= ПОЛИМЕРНЫЕ _____ МЕМБРАНЫ

УДК 541.64

ОПРЕДЕЛЕНИЕ СУПРАМОЛЕКУЛЯРНОЙ СТРУКТУРЫ ФТОРСОПОЛИМЕРА МЕТОДОМ ОБРАЩЕННОЙ ГАЗОВОЙ ХРОМАТОГРАФИИ

© 2019 г. Ф. А. Шумилов^{а,*}, Е. Е. Щадилова^{а,b}, А. П. Возняковский^а

^а Институт синтетического каучука им. С.В. Лебедева 198035 Санкт-Петербург, ул. Гапсальская, 1, Россия ^b Санкт-Петербургский государственный технологический институт (Технологический Университет) 190013 Санкт-Петербург, Московский пр., 26, Россия

> * *e-mail: Itachi 16@mail.ru* Поступила в редакцию 17.10.2018 г. После доработки 25.12.2018 г. Принята к публикации 09.01.2019 г.

Молекулярная организация сополимеров этилена с перфторированными эфирами изучена методом обращенной газовой хроматографии. Рассчитаны термодинамические параметры сорбции низкомолекулярных сорбатов сополимерами (коэффициент активности, парциальные молярные величины смешения) в широком диапазоне температур. Исследовано влияние архитектуры макроцепей сополимеров на сорбционные параметры их тонких пленок. Показано, что, несмотря на чередующийся характер распределения мономеров по макроцепи сополимера, метиленовые группы формируют углеводородные кластеры в перфторированной дисперсионной среде. Микрогетерогенная структура исследованных сополимеров обусловливает проницаемость тонких пленок сополимеров низкомолекулярными жидкими сорбатами (как растворителями, так и нерастворителями). Высказано предположение, что сополимеры такого типа перспективны для использования в области мембранных технологий.

DOI: 10.1134/S2308112019030143

ВВЕДЕНИЕ

Обладая высокой стойкостью к агрессивным средам вплоть до высоких температур, пленкообразующие фторэластомеры являются естественными кандидатами для использования в качестве основы протекторных покрытий. Следует, однако, отметить, что ультратонкие пленки фторполимеров также применяются и в качестве селективно проницаемых мембран. Конкретная область применения может быть достаточно обосновано спрогнозирована на основе систематического анализа корреляционной связи структуры звена полимера с сорбционными характеристиками последнего [1–7].

Отметим, что по реологическим параметрам фторполимеры могут быть разделены на два класса — фторопласты и фторэластомеры.

Фторопласты по своим реологическим характеристикам являются термопластами. Они характеризуются наименьшей диффузной проницаемостью, что и обусловливает многочисленные попытки их использования в качестве протекторных покрытий. Фторэластомеры в отличие от фторопластов содержат в макроцепях структурные элементы, обеспечивающие им эластические свойства. По архитектуре макроцепей фторэластомеры в основном представляют собой сополимеры винилиденфторида с перфторированными алкенами. По химической стойкости сшитые фторэластомеры практически не уступают фторопластам. С точки зрения протекторных покрытий преимущество фторэластомеров – возможность формирования пленок из растворов в летучих растворителях. При этом физико-механические свойства сшитых пленок фторэластомеров заметно выигрывают по сравнению со свойствами пленок фторопластов.

Однако фторэластомеры на основе винилиденфторида характеризуются низкой устойчивостью в полярных и нуклеофильных средах, что является существенным недостатком.

Такого недостатка лишены сополимеры этилена с перфторированными алкил-виниловыми эфирами (ЭПФЭ) [8]. Сочетание в линейной цепи сополимеров термодинамически несовместимых углеводородных и перфторированных последовательностей приводит к организации в них молекулярного порядка отличного от молекулярного порядка перфторированных аналогов, а также аналогов на основе винилиденфторида. Структура пленочных материалов в основном контролируется архитектурой полимерных макромолекул. Соответственно можно ожидать и появления нового комплекса физико-химических параметров у этих сополимеров.

Цель настоящей работы — изучение сорбционных свойств тонких пленок сополимеров этилена с перфторированными эфирами в связи с особенностями химической структуры макромолекул сополимеров.

При выборе метода исследования следует принимать во внимание вероятное значительное отличие свойств полимера в виде тонкой или ультратонкой пленки от свойств и структуры полимера в блочном состоянии. В связи с этим в качестве метода исследования был выбран динамический вариант сорбционного метода исследования полимеров — метод обращенной газовой хроматографии [9].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы

Сополимеры этилена с перфторированными алкилвиниловыми эфирами получали из этилена и перфторированных эфиров путем эмульсионной полимеризации с использованием персульфата калия в качестве инициатора. Перфторированные простые эфиры были приобретены в "Sigma Aldrich Co. Ltd." Более подробно метод синтеза описан в работе [10].

Полный список изученных фторэластомеров и их химических структур представлен в табл. 1. Большинство экспериментов проведено с образцами 5–9. Чтобы установить более глубокое понимание отношения структура–свойства также были проанализированы некоторые стандартные фторэластомеры (образцы 1–4).

Полимерами для сравнения служили натуральный каучук (NR-RSS-1, Malaysia), полидиметилсилоксан (OV-1) как довольно популярный материл для селективных мембран, и некоторые стандартные сополимеры винилиденфторида.

ЯМР

Спектры ядерного магнитного резонанса получали на аппарате "Bruker Spectrospin AM-50" (Германия) с рабочим диапазоном частот 270 и 254 МГц для ЯМР ¹Н и ЯМР ¹⁹F соответственно.

Спектральный анализ ЯМР синтезированных ЭПФЭ-5 и ЭПФЭ-6 показывает, что (со структурной точки зрения) они являются в основном альтернатными сополимерами углеводородных и перфторированных последовательностей. Однако около 15% этиленовых единиц образуют диады и менее 0.01% — триады.

В образцах ЭПФЭ-7 и ЭПФЭ-8 содержание диад составляло не менее 80%, триад – примерно 20%.

ТМА, ДСК

Температуру стеклования и теплоемкость образцов определяли методом дифференциальной сканирующей калориметрии (DSC 8000, "Perkin Elmer") и методом термомеханического анализа (TMA/SBE 1 LN600).

