СТРУКТУРА И СВОЙСТВА

УДК 541.64:536.4:546.185-325

ТЕРМИЧЕСКОЕ ПОВЕДЕНИЕ ПОЛИУРЕТАНОВЫХ ИОНОМЕРОВ НА ОСНОВЕ АМИНОЭФИРОВ *ОРТО*-ФОСФОРНОЙ КИСЛОТЫ

© 2020 г. И. М. Давлетбаева^{*a*,*}, О. О. Сазонов^{*a*}, А. Р. Фазлыев^{*a*}, И. Н. Закиров^{*a*}, Р. С. Давлетбаев^{*b*}, С. В. Ефимов^{*c*}, В. В. Клочков^{*c*}

^а Казанский национальный исследовательский технологический университет 420015 Казань, ул. К. Маркса, 68, Россия

^b Казанский национальный исследовательский технический университет им. А.М. Туполева 420111 Казань, ул. К. Маркса, 10, Россия ^c Казанский (Приволжский) федеральный университет 420008 Казань, ул. Кремлевская, 18, Россия *e-mail: davletbaeva09@mail.ru Поступила в редакцию 18.03.2020 г. После доработки 24.04.2020 г. Принята к публикации 06.05.2020 г.

Исследованы продукты катализируемой триэтаноламином и триэтиламином реакции этерификации орто-фосфорной кислоты полиоксипропиленгликолем-1000. Установлено, что природа третичного амина заметно влияет на полноту реакции этерификации. При использовании триэтаноламина гидроксильные группы, входящие в его состав, также участвуют в этерификации орто-фосфорной кислоты. Образующийся в результате третичный аммоний, являющийся центральным звеном синтезируемых разветвленных аминоэфиров орто-фосфорной кислоты, является причиной неполной этерификации и существования в структуре аминоэфиров разделенных в пространстве ионных пар. При применении триэтиламина этерификация орто-фосфорной кислоты протекает практически полностью с образованием полифосфатов. Изучено термическое поведение полиуретанов иономерной и неиономерной природы. Обнаружено, что у полиуретанов, содержащих ионные группы, температура стеклования значительно выше, чем у полиуретанов неиономерной природы. Показано, что фосфорсодержащие полиуретаны неиономерной природы проявляют более высокую термостойкость в инертной среде, чем фосфорсодержащие полиуретановые иономеры. При этом температура начала термоокислительной деструкции у полиуретанов неиономерной природы заметно падает с увеличением содержания полифосфатов. Отмечено, что полиуретановые иономеры, полученные с использованием фосфолипидов, имеют более низкую термическую стабильность, чем полиуретаны на основе аминоэфиров орто-фосфорной кислоты.

DOI: 10.31857/S230811202005003X

ВВЕДЕНИЕ

Полиуретаны, как правило, являются термически стабильными материалами. На термическое поведение полиуретанов оказывает влияние химическая структура олигодиолов и диизоцианатов, используемых для их синтеза [1]. При исследованиях термической стабильности различают протекающие по разным механизмам термическую (в инертной среде) и термоокислительную (в воздушной атмосфере) деструкцию и пиролиз ($T > 500^{\circ}$ С). В инертной среде температура деструкции определяется структурой жесткого сегмента, а при эксплуатации на воздухе деструкция начинается в эластичной фазе и протекает по радикально-цепному механизму [2].

Диссоциация уретановых групп обычно наблюдается при 230°С. Природа диизоцианата является одним из основных факторов, регулирующих термостабильность полиуретанов. Полиуретаны на основе ароматических диизоцианатов более стабильны по сравнению с ПУ, получаемыми с использованием циклоалифатических и алифатических диизоцианатов. Ароматические диизоцианаты характеризуются меньшей чувствительностью к термическому окислению И радиации [3-6]. Тем не менее, термопластичные уретановые эластомеры, полученные с использованием алифатических диизоцианатов, могут проявлять лучшую термостабильность по сравнению с ароматическими [7–9]. Термическая деградация полиуретанов зависит также от соотношения между жесткими и гибкими сегментами [10].

Полиолы, используемые в синтезе полиуретанов, в основном представляют собой сложные и

простые олигоэфирдиолы. Полиолы на основе сложных эфиров более стабильны по отношению к термоокислительной деструкции, чем полиолы на основе простых эфиров [11–18].

Введение ароматических групп в гликолевую составляющую также является способом повышения термической стабильности полиуретанов. В работах [19—24] показано, что высокое содержание ароматических сегментов, встроенных в структуру полиуретанов, устраняет влияние простых олиголиэфирдиолов на термоокислительную деструкцию полиуретанов.

К повышению термостойкости полиуретанов ведет и использование гиперразветвленных полиолов, что обусловлено увеличением плотности полимерной сетки [25–27].

Один из путей повышения термоокислительной стабильности полимеров связан с применением антипиренов. Большинство антипиренов содержит фосфор. В процессе горения связи Р–О–С быстро разрушаются, образуя структуру Р–О–Р в виде полифосфорной кислоты в остаточном коксе. Кокс служит препятствием для дальнейшего распространения пламени внутри полимерной массы. Тем не менее, введение низкомолекулярных соединений фосфора в состав полимера ведет к снижению его термостабильности [28–31].

