. 38. P. 661.
- Oprea S., Potolinca V. O. // High Perform. Polym. 2012. V. 25. P. 147.
- Ning L., De-Ning W., Sheng-Kang Y. // Macromolecules. 1997. V. 30. P. 4405.
- Okamoto D.T., Cooper S.L., Root T.W. // Macromolecules. 1992. V. 25. P. 1068.
- Moncadaa J., Terrazaa C.A., Taglea L.H., Colla D., Ortiza P., Pereza G., Campab J.G., Alvarezb C., Tundidor-Cambaa A. // Eur. Polym. J. 2017. V. 91. P. 354.
- Petrovic Z.S., Ferguson J. // Prog. Polym. Sci. 1991. V. 16. P. 695.
- 24. Zorba T., Chrissafis K., Paraskevopoulos K.M., Bikiaris D.N. // Polym. Degrad. Stab. 2007. V. 92. P. 222.