Согласно термомеханическому анализу и данным ДСК, для диапазона температур – 40...+150°С был зарегистрирован только один температурный переход, соответствующий $T_g = -27°$ С.

ОГХ

Хроматографическая установка

В работе использовали хроматографическую установку, конструктивные особенности которой дали возможность снизить погрешность определения параметров, вносящих наибольший вклад в погрешность измерения удерживаемого объема (объемной скорости потока газа-носителя, температуры потока газа-носителя, давления, температуры колонки, массы полимера в колонке), до значений, позволяющих проводить физикохимические измерения [9]. Установка была оснащена детектором по теплопроводности (газ-носитель гелий).

При приготовлении насадки хроматографической колонки навеску ЭПФЭ растворяли в гексафторбензоле. В раствор при постоянном перемешивании небольшими порциями добавляли расчетное количество твердого носителя (Chromaton-N-Super). Полученную суспензию помещали в эксикатор, который присоединяли к водоструйному насосу, и дегазировали суспензию при пониженном давлении 2–3 мин. Затем суспензию переносили в вытяжной шкаф и выпаривали при постоянном тщательном перемешивании. Окончательно полученную таким образом насадку досушивали до постоянной массы в вакууме при 60°С.

Для работы использовали спиральные стеклянные колонны (длина 1.5 м, диаметр спирали 65 мм, внутренний диаметр 4 мм). Приготовленную насадку помещали в продуваемую сухим аргоном колбу, снабженную двухходовым краном. К колбе подсоединяли пустую колонку и передавали в нее током сухого аргона часть насадки. Количество последней в колонке определяли по весу колбы до и после заполнения колонки.

Образец, №	Химическая структура полимера	Название				
1	$\frac{-\left(\left(CF_{2}-CH_{2}\right)_{x}-CF-CF_{2}\right)_{x}}{CF_{3}}$	Сополимер винилиденфторида с гек- сафторпропиленом, где <i>x</i> ≈ 1.3				
2	$\frac{-\left(\left(CF_{2}-CH_{2}\right)_{x}-CF-CF_{2}\right)_{x}}{O-CF_{3}}$	Сополимер винилиденфторида с перфтро- метилвиниловым эфиром, где <i>x</i> ≈ 1.3				
3	$\frac{\left(CF_2 - CH_2\right)_x}{CF - CF_2} \xrightarrow{CF - CF_2} \xrightarrow{CF_2} \xrightarrow{CF_2}$	Сополимер винилиденфторида с перфтро- пропилвиниловым эфиром, где <i>x</i> ≈ 1.3				
4	$\frac{(CF_2 - CF_2)_x - CH_2 - CH_2}{CH_3}$	Сополимер тетрафторэтилена с пропиле- ном, где <i>x</i> ≈ 1.3				
5	$+CH_2-CH_2-CF-CF_2$	Сополимер этилена с перфторпропилви- ниловым эфиром				
6	$\frac{(CH_2 - CH_2)_x}{(CH_2 - CH_2)_x} CF - CF_2 - CF_2 - CF_3$	Сополимер этилена с перфторпропилви- ниловым эфиром повышенной блочно- сти, где 2 ≤ <i>x</i> ≤ 3				
7	$\begin{array}{c} + CH_2 - CH_2 - CF - CF_2 \\ + F_2 - CF_2 - CF_2 - CF_2 \\ + F_2 - CF_2 - CF_2 - CF_2 - CF_2 \\ + CF_2 - CF_2 - CF_2 - CF_2 \\ + CF_2 - CF_2 - CF_2 \\ + CF_2 - CF_2 - CF_2 \\ + CF$	Сополимер этилена с перфторпропилал- лиловым эфиром				
8	$\frac{(CH_2 - CH_2)_x CF - CF_2}{F_2CO + CF_2} \xrightarrow{CF - CF_2}{OCF_2} OCF_3$	Сополимер этилена с перфтор- 4,7,9,11,13,15-(гексаоксогексадеценом-1), где 2 ≤ <i>x</i> ≤ 3				
9	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	Сополимер этилена с перфтор-(5-метил- 3,6-диоксооктен-7)-сульфофторидом				
	· · · · · · · · · · · · · · · · · · ·					

Таблица 1. Структурные звенья исследуемых сополимеров

Содержание образцов 5—9 в колонке составляло 8.9, 5.7, 4.5, 8.9 и 7.0% соответственно.

Сорбатами служили *н*-алканы (C₆...C₁₀), бензол, циклогексан и гексафторбензол. Все используемые сорбаты по степени подготовки были хроматографически чистыми.

Расчеты в ОГХ [9, 11, 12]. Значения для конкретных объемов удерживания V_g^0 могут быть рассчитаны по уравнению

$$V_g^0 = (t_r F/g) J_3^2 (P_{inp}/P_{out}),$$
(1)

где $t_r = (t - t_0); t$ – время удерживания, соответствующее максимуму пика для сорбата; t_0 – время удерживания несорбирующегося газа;

$$F = \{F_t(P_{flw} - P_w)/P_0\}(273.2/T_{flw}),$$
(2)

F — объемная скорость потока газа-носителя при температуре расходомера; P_{flw} — давление в расходомере; P_w — давление насыщенных паров воды при $T = T_{flw}$; P_0 — атмосферное давление; g — количество полимера в колонке; P_{inp} и P_{out} — давления газа-носителя на входе и на выходе из колонки, соответственно; J_3^2 — фактор коррекции Джеймса—Мартина.

$$J_3^2 = (3/2)\{[(P_{inp}/P_{out})^2 - 1]/[(P_{inp}/P_{out})^3 - 1]\}.$$
 (3)

Согласно уравнению (1), выражение для значения относительной ошибки имеет вид:

$$\Delta V_g^0 / V_g^0 = \Delta t / t + \Delta F / F + f(P) \Delta P / P + \Delta g / g \quad (4)$$

2019

Погрешность измерения температуры колонки и скорости потока газа-носителя в условиях нашего эксперимента составляла $\pm 0.1^{\circ}$ С и $\pm 0.5\%$, соответственно. Так, общая погрешность первых трех слагаемых уравнения (4) не превышает 1%. Основной вклад в ошибку в величине V_a^0 вносит

Основной вклад в ошибку в величине V_g^0 вносит ошибка в определении количества полимера в колонке [13]. Мы использовали аналитические весы ADV200 (погрешность взвешивания ±1 мг). С учетом того факта, что масса твердого носителя, содержащегося в колонке, находилась в диапазоне от 2 до 10 г, а масса нанесенного полимера составляла 5–15% от массы твердого носителя, погрешность измерения количества полимера не превышала 1%.