Хотя термостабильность полиуретанов в основном определяется природой диизоцианатов, мягких и жестких сегментов, на термостабильность полиуретанов могут влиять ионные группы. Иономеры представляют собой полимеры, которые содержат способные к ассоциации ионные группы. Ассоциаты ионных групп повышают плотность пространственной полимерной сетки и модули упругости полиуретанов [32–39]. Полиуретановые иономеры содержат менее 15 мол. % ионных групп в своих основных цепях. Эти ионные группы могут быть анионами (ПУаниономеры), катионами (ПУ-катиономеры) или цвиттер-ионами (ПУ-цвиттер-иономеры). Полиуретановые иономеры можно синтезировать разными способами, такими как конденсация ионных диолов с диизоцианатами или постионизация полиуретанов [1, 40–53].

В работе [54] отмечено два этапа термического разложения аниономерных полиуретанов и показано, что рост содержания ионных групп приводит к повышению максимальной температуры первого этапа, а также к увеличению коксового остатка при 450°С. Так, при росте содержания ионогенных групп от 2.37 до 4.27% температура начала потери массы повышается от 228 до 244°С.

Известны полиуретановые иономеры на основе фосфолипидов [55]. Характерной особенностью таких полиуретановых иономеров является их низкая термическая стабильность.

В работе [56] были синтезированы разветвленные аминоэфиры орто-фосфорной кислоты (АЭФК), содержащие разделенные в пространстве ионные пары. В качестве соединения, катализирующего реакцию этерификации орто-фосфорной кислоты полиоксипропиленгликолем и создающего центральные узловые фрагменты был использован триэтаноламин. На размеры молекул АЭФК, содержание в их составе узловых фрагментов и ионогенов влияли путем изменения мольного соотношения орто-фосфорной кислоты и триэтаноламина. Мольное соотношение полиоксипропиленгликоля и триэтаноламина оставалось неизменным. Ниже приведена схема синтеза АЭФК при мольном соотношении триэтаноламин : орто-фосфорная кислота : полиоксипропиленгликоль = 1:6:6 (образец АЭФК-6).

Было показано, что полученные из них полиуретановые иономеры обладают высокими адгезионными и прочностными характеристиками. Из *орто*-фосфорной кислоты, полиоксипропиленгликоля и триэтиламина, выступающего в качестве катализатора, были также синтезированы эфиры *орто*-фосфорной кислоты (ЭФК), не содержащие в своей структуре ионных групп. Оказалось, что полиуретановые иономеры на основе АЭФК имеют значительно более высокие прочностные и адгезионные характеристики, чем полиуретаны на основе ЭФК, не содержащих ионогенные группы [56]. Следует отметить, что эфиры *орто*-фосфорной кислоты в работе [56] практически не были изучены.

Настоящая работа посвящена сравнению термического поведения полиуретановых иономеров на основе АЭФК с полиуретанами, полученными из ЭФК, не содержащих ионных групп. В ней также исследовано влияние природы третичного амина на полноту реакции этерификации *орто*-фосфорной кислоты полиоксипропиленгликолем и строение образующихся соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Полиоксипропиленгликоль с молекулярной массой 1000 (Wanol 2310) приобретен у компании "Wanhua Chemical" (Китай). Триэтаноламин, триэтиламин и толуол поставлены Обществом с ограниченной ответственностью "Компонентреактив" (Москва). *Орто*-фосфорная кислота в виде 85%-ного раствора приобретена у Общества с ограниченной ответственностью "MCD-Chemicals" (Москва), полиизоцианат "Wannate PM-200" – у "Киmho Mitsui Chemicals, Inc." (Китай).

Аминоэфиры *орто*-фосфорной кислоты синтезировали при мольных соотношениях триэтаноламин : H_3PO_4 : полиоксипропиленгликоль = = 1 : 3 : 6, 1 : 6 : 6, 1 : 9 : 6 и 1 : 12 : 6 (образцы АЭФК-3, АЭФК-6, АЭФК-9 и АЭФК-12 соответственно). Рассчитанное количество *орто*-фосфорной кислоты и полиоксипропиленгликоля помещали в круглодонную колбу, смешивали в течение 2 мин, затем в систему добавляли триэтаноламин. В течение 2 ч реакционную массу выдерживали при давлении 0.7 кПа и $T = 90^{\circ}$ С. По окончании синтеза АЭФК выливали в герметично закрытую емкость. Количество остаточной воды не превышало 0.3 мас. %.

Синтез полиуретанов на основе аминоэфиров орто-фосфорной кислоты

АЭФК (1 г) смешивали с полиизоцианатом (1 г), затем добавляли 4.6 мл толуола и перемешивали 5 мин при комнатной температуре. Отверждение полиуретанов проводили в чашках Петри

при комнатной температуре в течение 24 ч. После этого образцы прогревали 10 мин при 100°С для удаления остаточного растворителя.

Синтез эфиров орто-фосфорной кислоты

Этерификацию *орто*-фосфорной кислоты полиоксипропиленгликолем вели в присутствии триэтиламина. Соединения были получены примольных соотношениях триэтиламин : H_3PO_4 : : полиоксипропиленгликоль = 1 : 3 : 6, 1 : 6 : 6, 1 : : 9 : 6 и 1 : 12 : 6 (ЭФК-3, ЭФК-6, ЭФК-9 и ЭФК-12 соответственно). Рассчитанное количество *орто*фосфорной кислоты и полиоксипропиленгликоля помещали в круглодонную колбу, смешивали в течение 2 мин, затем в данную систему добавляли триэтиламин. Реакционную массу выдерживали 2 ч при остаточном давлении 0.7 кПа и T = 90°С. По окончании синтеза ЭФК выливали в герметично закрытую емкость. Количество остаточной воды не превышало 0.3 мас. %.