Исправленное время удерживания рассчитывали по значениям общего времени удерживания максимума пика сорбата и времени удерживания максимума пика несорбируемого в условиях эксперимента вещества (воздуха), записанным программно-аппаратным комплексом МультиХром 1.7х с погрешностью ±0.05 с.

Количество полимера в колонке находили следующим образом. Взвешенную часть приготовленной упаковки трижды промывали избытком растворителя, помещали в муфельную печь на нескольких часов и нагревали до 800°С. Количество сгоревшего полимера рассчитывали с учетом потери масы при прокаливании исходного инертного носителя и пересчитывали на 1 г насадки.

Ранее нами было показано [14], что аппроксимирующее уравнение

$$\ln V_g^0 = A_1 (\ln T)^2 + B_1 \ln T + C_1 (1/T) + D_1, \qquad (5)$$

где A_1 , B_1 , C_1 и D_1 – константы, позволяет минимизировать ошибки интерполяции при расчете значений V_{σ}^0 .

Расчет термодинамических параметров взаимодействия полимер—низкомолекулярное соединение. Мы исходили из возможностей, вытекающих из теории активности. В термодинамике Гиббса введение понятия активность формально учитывает все межмолекулярные взаимодействия в растворах, которые собственно и являются причиной различия идеальных и реальных растворов. Коэффициент активности вводится как

$$\gamma_1 = a_1/c_1 \tag{6}$$

 $(a_1 - активность, c_1 - концентрация раствора). Таким образом, коэффициент активности является мерой отклонения раствора от идеальности. В случае растворов полимеров естественно ожидать его чувствительность к особенностям химической структуры макроцепей при сольватации последних молекулами низкомолекулярных веществ.$

При определении коэффициента активности полимеров используют фундаментальное выражение (a_1/w_1) – массовый коэффициент активности Ω_1^{∞} [15, 16].

Расчет значений Ω_1^{∞} проводили по уравнению

$$\ln \Omega^{\infty} = \ln \frac{273.15R}{V_g^0 P_1^0 M_1} - \frac{P_1^0}{RT} (B_{11} - V_1), \tag{7}$$

в котором V_g^0 — удельный удерживаемый объем сорбата; P_1 , V_1 , M_1 — давление насыщенных паров, мольный объем и молекулярная масса сорбата соответственно; B_{11} — второй виральный коэффициент; R — универсальная газовая постоянная.

Избыточные термодинамические функции связаны со значением Ω_1^{∞} известными выражениями

$$\Delta \overline{H}_1^{E^{\infty}} = RT^2 d(\ln \Omega_1^{\infty})/d(T), \qquad (8)$$

$$\Delta \overline{S}_{l}^{E\infty} = (R/T)d(\ln \Omega_{l}^{\infty})/d(T) - R\ln \Omega_{l}^{\infty}, \qquad (9)$$

где $\Delta \overline{H}_1^{E_{\infty}}$ и $\Delta \overline{S}_1^{E_{\infty}}$ — избыточная парциальная мольная энтальпия и энтропия. Теплоту растворения низкомолекулярного вещества в полимере можно найти из температурной зависимости удерживаемых объемов по формуле

$$-\Delta H_s/RT^2 = d(\ln V_g^0)/d(T)$$
(10)

При расчете значений $\Delta \overline{H}_{1}^{E^{\infty}}$ предполагают, что $\Delta \overline{C}_{P1}^{E^{\infty}} = \text{const}$ (const $\neq 0$), т.е. температурная зависимость $\Delta \overline{H}_{1}^{E^{\infty}}$ может быть экстраполирована линейной функцией [17]. При расчете коэффициента активности оптимальное выражение для экстраполирующей функции выглядит следующим образом [14]:

$$\ln \Omega_1 = A_2 \ln T + B_2 / T + C_2, \tag{11}$$

где A_2 , B_2 и C_2 – константы.

Соответствующие выражения для $\Delta \overline{H}_1^{E\infty}$ и $\Delta \overline{S}_1^{E\infty}$, согласно уравнениям (7), (9) и (11), будут иметь вид

$$\Delta \bar{H}_E^{\infty} = RB_2 - RTA_2 \tag{12}$$

$$\Delta \overline{S}_E^{\infty} = -R(A_2 + C_2) - RA_2 \ln T \tag{13}$$

Значения коэффициентов A_2 , B_2 и C_2 могут быть найдены из уравнения (11) методом наименьших квадратов. При обработке данных (в нашем случае не менее 30 значений) ошибка расчетных коэффициентов, как правило, не превышала

0.5%, а ошибка в $\Delta \overline{H}_1^{E\infty}$ составляла не более 10%.

Парциальная молярная избыточная энтальпия. Парциальная молярная избыточная энтальпия

2019

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А том 61 № 3

смешения $\Delta \overline{H}_1^{E_{\infty}}$ является результирующей всех межмолекулярных взаимодействий в образующихся бесконечно разбавленных растворах [18]. А именно, она может быть определена как сумма

$$\Delta \bar{H}_{1}^{E\infty} = \Delta H_{\text{BREAK}} + \Delta H_{\text{HOLE}} + \Delta H_{\text{DISP}} + \Delta H_{\text{SP}} (14)$$

Здесь $\Delta H_{\rm BREAK}$ — энтальпия разрыва связи между молекулами растворенного вещества, $\Delta H_{\rm HOLE}$ энтальпия образования полости в структуре чистого растворителя (в методе ОГХ таковым является полимер), $\Delta H_{\rm DISP}$ — энтальпия неполярного взаимодействия, $\Delta H_{\rm SP}$ — энтальпия специфического взаимодействия. Таким образом, определение тепловых эффектов смешения позволяет получать важную информацию об особенностях как межмолекулярного взаимодействия в растворах, так и морфологии полимеров.