Синтез полиуретанов на основе эфиров орто-фосфорной кислоты

ЭФК (1 г) смешивали с полиизоцианатом (1 г), затем добавляли 4.6 мл толуола и перемешивали 5 мин при комнатной температуре. Отверждение полиуретанов проводили в чашках Петри при комнатной температуре в течение 24 ч. После этого образцы прогревали 10 мин при 100°С для удаления остаточного растворителя.

Динамическую вязкость и плотность образцов измеряли в температурном диапазоне 20–80°С при атмосферном давлении с использованием вискозиметра "Stabinger SVM 3000" ("Anton Paar", Австрия). Погрешность определения вязкости 0.1%, ошибка измерения плотности 0.0002 г/см³.

Размеры полимерных частиц в толуоле и ацетоне регистрировали на фотонном корреляционном спектрометре динамического рассеяния света "MalvernZetaSizerNano". Источником излучения служил He—Ne-лазер с мощностью 4 мВт и длиной волны 633 нм. Угол рассеяния света составлял 173°. Эксперименты проводили при 25°С в одноразовых пластиковых кюветах толщиной 1 см.

Спектры ЯМР на ядрах ¹Н и ³¹Р записывали на спектрометре "Bruker Avance III HD 700" (700.13 МГц для ¹Н и 283.42 МГц для ³¹Р) с использованием инверсного датчика QCI (1H/19F-31P/13C/15N/D). Образцы содержали 120 мкл исследуемой полимерной смеси и 480 мкл бензола-d₆. Спектры регистрировали при 25°С. Отдельные температурные измерения проводили в диапазоне 12–38°С. Шкала химического сдвига протонов указана относительно сигнала C₆D₆ при 7.1 м.д. Ширина спектра была установлена равной 12.0 м.д. для протонов и 43.5 м.д. для фосфора; период между

2020

Вязкость, мПа с Полиол $20^{\circ}C$ 40°C 60°C 80°C 246.5 78.2 АЭФК-3 33.7 17.9 АЭФК-6 768.6 200.2 74.6 35.1 АЭФК-9 1291.8 296.7 97.9 43.8 ЭФК-3 218.6 71.4 31.2 16.7 ЭФК-6 355.7 106.2 43.9 22.4 ЭФК-9 432.6 126.9 50.2 25.0

Таблица 1. Динамическая вязкость АЭФК и ЭФК

последовательными сканированиями составлял 6.89 и 5.66 с соответственно.

Кривые ТГА полимеров получали на совмещенном термическом анализаторе ТГА–ДТА "Perkin Elmer STA-600" с температурным диапазоном 15–600°С и точностью измерения температуры ± 0.5 °С. Измерения выполняли при скорости нагревания 5 град/мин в инертной (азот) или воздушной атмосфере.

Вязкоупругие свойства полимеров изучали на динамическом механическом анализаторе "Netzsch DMA 242" в режиме осцилирующей нагрузки. Сила и соответствия значений были откалиброваны с использованием стандартной массы. Толщина образцов составляла 2 мм. Измерения проводили в атмосфере азота при скорости нагревания 3 град/мин и частоте 1 Гц в интервале температур от комнатной до 250°С. Тангенс угла механических потерь определяли как отношение модуля вязкости *E*" к модулю упругости *E*".

Термомеханические кривые полимерных образцов получали на термомеханическом анализаторе "Netzsch TMA 402 F" в режиме сжатия. Толщина образцов 2 мм, скорость нагревания 3 град/мин, интервал температур от комнатной до 250°C, нагрузка 2 H.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Динамическая вязкость и плотность АЭФК и ЭФК

Для установления различий в химическом строении АЭФК и ЭФК были измерены температурные зависимости динамической вязкости и плотности этих соединений, полученных при различных мольных соотношениях *орто*-фосфорная кислота : триэтаноламин и *орто*-фосфорная кислота : триэтиламин. Согласно табл. 1 и 2, при мольных соотношениях *орто*-фосфорная кислота : триэтаноламин и *орто*-фосфорная кислота : триэтаноламин и *орто*-фосфорная кислота : триэтиламин, равных трем (АЭФК-3 и ЭФК-3 соответственно), плотность и вязкость рассматриваемых соединений практически не отличаются.

Таблица 2. Плотность АЭФК и ЭФК

Полиол	ρ, г/см ³				
	20°C	40°C	60°C	80°C	
АЭФК-3	1.0084	0.9930	0.9777	0.9625	
АЭФК-6	1.0406	1.0253	1.0102	0.9951	
АЭФК-9	1.0586	1.0435	1.0260	1.0111	
ЭФК-3	1.0050	0.9895	0.9742	0.9588	
ЭФК-6	1.0216	1.0031	0.9870	0.9719	
ЭФК-9	1.0311	1.0087	0.9928	0.9776	

При увеличении мольной доли орто-фосфорной кислоты при синтезе АЭФК и ЭФК появляются заметные различия в значениях их вязкости и плотности (табл. 1 и 2). Более чем двукратная разница в значениях вязкости АЭФК-6 и АЭФК-9 по сравнению с ЭФК-6 и ЭФК-9 является следствием сушествования межмолекулярных взаимодействий с участием ионных групп в составе АЭФК. Вязкость ЭФК по мере повышения мольной доли орто-фосфорной кислоты растет. Учитывая относительно высокую степень разветвленности ЭФК, можно заключить, что размеры молекул этих соединений при увеличении мольной доли орто-фосфорной кислоты также возрастают. Для АЭФК наблюдаются более высокие значения плотности, чем для ЭФК.