Парциальная мольная избыточная энтропия. Выражение для парциальной мольной энтропии *н*-алканов имеет вид:

$$\Delta \overline{S}_{1}^{E\infty} = R[\ln m - (m-1)/m] \quad [19], \quad (15)$$

где *m* — отношение твердоядерных объемов полимера и низкомолекулярного растворителя. Уравнение справедливо при выполнении ограничений теории на отсутствие межмолекулярных взаимодействий и постоянство свободного объема при смешении. В этих ограничениях уравнение (15)

предсказывает уменьшение значений $\Delta \overline{S}_1^{E\infty}$ с увеличением мольного объема *н*-алкана.

Коэффициент диффузии сорбата и проницаемость полимера. Важную информацию о структуре полимеров можно получить из данных по их диффузной проницаемости низкомолекулярными соединениями.

Коэффициент диффузии сорбата *D* через пленку полимера может быть из уравнения Ван-Дееметра [20, 21], связывающего высоту теоретической тарелки *H* с линейной скоростью газа-носителя *U*:

$$H = A_3 + B_3 / U + C_3 U \tag{16}$$

Коэффициент C₃ из уравнения (16) связан с D как

$$C_3 = (8/\pi^2)(\delta^2/D)[k/(1-k)^2], \qquad (17)$$

где δ — толщина полимерной пленки; k — коэффициент распределения,

$$k = (t_r - t_0)/t_0 \tag{18}$$

 $(t_r \, \mathrm{u} \, t_0 - \mathrm{времена} \, \mathrm{удерживания} \, \mathrm{сорбата} \, \mathrm{u} \, \mathrm{несорби-}$ рующегося газа, соответственно).

Температурная зависимость коэффициента диффузии определяется уравнением Аррениуса

$$D = D_0 e^{-\Delta E_D / RT} \tag{19}$$

Здесь D_0 – предэкспоненциальный коэффициент диффузионного процесса, не зависящий от температуры; ΔE_D – энергия активации диффузионного соединения в данной полимерной матрице, необходимая для выхода из существующего окружения и перемещения в соседнее окружение; R – газовая постоянная; T – абсолютная температура.

Проницаемость рассчитывается по известному уравнению

$$P = DS, (20)$$

в котором S – коэффициент растворимости, $S = \rho_L V_g^0$, и ρ_L – плотность полимера.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Диаграммы удерживания

Анализ диаграмм удерживаний в методе ОГХ позволяет получить информацию о наличии каких-либо фазовых или температурных переходов в матрице полимера. Признаком температурного перехода в методе ОГХ служит, как правило, отклонение диаграммы удерживания от линейности (или, в общем случае, от монотонного хода) [22]. Диаграммы удерживания образцов ЭПФЭ-5-ЭПФЭ-8 для всех изученных сорбатов практически не отличились от линейной зависимости во всем исследованном интервале температур (рис. 1). Диаграммы удерживания сорбатов для ЭПФЭ-9 имели явный нелинейный характер. Ранее нами было установлено, что нелинейные диаграммы удерживания могут быть представлены в виде комбинации двух линейных функций, экстраполированных из низко- и высокотемпературных областей диаграммы удерживания [23]. Использование этого приема для ЭПФЭ-9 позволило установить, что диаграммы удерживания характеризуются изгибом в диапазоне температур около 75°С (рис. 2). Принимая во внимание тот факт, что температура изгиба диаграмм удерживания для $\Theta = \Theta = \Theta$ не зависит от природы сорбата, а также, что эта температура намного выше температуры стеклования полимера (-27°С), изгиб на диаграммах удерживания может быть связан с процессами типа порядок-беспорядок. А именно, с распадом кластеров СН₂-последовательностей с повышением температуры. Эти структурные изменения приводят к скачкообразному изменению механизма сорбции, что в методе ОГХ регистрируется в виде излома диаграммы удерживания.

В связи с такой особенностью хроматографического поведения ЭПФЭ-9 представлялось целесообразным рассмотреть его сорбционные характеристики отдельно.

Рис. 1. Диаграммы удерживания. Сорбат – н-октан. 1 – ЭПФЭ-5; 2 – ЭПФЭ-8; 3 – ЭПФЭ-9. Сплошными линиями показаны теоретические кривые, рассчитанные по уравнению (5): $R_{\Im\Pi\Phi\Im-5}^2 = 0.998$, $R_{\Im\Pi\Phi\Im-6}^2 = 0.998, R_{\Im\Pi\Phi\Im-7}^2 = 0.997, R_{\Im\Pi\Phi\Im-8}^2 = 0.998,$ $R_{\partial \Pi \Phi \partial_{-9}}^2 = 0.988.$

Термодинамические параметры сорбции сополимеров

Расчет и анализ значений коэффициента активности. Значения коэффициентов активности для систем полимер-сорбат, рассчитанные нами согласно уравнению (7), представлены в табл. 2. Как

видно, Ω_1^{∞} действительно довольно чувствительны как к химическим, так и к стереометрическим параметрам полимерного звена. Так, появление эфирного кислорода в боковой подвеске образца 2 приводит к повышению Ω_1^{∞} . Кроме того, увеличе-

Таблица 2. Коэффициент активности сорбатов при 60°С

Рис. 2. Диаграмма удерживания для ЭПФЭ-9. 1 – циклогексан, 2 - 6ензол, 3 - h-гептан, 4 - h-октан. Сплошными линиями показаны теоретические кривые, рассчитанные по уравнению (5): $R_1^2 = 0.991$, $R_2^2 =$ $= 0.990, R_3^2 = 0.996, R_4^2 = 0.988.$ Диапазон температур, где происходит внутренняя перестройка, выделен.

ние длины боковой подвески (образец 3) способствует снижению Ω_1^{∞} . Замена перфторированного сомономера на углеводородный (образцы 1 и 4) вызывает резкое снижение Ω_1^{∞} .

Данные табл. 2 свидетельствуют о том, что, несмотря на повышенное содержание метиленовых последовательностей (по сравнению с сополимерами на основе винилиденфторида) углеводороды являются термодинамически плохими растворителями для синтезированных сополимеров

Сорбат	Коэффициент активности $\Omega^{\infty}_{ m l}$ для образцов*											
, I ,	1	2	3	4	5	7	6	8	9	HK	ПДМС**	
Пентан	_	—	—	16.84	32.71	—	22.65	25.92	-	_	5.88	
Гексан	—	72.62	61.59	17.07	36.73	22.47	22.66	28.09	—	6.79	5.85	
Гептан	51.98	92.86	70.40	17.86	42.77	19.59	25.69	31.10	28.72	6.50	5.84	
Октан	64.38	117.55	82.50	18.08	50.11	28.36	28.45	36.22	24.04	6.14	5.98	
Нонан	71.57	142.16	96.21	19.03	59.44	31.69	31.93	41.47	—	6.01	6.19	
Декан	80.88	173.43	115.22	21.16	70.67	35.96	36.15	49.00	—	5.93	6.42	
Бензол	15.41	22.93	20.57	11.77	28.52	17.77	14.82	22.06	19.28	4.68	5.80	
Циклогексан	45.29	53.78	56.11	16.06	34.68	21.10	21.05	26.11	24.57	4.78	5.02	
Гексафторбензол	5.72	4.72	4.29	3.05	4.28	3.41	3.19	3.70	3.31	—	4.21	

*По табл. 1.

** Рассчитаны из данных удерживаемых объемов на OV-1.

 $(\Omega_1^{\infty} > 20$ для углеводородов и $\Omega_1^{\infty} = 3-4$ для хорошего растворителя гексафторбензола).

Прослеживая тенденции изменения значений Ω_l^{∞} с увеличением длины цепи сорбата в ряду *н*-алканов, следует отметить ухудшение термодинамики сорбции (рост значений Ω_l^{∞}) для всех рассматриваемых фторполимеров.

При этом чем выше содержание метиленовых групп в макромолекуле, тем менее выражена отмеченная тенденция (образцы ЭПФЭ-4, ЭПФЭ-6, ЭПФЭ-7 и ЭПФЭ-8). Можно предположить, что вероятная причина такого характера сорбции н-алканов фторполимерами заключается в образовании областей с повышенным содержанием метиленовых групп (углеводородных кластеров) в объеме полимера. Количество углеводородных кластеров тем больше, чем выше количество метиленовых групп в макроцепи. Увеличение размера клубка н-алкана затрудняет доступ его молекул к углеводородным кластерам в объеме полимера и ухулшает термодинамику смешения. Однако необходимо учитывать, что основной механизм сольватации н-алканов — дисперсионные взаимодействия [24]. Более того, это взаимодействие усиливается с увеличением размера молекулярного клубка. Последнее обстоятельство частично компенсирует стерические затруднения распределения молекул н-алкана в случае полимеров с повышенным содержанием углеводородных кластеров, и соответственно улучшается термодинамика смешения.

Представляет интерес сравнить полученные тенденции сорбции *н*-алканов фторполимерами и полимерами, для которых выбранные сорбаты являлись бы хорошими растворителями. В качестве примера мы выбрали углеводородный карбоцепной полимер — натуральный каучук и представителя элементорганических полимеров — полидиметилсилоксан (табл. 2).

В соответствии с данными табл. 2, дисперсионные силы для НК возрастают с увеличением длины цепи *н*-алкана, что способствует улучшению термодинамики сорбции.

В случае ПДМС дисперсионные силы не столь эффективны. Здесь термодинамика смешения обусловлена высокой гибкостью силоксановых цепей и их низкой энергией когезии. Эти обстоятельства отражаются и на тенденции изменения термодинамики сорбции *н*-алканов. В начале, рост дисперсионных сил с увеличением числа атомов углерода в молекуле *н*-алкана приводит к некоторому улучшению термодинамики смешения, а затем стерические затруднения смешения с увеличением длины цепи меняют направление тенденции. Те же тенденции характерны и для изменения термодинамических параметров. Циклические сорбаты не дают заметного выигрыша в термодинамике их сорбции. Так, значения Ω_1^{∞} для циклогексана лишь несколько ниже, чем для *н*-гексана. Однако появление подвижных π -электронов у бензола может способствовать значительному улучшению термодинамики взаимодействия полимер—сорбат [25]. Действительно, значения Ω_1^{∞} для бензола уменьшаются обратно пропорционально содержанию метиленовых групп в полимере по сравнению с *н*-алканами и циклогексаном. Сольватация реализуется по характерному для ароматического кольца механизму донорного присоединения к метиленовой группе (соседней с CF₂) с частично положительным зарядом на атоме водорода.

Данные табл. 2 позволяют также проследить влияние длины боковых цепей на термодинамику взаимодействия в системе полимер-сорбат. Рост длины боковой цепи (образцы 2 и 3, а также 5 и 7) приводит к улучшению термодинамики взаимодействия в системе полимер-сорбат. Однако увеличение длины боковой цепи свыше 10 атомов не приводит к улучшению термодинамики смешения (ср. образцы ЭПФЭ-5, ЭПФЭ-7 и ЭПФЭ-8). Улучшение термодинамики смешения в системе полимер-сорбат с увеличением длины боковой цепи может быть связано с соответствующим увеличением свободного объема и диффузионной проницаемости полимера. Принимая во внимание значительную длину подвижных боковых цепей ($n_c > 10$), мы, по-видимому, имеем гребнеобразный полимер, для которых значения свободного объема невысоки [26].

Парциальная молярная избыточная энтальпия. Значения $\Delta \overline{H}_1^{E^{\infty}}$, рассчитанные по уравнению (12), представлены в табл. 3. Значения $\Delta \overline{H}_1^{E^{\infty}}$ положительны и значительно больше единицы для всех сорбатов, кроме гексафторбензола.

Рассматривая природу сил сольватации гексафторбензола макромолекул ЭПФЭ, отметим его склонность к реакциям электрофильного присоединения, что обусловлено значительно повышенной по сравнению с бензолом плотностью электронов π-системы [27]. Кроме того, гексафторбензол, как и другие перфторароматические соединения, активен к действию нуклеофильных групп. Таким образом, гексафторбензол способен к сольватации как метиленовых групп с частично положительным зарядом на атоме водорода, так и перфторметиленовых групп линейной цепи. Совокупность этих двух симбатно протекающих процессов и обеспечивает повышенное термодинамическое сродство гексафторбензола к полифторированным сополимерам.