Таким образом, более низкая вязкость и меньшая плотность ЭФК являются следствием того, что ЭФК образуют менее прочные межмолекулярные связи по сравнению с АЭФК. Высокая разветвленность молекул ЭФК также способствует ослаблению межмолекулярного взаимодействия.

Распределение частиц АЭФК и ЭФК по размерам

В предварительных экспериментах методом динамического светорассеяния было измерено распределение по размерам для частиц полиоксипропиленгликоля в среде ацетона и толуола (рис. 1). Малый размер и относительно узкое распределение по размерам частиц полиоксипропиленгликоля в ацетоне свидетельствуют о том, что этот растворитель полярной природы препятствует образованию ассоциированных форм полиоксипропиленгликоля. Для уменьшения влияния ассоциативных взаимодействий с участием полиоксипропиленгликолевой составляющей на гидродинамические размеры частиц АЭФК и ЭФК в качестве растворителя был использован ацетон.

Для АЭФК и ЭФК результаты измерений размеров частиц хорошо воспроизводятся. Индекс полидисперсности для АЭФК нахо-

Рис. 1. Распределение частиц полиоксипропиленгликоля по размерам в среде ацетона (1) и толуола (2). Цветные рисунки можно посмотреть в электронной версии.

Рис. 2. Распределение частиц АЭФК-3 (1) и ЭФК-3 (2) по размерам в среде ацетона.

Рис. 3. Распределение частиц АЭФК-6 (1) и ЭФК-6 (2) по размерам в среде ацетона.

дится в пределах 0.326-0.369, а для ЭФК – в пределах 0.034-0.4.

Для ЭФК-3 и ЭФК-6 (рис. 2, 3) наблюдается бимодальное распределение частиц по размерам, а средний гидродинамический диаметр у частиц ЭФК-3 и ЭФК-6 заметно ниже, чем у частиц АЭФК-3 и АЭФК-6. С увеличением мольных соотношений *орто*фосфорная кислота : триэтаноламин и *орто*-фосфорная кислота : триэтиламин выявленная закономерность изменяется. Так, для АЭФК-9 распределение является бимодальным, а размеры крупных частиц (550 нм) практически сравнимы с размерами частиц ЭФК-9 (480 нм) (рис. 4).

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А том 62 № 5 2020

Рис. 4. Распределение частиц АЭФК-9 (1) и ЭФК-9 (2) по размерам в среде ацетона.

Рис. 5. Распределение частиц АЭФК-12 (1) и ЭФК-12 (2) по размерам в среде ацетона.

При дальнейшем увеличении мольной доли *орто*-фосфорной кислоты при синтезе АЭФК сохраняется бимодальное распределение частиц по размерам, а размеры частиц продолжают уменьшаться (рис. 5). Так, у АЭФК-12 размер мелких и крупных частиц составляет 2 и 198 нм, а индекс полидисперсности — 0.187. Напротив, размер частиц ЭФК-12 достигает 1282 нм. Кроме того, для ЭФК-12 наблюдается узкое распределение частиц по размерам с индексом полидисперсности 0.034.

Таким образом, результаты измерений распределения частиц АЭФК и ЭФК по размерам подтверждают заметное различие как в закономерностях образования АЭФК и ЭФК, так и свойствах этих соединений. Большие размеры частиц АЭФК-3 и АЭФК-6 по сравнению с размерами частиц ЭФК-3 и ЭФК-6 обусловлены существованием сильных ассоциативных взаимодействий с участием ионных групп АЭФК.

Увеличение мольного соотношении *орто*фосфорная кислота: триэтаноламин до 9 и 12 (образцы АЭФК-9 и АЭФК-12) не приводит к дальнейшему вовлечению *орто*-фосфорной кислоты в реакционный процесс. Напротив, увеличение мольного соотношении *орто*-фосфорная кислота : : триэтиламин при синтезе ЭФК до 9 и 12 (ЭФК-9 и ЭФК-12) ведет к полному расходованию *орто*фосфорной кислоты и образованию крупных частиц, характеризующихся относительно узким распределением.

ЯМР-спектры АЭФК и ЭФК

ЯМР-исследования аминоэфиров *орто*-фосфорной кислоты были проведены в работе [56]. Для установления наличия свободных протонов в составе ЭФК были измерены ЯМР ¹Н-спектры ЭФК-3, ЭФК-6, ЭФК-9 и полиоксипропиленгликоля (рис. 6 и 7).

Согласно данным ЯМР ¹Н [56], в полиоксипропиленгликоле отсутствуют лабильные протоны, а общий вид спектра не зависит от температуры. В ЯМР ¹Н-спектрах ЭФК-3 отсутствуют сигналы, связанные с протонами групп Р–ОН. Для ЭФК-6 в спектре ЯМР ¹Н присутствуют протоны

Рис. 6. ЯМР ¹Н-спектры ЭФК-3 (а), ЭФК-6 (б) и ЭФК-9 (в) при 12 (1), 18 (2), 25 (3), 32 (4) и 38°С (5).

со сдвигом в области 6.3 м.д., которые немного смещаются с ростом температуры. В ЯМР ¹Нспектрах ЭФК-9 сдвиг сигналов протонов непрореагировавших групп Р–ОН смещается до 7.5 м.д. С повышением температуры для ЭФК-9 так же, как и для ЭФК-6, происходит смещение сигналов. Различия в проявлении протонов групп Р–ОН в ЯМР ¹Н-спектрах ЭФК являются следствием неоднозначного влияния мольного избытка *орmo*-фосфорной кислоты на строение продуктов

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А том 62 № 5 2020

Рис. 7. ЯМР¹Н-спектры полиоксипропиленгликоля (*1*), триэтаноламина (*2*), *орто*-фосфорной кислоты (*3*), ЭФК-3 (*4*) и ЭФК-6 (*5*).

Рис. 8. ЯМР ³¹ Р-спектры *орто*-фосфорной кислоты (1), ЭФК-3 (2), ЭФК-6 (3) и ЭФК-9 (4).

катализируемой триэтиламином этерификации *орто*-фосфорной кислоты полиоксипропиленгликолем.

Для дальнейшего анализа строения ЭФК были измерены спектры ЯМР ³¹Р (рис. 8). Если на ЯМР ³¹Р-спектрах АЭФК [56] наблюдается сигнал в области $\delta = 1.3-0.9$ м.д., соответствующий атомам фосфора в составе анионов РО⁻ и сигнал при $\delta =$ = 3.0-3.1 м.д., отвечающий фосфору в составе связи Р–О–Р, то в ЯМР ³¹Р-спектрах ЭФК присутствует в основном только один вид сигналов в области 2.1–2.3 м.д., относящийся к атомам фосфора в составе связи P-O-P. Некоторое смещение и уширение сигналов при переходе от ЭФК-3 к ЭФК-9 может быть следствием того, что связи P-O-P в этих соединениях имеют различное окружение.

Таким образом, изложенные выше результаты показывают, что в результате катализируемой триэтиламином реакции этерификации *орто*-фосфорной кислоты полиоксипропиленгликолем образуются в основном полные фосфаты. Ниже приведены наиболее вероятные схемы образования ЭФК-6 и ЭФК-9.

Термическое поведение АЭФК и ЭФК в инертной среде

Согласно термогравиметрическому анализу, проведенному в среде азота, для аминоэфиров *орто*-фосфорной кислоты начало потери массы и ход кривых практически не зависят от мольной доли *орто*-фосфорной кислоты вплоть до АЭФК-5 (табл. 3). Однако при дальнейшем повышении содержания *орто*-фосфорной кислоты (начиная с АЭФК-6) температура начала потери массы заметно падает. Такое падение термостабильности АЭФК, полученного при высоком содержании *орто*-фосфорной кислоты, может быть обусловлено ростом в его составе содержания не вовлеченных в процессы этерификации групп Р–ОН.

В случае ЭФК (табл. 3) начало потери массы и ход кривых термического разложения зависят от мольной доли *орто*-фосфорной кислоты при синтезе ЭФК. С увеличением содержания *орто*-фосфорной кислоты термостабильность ЭФК за-

Nº 5

2020

Полиол	<i>T</i> _{5%} ,°C	<i>T</i> _{10%} ,°C	<i>T</i> _{50%} ,°C	Содержание кокса при 400°С, мас. %
АЭФК-3	295	309	338	0.3
АЭФК-4	288	308	341	0.7
АЭФК-5	289	305	334	2.1
АЭФК-6	257	273	311	3.1
АЭФК-9	224	232	259	6.3
АЭФК-12	214	221	240	10.5
ЭФК-3	304	320	350	0.5
ЭФК-4	278	291	325	1.0
ЭФК-5	273	289	320	1.3
ЭФК-6	258	276	312	2.7
ЭФК-9	222	236	264	5.5
ЭФК-12	213	218	243	9.0

Таблица 3. Характеристики термостойкости АЭФК и ЭФК в среде азота

Габлица 4	. Характеристики	термостойкости	АЭФК-
ПУ и ЭФК	К-ПУ		

Полиуретан	<i>T</i> _{5%} ,°C	<i>T</i> _{10%} ,°C	<i>T</i> _{50%} ,°C	Содержание кокса при 600°С, мас. %
АЭФК-3-ПУ	308/278	322/292	362/369	17.0/5.0
АЭФК-4-ПУ	235/275	268/292	310/381	16.0/3.5
АЭФК-5-ПУ	220/277	243/293	300/378	14.0/4.0
АЭФК-6-ПУ	275/280	300/294	350/383	15.0/5.0
АЭФК-9-ПУ	268/265	281/282	320/375	16.5/8.0
ЭФК-3-ПУ	300/295	317/307	365/390	18.0/4.0
ЭФК-4-ПУ	295/275	311/296	355/391	17.0/4.5
ЭФК-5-ПУ	280/275	301/295	350/393	16.0/5.5
ЭФК-6-ПУ	280/240	300/270	350/355	17.0/6.0
ЭФК-9-ПУ	260/220	285/240	340/340	18.0/5.0

Примечание. В числителе – в среде азота, в знаменателе – в воздушной среде.

метно снижается. Это обстоятельство может быть объяснено повышением содержания связей Р–О–Р в ЭФК и подтверждает образование полифосфатов при взаимодействии *орто*-фосфорной кислоты с полиоксипропиленгликолем при каталитическом воздействии триэтиламина (табл. 3).