Анализируя данные табл. 3, предварительно отметим, что положительные значения $\Delta \bar{H}_{1}^{E\infty}$

Сорбат	$\Delta \bar{H}_1^{E\infty}$	$-\Delta \overline{S}_1^{E\infty}$	$\Delta \bar{H}_1^{E\infty}$	$-\Delta \overline{S}_1^{E\infty}$	$\Delta \bar{H}_1^{E\infty}$	$-\Delta \overline{S}_1^{E\infty}$	$\Delta \overline{H}_1^{E\infty}$	$-\Delta \overline{S}_1^{E\infty}$	$\Delta \bar{H}_1^{E\infty}$	$-\Delta \overline{S}_1^{E\infty}$	$\Delta \bar{H}_1^{E\infty}$	$-\Delta \overline{S}_1^{E\infty}$
	ЭПФЭ-5		ЭПФЭ-6		ЭПФЭ-7		ЭПФЭ-8		ЭПФЭ-9		НК	
Пентан	4.06	16.80	1.38	21.79	2.13	19.31	3.70	15.92	_	_	_	_
Гексан	6.50	10.44	5.08	10.70	3.54	15.24	4.34	14.69	—	—	0.85	13.35
Гептан	8.08	6.97	6.57	7.26	2.51	17.19	5.28	12.71	0.05	27.76	0.76	13.26
Октан	8.59	6.73	7.48	5.37	5.79	10.42	6.57	10.12	1.01	23.40	0.04	14.97
Нонан	9.99	3.95	8.53	3.17	6.98	7.76	7.24	9.23	—	—	-0.04	15.03
Декан	11.06	2.20	9.73	0.61	7.77	6.46	8.37	7.21	11.70	-1.92	0.66	12.83
Бензол	7.96	5.58	6.47	5.89	4.41	12.10	6.26	8.31	4.55	12.94	0.67	10.99
Циклогексан	7.23	6.15	4.61	8.58	3.36	13.83	5.19	10.12	0.42	23.32	1.05	9.68
Гексафторбензол	0.66	10.11	-0.04	9.75	0.58	8.44	-1.16	14.36	-0.94	12.74	—	—

Таблица 3. Значения избыточных параметров взаимодействия $\Delta \overline{H}_1^{E^{\infty}}$ (кДж/моль) и $-\Delta \overline{S}_1^{E^{\infty}}$ (Дж/ (моль K)) при 60°С

указывают на предпочтительное взаимодействие молекул сорбата между собой, в то время как отрицательные — на предпочтительное взаимодействие полимер—сорбат. Согласно данным табл. 3, ЭПФЭ-6 и ЭПФЭ-8, т.е. образцы с повышенной долей метиленовых последовательностей, обла-

дают отрицательными значениями $\Delta \overline{H}_1^{E^{\infty}}$ при сорбции гексафторбензола. Вероятно, при более коротких последовательностях метиленовых звеньев стерические затруднения (экранирование соседними перфторированными группами) выводят часть метиленовых групп из взаимодействия. Принимая во внимание также меньшую локализацию δ^+ -заряда на соседнем с атомом фтора углеродном атоме (по сравнению с сополимерами на основе винилиденфторида, образцы 1–3), можно ожидать преобладание сольватации по перфторированным группам. Последнее обстоятельство должно обеспечивать стойкость исследуемых сополимеров в полярных растворителях.

Рассмотрим тенденции изменения $\Delta \overline{H}_1^{E\infty}$ с длиной цепи *н*-алкана.

ЭПФЭ-5. Можно выделить начальный участок роста (H-C₅...H-C₇), плато (H-C₇...H-C₈) и второй участок роста (H-C₈...H-C₁₀). Увеличение длины цепи H-алкана затрудняет процесс его абсорбции полимером. Это отражает рост значений $\Delta \overline{H}_1^{E\infty}$ по причине повышения вклада энтальпии образования полости (ΔH_{HOLE}) в полимере. Рост длины цепи H-алкана вместе с тем приводит к увеличению дисперсионных сил, улучшающих сольватацию макроцепей, что частично компенсирует увеличение ΔH_{HOLE} (плато на зависимости). При дальнейшем росте цепи алкана увеличение дисперсионных сил не компенсирует рост ΔH_{HOLE} (второй участок роста).

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А

ЭПФЭ-6. Тенденции изменения термодинамических параметров сорбции с числом атомов углерода в молекуле *н*-алкана аналогичны ЭПФЭ-5. А именно, увеличение размера молекулы *н*-алка-

на приводит к повышению значения $\Delta \overline{H}_1^{E_{\infty}}$.

Падение абсолютных значений $\Delta \bar{H}_1^{E\infty}$ ЭПФЭ-6 относительно ЭПФЭ-5 можно объяснить увеличением длины последовательностей метиленовых групп в среднем в 2 раза по сравнению с ЭПФЭ-5. Кривая $\Delta \bar{H}_1^{E\infty} = f(n_c)$ не имеет плато. Данные отличия могут быть связаны с увеличением в этом сополимере числа углеводородных кластеров. Это обуславливает снижение вклада ΔH_{HOLE} углеводородов и определяющее влияние дисперсионных взаимодействий на характер изменения

 $\Delta \overline{H}_1^{E\infty}$ с молекулярным размером *н*-алкана.

ЭПФЭ-7. Абсолютные значения $\Delta \overline{H}_1^{E^{\infty}}$ для рассматриваемого образца несколько ниже, чем для образца ЭПФЭ-5. Это можно объяснить следующим: увеличение бокового радикала на группу CF_2^- приводит к росту стерических ограничений пространственного расположения макроцепей, что проявляется в соответствующем росте свободного объема. Соответственно затраты энергии, связанные с энтальпией образования полости (ΔH_{HOLE}) в полимере, также уменьшаются.

В то же время абсолютные значения $\Delta \overline{H}_1^{E\infty}$ для сорбатов ЭПФЭ-6 (за исключением пентана) больше, чем соответствующие значения для ЭПФЭ-7 из-за более коротких боковых радикалов.

Образование локального минимума на кривой $\Delta \overline{H}_1^{E\infty} = f(n_C)$ позволяет соотнести среднее значение элементов свободного объема в ЭПФЭ-7 с молекулярным размером *н*-гептана.

№ 3 2019

том 61

ЭПФЭ-8. Для ЭПФЭ-8 на зависимости $\Delta \overline{H}_1^{E\infty} = f(n_C)$ нет плато. Такой характер зависимости может быть связан с ростом в этом сополимере числа углеводородных кластеров, что обуславливает снижение вклада ΔH_{HOLE} и определяющее влияние дисперсионных взаимодействий на характер изменения $\Delta \overline{H}_1^{E\infty}$ с молекулярным размером *н*-алкана.