Термическое поведение АЭФК-ПУ и ЭФК-ПУ в инертной среде

Термостойкость АЭФК-ПУ в среде азота неоднозначно зависит от содержания ионогенных групп в аминоэфирах орто-фосфорной кислоты (табл. 4). Наиболее высокая температура начала потери массы наблюдается для АЭФК-3-ПУ, начало термически активированного разложения которого приходится на 308°С. По мере увеличения мольного избытка орто-фосфорной кислоты относительно триэтаноламина при синтезе АЭФК температура начала потери массы для полиуретана на основе АЭФК уменьшается до 235°C для АЭФК-4-ПУ и до 220°С для АЭФК-5-ПУ. При переходе к АЭФК-6-ПУ начало потери массы несколько возрастает (до 275°С). Учитывая, что для полиуретанов, получаемых с использованием ароматических изоцианатов, температура начала потери массы, как правило, находится в области 270-280°С, а при использовании олигоэфирдиолов, содержащих ароматические структуры, достигает 330°С [23], можно полагать, что иономерная природа полиуретанов АЭФК-ПУ не приводит к понижению их термической стабильности.

Здесь следует отметить, что наиболее близкими по химическому строению к АЭФК-ПУ являются полиуретановые иономеры, получаемые с использованием фосфолипидов. Согласно исследованию [55], температура начала потери массы для таких полиуретановых иономеров при содержании фосфатов в полимере 0.5% находится в области 218°С, а с ростом содержания фосфатов до 2.0% падает до 183°С. Для полиуретанов, синтезированных в тех же условиях, но без применения фосфолипидов начало потери массы приходится на 240°С. Такое поведение полиуретановых иономеров было связано с относительной легкостью разложения сегментов, содержащих фосфор.

Сравнивая полученные результаты с литературными данными, можно заключить, что уменьшение термостойкости полиуретановых иономеров на основе фосфолипидов природного происхождения может быть обусловлено их значительной полидисперсностью, не позволяющей в полной мере реализовываться межмолекулярным взаимодействиям.

В ЭФК-ПУ в отличие от АЭФК-ПУ практически отсутствуют ионные группы, и их структура является более разветвленной. По-видимому, благодаря уменьшению интенсивности межмолекулярных взаимодействий и росту содержания структурных элементов Р–О–Р в полимерной матрице, происходит небольшое уменьшение термической стабильности при переходе от ЭФК-3-ПУ к ЭФК-6-ПУ и ЭФК-9-ПУ (табл. 4). Понижение термостабильности у неиономерного ЭФК-ПУ менее заметно, чем у иономерного АЭФК-ПУ.

Рис. 9. Температурные зависимости тангенса угла механических потерь и кривые ТМА для ЭФК-3-ПУ (1), ЭФК-6-ПУ (2) и ЭФК-9-ПУ (3).

Термическое поведение АЭФК-ПУ и ЭФК-ПУ в воздушной атмосфере

Несмотря на то, что исследуемые полиуретаны были получены на основе простого олигоэфирдиола, для них наблюдаются относительно высокие температуры начала термоокислительной деструкции и массы коксового остатка (табл. 4).

Температура начала термоокислительной деструкции ЭФК-ПУ зависит от его разветвленности. С увеличением разветвленности и содержания фосфора (преимущественно в виде фосфатов) в ряду ЭФК-3-ПУ–ЭФК-6-ПУ–ЭФК-9-ПУ стойкость к термоокислительному разложению полиуретана значительно уменьшается (табл. 4).

Анализируя полученные результаты, необходимо иметь в виду, что термическое разложение полимеров в воздушной атмосфере сопряжено с диффузией кислорода в массу полимера. Более рыхлая разветвленная структура ЭФК-ПУ создает более благоприятные условия для проникновения кислорода в образец по сравнению с таковыми в случае иономерных АЭФК-ПУ, для которых характерны сильные межмолекулярные взаимодействия.

Термомеханический анализ АЭФК-ПУ и ЭФК-ПУ

Согласно обзорной работе [1], введение ионных групп влияет на температуру стеклования

Рис. 10. Температурные зависимости тангенса угла механических потерь и кривые ТМА для АЭФК-3-ПУ (*1*), АЭФК-6-ПУ (*2*) и АЭФК-9-ПУ (*3*).

мягких сегментов. В большинстве случаев температура стеклования уменьшается с повышением содержания ионных групп за счет снижения кристалличности и усиления микрофазного разделения твердых и мягких сегментов. Кроме того, температура стеклования может, наоборот, увеличиваться с ростом количества ионных групп, что обусловлено возникновением сильных взаимодействий между полимерными цепями и увеличением эффективных узлов сшивания полимерной матрицы. Так как эти два явления могут происходить одновременно, однозначные прогнозы относительно влияния ионных групп на температуру стеклования затруднены.

Для неиономерных ЭФК-ПУ (рис. 9) при повышении содержания полифосфатов наблюдается тенденция к появлению более низкотемпературных областей начала сегментальной подвижности полиоксипропиленовой составляющей. Так, для ЭФК-9 проявление начала сегментальной подвижности наблюдается при –30°С. Присутствуют также переходы при 50 и 110°С.

Для иономерного АЭФК-6-ПУ, температура стеклования достигает более высоких значений (рис. 10). Полученные результаты позволяют заключить, что присутствие ионогенных групп и разветвленность АЭФК-ПУ приводят к значительно-

Nº 5

2020

му повышению температуры стеклования по сравнению с температурой стеклования ЭФК-ПУ, который также является разветвленным, но практически не содержит ионогенных групп.