Парциальная молярная избыточная энтропия. Полученные по уравнению (13) значения $\Delta \bar{S}_{1}^{E\infty}$ для изученных сополимеров представлены в табл. 3. Значения $\Delta \overline{S}_{1}^{E_{\infty}}$ *н*-алканов уменьшаются с увеличением их молярного объема для всех изученных ЭПФЭ. Это соответствует динамике изменения прогнозируемых значений по уравнению (15). Следует отметить, что уравнение (15) не выполняется для многих эластомеров [28], и более типичным является отсутствие зависимости $\Delta \overline{S}_1^{E\infty}$ от молекулярного объема н-алкана. Снижение $\Delta \overline{S}_{1}^{E_{\infty}}$ с молекулярным объемом *н*-алкана в случае ЭПФЭ может быть связано с механизмом сорбции. обусловленным внедрением молекул *н*-алкана во внутриассоциативные пустоты (элементы свободного объема) эластомера, что характерно для сорбции ассоциированными жидкостями [29].

Температурная зависимость $\Delta \overline{H}_1^{E\infty}$. Повышение температуры сопровождается увеличением сегментальной подвижности цепей. Следовательно, вероятность изменения плотности молекулярной упаковки ЭПФЭ высока. В связи с этим представлялось обоснованным проследить зависимость значений $\Delta \overline{H}_1^{E\infty}$ *н*-алканов от температуры для изученных образцов ЭПФЭ. Полученные данные представлены на рис. 3. Как видно, с ростом температуры значения $\Delta \overline{H}_1^{E\infty}$ уменьшаются для всех алканов.

Также необходимо отметить, что, как следует из рисунков 2 и 3а, общий вид зависимости $\Delta \overline{H}_1^{E_{\infty}}$ от длины цепи *н*-алкана с температурой меняется незначительно. Таким образом, можно сделать вывод, что механизм сорбции не изменяется с температурой. Исходя из этого, можно предположить, что конформационные переходы в исследуемых ЭПФЭ отсутствуют.

Рассмотрим образец ЭПФЭ-9 более подробно.

ЭПФЭ-9. Для ЭПФЭ-9 в отличие от образцов ЭПФЭ-5 и ЭПФЭ-7 в области температур ниже 50°С наблюдается зависимость значений V_g^0 сорбатов от скорости потока газа-носителя и величины пробы как для плохих растворителей (углеводороды), так и для хорошего растворителя (гексафторбензол). Тщательно проведенные исследования не

Рис. 3. Влияние температуры на $\Delta \overline{H}_1^{E_{\infty}}$ для систем *н*-алкан–ЭПФЭ-5 (а) и *н*-алкан–ЭПФЭ-7 (б). T = = 40 (*I*), 60 (*2*), 80 (*3*), 100 (*4*) и 120°С (5).

показали зависимости значений V_g^0 от скорости потока газа-носителя и толщины полимерной пленки. Такой характер сорбции указывает на установление равновесия в системе полимер– сорбат в данной области температур, протекающее, однако, заметно медленней, чем в случае исследованных ранее образцов ЭПФЭ. По-видимому, отмеченное различие может быть объяснено присутствием в структуре ЭПФЭ-9 областей с ограниченной подвижностью цепей, в которых диффузия сорбатов замедленна по сравнению с остальным объемом полимера. Такие области могут быть образованы в результате взаимной ориентации боковых радикалов, содержащих группы

Таблица 4. Значения коэффициентов диффузии $D(cm^2/c)$ и проницаемости $P(cm^3 \text{ м} / (cm^2 \text{ с атм}))$ для ЭПФЭ-5 и ПДМС при 20°С

Сорбат	$D \times 10^8$	$P \times 10^8$	$D \times 10^8$	$P \times 10^8$		
copour	ЭПС	ФЭ-5	ПДМС			
Гексафторбензол	0.082	3.6	0.473	9.3		
Циклогексан	0.127	1.2	0.278	10.6		

-SO₂F₂. С повышением температуры увеличивается сегментальная подвижность цепей. что может привести к нарушению взаимной ориентации боковых радикалов и росту скорости диффузии молекул сорбатов в объем полимера. Действительно, как следует из рис. 2, диаграммы удерживания сорбатов, включая гексафторбензол, имеют излом в районе $T_{tr} \approx 75^{\circ}$ С. Независимость T_{tr} от природы сорбата указывает на наличие некоторого конформационного перехода в исследуемом полимере. Можно предположить, что это переход типа порядок-беспорядок, обусловленный разрушением ассоциатов групп SO_2F_2 с повышением температуры. Энергия разупорядочивания ($\Delta H_{\rm TR} =$ = 4.4 ± 1.0 кДж/моль) ассоциатов была рассчитана из разности наклонов диаграмм удерживания до и после конформационного перехода. Полученное значение $\Delta H_{\rm TR}$ по порядку величины совпадает со значением $\Delta H_{\rm TR}$, обусловленным изменением конформации макроцепей, ориентированных относительно друг друга вследствие образования ассоциатов боковых групп.

Рис. 4. Зависимость высоты теоретической тарелки H от линейной скорости газа-носителя $U.1 - \Pi \square MC$ -гексафторбензол, $2 - \Pi \square MC$ -циклогексан, $3 - \Im \Pi \Phi \Im$ -5-гексафторбензол, $4 - \Im \Pi \Phi \Im$ -5-циклогексан. Со-держание неподвижной фазы $\Pi \square MC 2.38\%$, $\Im \Pi \Phi \Im$ -5 2%; $T = 20^{\circ}$ C.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А том 61

Коэффициент диффузии и проницаемость

В табл. 4 представлены значения коэффициентов диффузии и проницаемости для гексафторбензола (хороший растворитель) и циклогексана (плохой растворитель), которые были рассчитаны для ЭПФЭ-5 и ПДМС (для сравнения) по уравнениям (16) и (20). Зависимость величины теоретической тарелки от линейной скорости газа-носителя приведена на рис. 4.

Математическая обработка температурных зависимостей *D* показала, что в исследуемой температурной области коэффициенты диффузии как термодинамически хорошего, так и плохого растворителей изменяются с температурой в соответствии с уравнением Аррениуса. Таким образом, можно сделать вывод о механизме диффузии сорбатов в данных сополимерах как активационном процессе.

Найдены энергии активации Е₄, рассчитанные по зависимостям D(T). Они составляют 35.2 и 62.0 кДж/моль для гексафторбензола и циклогексан. соответственно. Как следует из табл. 4. величины D сорбатов в ЭПФЭ-5 и ПДМС имеют сопоставимые значения. Данный факт, учитывая отсутствие такого соответствия для термодинамических параметров сорбции этих же полимеров (табл. 2), свидетельствует о значительном свободном объеме в объеме полимерной матрицы. Образование большого свободного объема, повидимому, в первую очередь обусловлено стерическими затруднениями достижения плотной упаковки цепей сополимеров вследствие наличия боковых радикалов. Безусловно, образованию большого свободного объема способствует также наличие углеводородных участков цепей, термодинамически несовместимых с перфторуглеродными участками.

Абсорбционный механизм взаимодействия с полимерами позволяет сделать вывод о том, что использование таких сополимеров в качестве материала для селективно проницаемых мембран является более перспективным, чем для защитных покрытий.

ЗАКЛЮЧЕНИЕ

Проведенный в работе анализ сорбционных свойств сополимеров углеводородного и перфторированных сомономеров показал, что даже при альтернантной архитектуре цепи возможны процессы самоорганизации, приводящие к формированию углеводородных кластеров в перфторированной дисперсионной среде.

Абсорбционный механизм взаимодействия сополимеров этилена с перфторированными эфирами даже с термодинамически очень плохими растворителями позволяет сделать вывод о перспективности использования таких сополи-

Nº 3

2019

меров в качестве материала для селективно-проницаемых мембран.

При выборе областей практического применения полимеров подобной структуры следует учитывать, что даже практически полное отсутствие растворимости полимеров в агрессивных средах не может гарантировать их успешное применение в качестве протекторного покрытия.

СПИСОК ЛИТЕРАТУРЫ

- Guizarda C., Boutevin B., Guida F., Ratsimihety A., Amblard P., Lasserre J.C., Naiglin S. // Separ. Purif. Technol. 2001. V. 22. P. 23.
- Norsten T.B., Guiver M.D., Murphy J., Astill T., Navessin T., Holdcroft S., Frankamp B.L., Rotello V.M., Ding J. // Adv. Funct. Mater. 2006. V. 16. № 14. P. 1814.
- 3. *Rastogi A.C., Desu S.B.* // Polymer. 2005. V. 46. № 10. P. 3440.
- 4. *Carr J.M., Mackey M., Flandin L., Hiltner A., Baer E. //* Polymer. 2013. V. 54. № 6. P. 1679.
- Drobny J.G. Technology of fluoropolymers. Boca Raton: CRC Press, 2008.
- Masaaki Y. // Proc. Macromol. Symposia. Basel, 1992. P. 11.
- Valencia Bel F, Caranielli F. // Proc. 4 Int. Spacecraft Propulsion Conference. Cagliari, Italy, 2004. P. 555.
- Voznyakovsky A.P., Sokolov Yu.P., Lovchikov K.V., Krivoruchko E.M. // Proc. 2 Int. Conf. "Material and Coatings for Extreme Performances: Investigations, Applications, Ecologically Safe Technologies for Their Production and Utilization". Katsiveli, Ukraine, 2002. P. 63.
- 9. *Нестеров А.Е.* Обращенная газовая хроматография полимеров. Киев: Наукова думка, 1988.
- 10. Sokolov Yu.P., Voznyakovskii A.P. // Russ. J. Appl. Chem. 2002. V. 75. № 1. P. 142.
- 11. Mohammadi-Jam S., Waters K.E. // Adv. Colloid Interface Sci. 2014. V. 212. P. 21.

- 12. Belov N.A., Safronov A.P., Yampolskii Yu.P. // Polymer Science A. 2012. V. 54. № 11. P. 859.
- 13. Roth M. // Macromolecules. 1990. V. 23. № 6. P. 1696.
- 14. Genkin A.N., Voznyakovskii A.P., Krivoruchko E.M. // Russ. J. Phys. Chem. 1998. V. 72. № 7. P. 1174.
- 15. Patterson D., Tewari Y.B., Schreiber H.P., Guillet J.E. // Macromolecules. 1971. V. 4. № 3. P. 356.
- Yampolskii Y., Belov N. // Macromolecules. 2015. V. 48. № 19. P. 6752.
- Gray D.G., Guillet J.E. // Macromolecules. 1972. V. 5. № 3. P. 319.
- 18. Белоусов В.П., Морачевский А.Г. Теплоты смешения жидкостей. Л.: Химия, 1970.
- Prausnitz J.M. Molecular Thermodynamics of Fluid-Phase Equilibria. New Jersey: Prentice-Hall Inc., 1969.
- 20. Van Deemter J.J., Zuiderweg F.J., Klinkenberg A. // Chem. Eng. Sci. 1956. V. 5. № 6. P. 278.
- 21. *Wang D., Li J., Zeng C., Chen J., Chen C.* // J. Chem. Eng. Data. 2007. V. 52. № 2. P. 370.
- 22. *Nastasovic A.B., Onjia A.E.* // J. Chromatogr. A. 2008. V. 1195. № 1–2. P. 8.
- 23. Возняковский А.П., Генкин А.Н. // Высокомолек. соед. А. 1986. Т. 28. № 5. Р. 941.
- 24. *Smith P.E., Matteoli E., O'Connell P.* Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics. Boca Raton: CRC Press, 2013.
- 25. *Prigogine I.* The Molecular Theory of Solution. Amsterdam: North-Holland, 1957.
- 26. *Plate N.A., Shibaev V.P.* Comb-Shaped Polymers and Liquid Crystals. New York: Plenum Press, 1987.
- 27. Sheppard W.A., Sharts C.M. Organic Fluorine Chemistry. New York: Benjamin, 1969.
- Roth M., Novak J. // Macromolecules. 1986. V. 19. № 2. P. 367.
- 29. Yampolskii Yu.P., Kaluzhnyi N.E., Durgar'jan S.G. // Macromolecules. 1986. V. 19. № 3. P. 850.