ЗАКЛЮЧЕНИЕ

Проведен сравнительный анализ особенностей химического строения АЭФК, синтезируемых с использованием триэтаноламина, ортофосфорной кислоты и полиоксипропиленгликоля-1000 и ЭФК, получаемых в результате катализируемой триэтиленгликолем реакции этерификации орто-фосфорной кислоты полиоксипропиленгликолем. Измерения размера частиц, вязкости и плотности АЭФК и ЭФК при повышении содержания орто-фосфорной кислоты подтверждают заметное различие как в закономерностях образования, так и свойствах этих соединений. Согласно спектроскопии ЯМР³¹Ри ЯМР¹Н. в результате катализируемой триэтиламином реакции этерификации орто-фосфорной кислоты полиоксипропиленгликолем образуются в основном полифосфаты. Показано, что более низкая вязкость и плотность ЭФК являются следствием того, что ЭФК образуют менее прочные межмолекулярные связи. Высокая разветвленность молекул ЭФК также способствует ослаблению сил межмолекулярного взаимодействия.

Согласно термогравиметрическому анализу АЭФК-ПУ и ЭФК-ПУ в среде азота, наиболее высокая температура начала потери массы наблюдается для АЭФК-3-ПУ. Начало термически активированного разложения приходится на 308°С. С увеличением мольного соотношения орто-фосфорной кислоты и триэтаноламина при синтезе АЭФК температура начала потери массы сначала уменьшается от 235°С для АЭФК-4-ПУ до 220°С для АЭФК-5-ПУ, а затем несколько возрастает (до 275°С для АЭФК-6-ПУ). Неиономерные ЭФК-ПУ проявляют более высокую термостойкость в среде азота по сравнению с иономерными АЭФК-ПУ. Для них температура начала термоокислительной деструкции заметно падает с увеличением содержания полифосфатов.

Отмечено, что полиуретановые иономеры, полученные с использованием фосфолипидов, проявляют более низкую термическую стабильность по сравнению с АЭФК-ПУ. Установлено, что присутствие ионогенных групп в АЭФК-ПУ приводит к тому, что его температура стеклования значительно выше температуры стеклования ЭФК-ПУ, который практически не содержит ионогенных групп.

Работа выполнена при финансовой поддержке Российского научного фонда (проект 19-19-00136).

СПИСОК ЛИТЕРАТУРЫ

- 1. Jaudouin O., Robin, J.-J., Lopez-Cuesta J.-M., Perrin D., Imbert C. // Polym Int. 2012. V. 61. P. 495.
- 2. Hu S., You F. // Proc. Eng. 2013. V. 52. P. 145.
- Krol P., Krol B., Pikus S., Kozak M. // Colloid. Polym. Sci. 2006. V. 285. P. 169.
- Opera S., Vlad S. // J. Optoelectron. Adv. Mater. 2006. V. 8. P. 675.
- Millan E., Ramirez M., Perdomo G. // Acta. Cient. Venez. 2000. V. 51. P. 150.
- Chattopadhyay D.K., Sreedhar B., Raju K.V.S.N. // J. Appl. Polym. Sci. 2005. V. 95. P. 1509.
- 7. *Malik M., Kaur R.* // Polym. Eng. Sci. 2018. V. 58. P. 112.
- Xie R., Bhattacharjee D., Argyropoulos J. // J. Appl. Polym. Sci. 2009. V. 113. P. 839.
- 9. Hepburn C. // Iranian J. Polym. Sci. Technol. 1992.
- Petrovic Z.S., Javni I., Divjakovic V. // J. Polym. Sci., Polym. Phys. 1998. V. 36. P. 221.
- 11. Kang S., Ku D., Lim J., Yang Y., Kwak N., Hwang T. // Macromol. Res. 2005. V. 13. P. 212.
- 12. Simon J., Barla F., Kelemen-Haller A., Farkas F., Kraxner M. // Chromatographia. 1988. V. 25. P. 99.
- Servay T., Voelkel R., Schmiedberger H., Lehmann S. // Polymer. 2000. V. 41. P. 5247.
- Datta J., Balas A. // J. Therm. Anal. Cal. 2003. V. 74. P. 615.
- 15. *Bellucci F., Camino G., Frache A., Sarra A.* // Polym. Degrad. Stab. 2007. V. 92. P. 425.
- Wang Z., Han E., Ke W. // Polym. Degrad. Stab. 2006. V. 91. P. 1937.
- 17. *Madden J.P., Baker G.K., Smith C.H.* // Allied Signal inc. Kansas City Division. 1994.
- Barikani M., Barmar M. // Iranian Polym J. 1996. V. 5. P. 231.
- Davletbaeva I.M., Zaripov I.I., Karimullin R.R., Gumerov A.M., Davletbaev R.S., Sharifullin R.R., Parfenov V.V. // Polymer Science B. 2017. V. 59. № 1. P. 43.
- 20. Davletbaeva I.M., Zaripov I.I., Karimullin R.R., Gumerov A.M., Davletbaev R.S., Burmakina G.V. // Polymer Science B. 2017. V. 59. № 1. P. 69.
- Dumont M., Kong X., Narine S. // J. Appl. Polym. Sci. 2010. V. 117. P. 3196.
- 22. Le J., Kim J., Jung W., Park Y. // J. Mater. Sci. 2007. V. 42. P. 3936.
- 23. Mitrofanova S.E., Bakirova I.N., Zenitova L.A., Galimzyanova A.R., Nefed'ev E.S. // Russ. J. Appl. Chem. 2009. V. 82. P. 1630.
- 24. Iyer N.P., Nasar A.S., Gnanarajan T.P., Radhakrishnan G. // Polym. Int. 2001. V. 50. P. 693.
- 25. Huanyu W., Huiguang K., Wenfang S., Wenfang N., Xiaofeng S. // J. Coat. Tech. 2003. V. 75. P. 37.
- Asif A., Hu L., Shi W. // Colloid. Polym. Sci. 2009. V. 287. P. 1041.
- Gao Q., Li H., Zeng X. // J. Cent. South Univ. 2012.
 V. 19. P. 63.
- Korshak V.V., Vinogradova S.V. // Russ. Chem. Rev. 1968. V. 37. P. 885.

- 29. Levchik S.V., Weil E.D. // Polym. Int. 2004. V. 53. P. 1585.
- 30. *Park H., You H., Jo H., Shim I., Hahm H., Kim S., Kim Y. // J. Coat. Tech. Res. 2006. V. 3. P. 53.*
- 31. Zhang Y., Ni Y.-P., He M.-X., Wang X.-L., Chen L., Wang Y.-Z. // Polymer. 2015. V. 60. P. 50.
- Battig A., Markwart J., Frederik W., Schartel B. // Roy. Soc. Chem., Polym. Chem. 2019. V. 10. P. 4346.
- 33. Adachi K., Irie H., Sato T., Uchibori A., Shiozawa M., Tezuka Y. // Macromolecules. 2005. V. 38. P. 10210.
- Eisenberg A., Navratil M. // Macromolecules. 1973.
 V. 6. P. 604.
- Lysenko E.A., Bronich T.K., Slonkina E.V., Eisenberg A., Kabanov V.A., Kabanov A.V. // Macromolecules. 2002. V. 35. P. 6351.
- Lysenko E.A., Bronich T.K., Slonkina E.V., Eisenberg A., Kabanov V.A., Kabanov A.V. // Macromolecules. 2002. V. 35. P. 6344.
- Davletbaeva I.M., Emelina O.Yu., Vorotyntsev I.V., Davletbaev R.S., Grebennikova E.S., Petukhov A.N., Ahkmetshina A.I., Sazanova T.S., Loskutov V.V. // RSC Adv. 2015. V. 5. P. 65674.
- Davletbaeva I.M., Nurgaliyeva G.R., Akhmetshina A.I., Davletbaev R.S., Atlaskin A.A., Sazanova T.S., Efimov S.V., Klochkov V.V., Vorotyntsev I.V. // RSC Adv. 2016. V. 6. P. 111109.
- Davletbaeva I.M., Dulmaev S.E., Sazonov O.O., Klinov A.V., Davletbaev R.S., Gumerov A.M. // RSC Adv. 2019. V. 9. P. 23535.
- Jaisankar S.N., Anandprabu A., Lakshminarayana Y., Radhakrishnan G. // J. Mater. Sci. 2000. V. 35. P. 1065.
- Kakati D.K., Gosain R., George M.H. // Polymer. 1994.
 V. 35. P. 398.

- 42. Ding Y.S., Register R.A., Yang Chang-zheng, Coope S.L. // Polymer. 1989. V. 30. P. 1204.
- Chen K., Liu R., Zou C., Shao Q., Lan Y., Cai X., Zhai L. // Solar Energy Mater. Solar Cells. 2014. V. 130. P. 466.
- Hwang K.K.S., Yang C.-Z., Cooper S.L. // Polym. Eng. Sci. 1981. V. 21. P. 1027.
- 45. Lee Y.M., Lee J.C., Kim B.K. // Polymer. 1994. V. 35. P. 1095.
- 46. *Lam P.K.H., George M.H., Barrie J.A.*// Polymer. 1989. V. 30. P. 2320.
- 47. Krol P., Krol B. // J. Mater. Sci. 2020. V. 5. P. 73.
- Krol P., Krol B., Zenker M., Subocz J. // Colloid Polym. Sci. 2015. V. 293. P. 2941.
- 49. *Krol B., Pielichowska K., Krol P., Chmielarz P.* // Polym. Adv. Technol. 2017. V. 28. P. 1366.
- Xu Y., Zhang S., Wang S., Wang J. // Polymer. 2018.
 V. 154. P. 258.
- Nakayama Y., Inaba T., Toda Y., Tanaka R., Cai Z., Shiono T., Shirahama H., Tsutsumi C. // J. Polym. Sci., Polym. Chem. 2013. V. 51. P. 4423.
- Banerjee S., Mishra A., Singh M.M., Maili B., Ray B., Maili P. // RSC Adv. 2011. V. 1. P. 199.
- 53. Jaisankar S.N., Sankar R.M., Meera K.S., Mandal A.B. // Soft Mater. 2013. V. 11. P. 55.
- Yang J., Wang Z., Zeng Z., Chen Y. // J. Appl. Polym. Sci. 2002. V. 10. P. 1818.
- 55. *Mequanint K., Sanderson R., Pasch H. //* Polym. Degrad. Stab. 2002. V. 77. P. 121.
- Davletbaeva I.M., Sazonov O.O., Fazlyev A.R., Davletbaev R.S., Efimov S.V., Klochkov V.V. // RSC Adv. 2019. V. 9. P. 18599.