——— ПРИРОДНЫЕ ПОЛИМЕРЫ ———

УДК 541.64:547.458.81:535.8

МОДЕЛЬ АТОМНО-МОЛЕКУЛЯРНОЙ СТРУКТУРЫ НИТРАТОВ ЦЕЛЛЮЛОЗЫ ИЗ MISCANTHUS SACCHARIFLONIS

© 2022 г. А. И. Прусский^{*a*,*}, Л. А. Алешина^{*a*}, И. В. Люханова^{*a*}, О. В. Сидорова^{*a*}, В. В. Будаева^{*b*}, Г. В. Сакович^{*b*}

^а Петрозаводский государственный университет 185910 Петрозаводск, пр. Ленина, 33, Россия ^bИнститут проблем химико-энергетических технологий Сибирского отделения Российской академии наук 659322 Бийск, ул. Социалистическая, 1, Россия *e-mail: prusskiiandrey@gmail.com Поступила в редакцию 07.07.2022 г. После доработки 13.10.2022 г. Принята к публикации 25.10.2022 г.

Опираясь на результаты рентгеновского дифракционного эксперимента, методом компьютерного моделирования с использованием программы НурегСhem8 была построена атомно-молекулярная конфигурация в области ближнего упорядочения аморфной нитроцеллюлозы из мискантуса. Показано, что расположение атомов в области ближнего порядка в аморфной нитроцеллюлозы удовлетворительно описывается кластером, который содержит девять цепочек нитроцеллюлозы и две цепочки целлюлозы I, закрученных на угол 72°, и две незакрученные цепочки целлюлозы I. Каждая цепочка включает в себя десять глюкозных остатков. В итоговом кластере указанные выше цепочки образуют приблизительно гексагональный слой в проекции на плоскость *ab* с расстоянием между ними 12.2 Å. В проекции на плоскость *bc* конечный кластер имеет размеры 28 Å вдоль оси *b* и 54 Å вдоль оси *c*. Общее количество атомов 3300, степень полимеризации равна 130; формульная единица асимметричного фрагмента [$C_6H_{7.24}O_2(OH)_{0.92}(ONO_2)_{2.08}$]₁₃₀. Достоверность результата доказана совпадением экспериментальной и рассчитанной для кластера кривых распределения интенсивности рентгеновского рассеяния *I*(*s*) с точностью до 7.5%.

DOI: 10.31857/S2308112022700274

введение

Нитраты целлюлозы широко используются с одной стороны как компоненты твердого ракетного топлива и порохов, с другой – как составляющие лакокрасочных материалов, мембраны для иммобилизации белков [1-3]. В последнее десятилетие выполнено большое количество работ по исследованию нитратов, синтезированных из целлюлозы быстро воспроизводимого сырья: плодовых оболочек овса [4], мискантуса [5-7], целлюлозы травы альфа (эспарто, или ковыль) [8], бурых водорослей Posidonia oceanica [9] и хлопка [10]. Эти исследования показали, что физико-химические свойства нитратов зависят от качества и природы исходной целлюлозы и способа нитрования. Полная характеризация структуры альтернативных хлопковым нитратов целлюлозы является фундаментальной задачей и раскрывает сходство и различие этих эфиров, полученных из разных источников.

Одним из методов изучения структуры материалов — метод рентгеновской дифракции. Рентгеновские дифракционные картины нитратов целлюлозы, синтезированных разными способами и из различных видов целлюлозы, качественно однотипны и представляют собой диффузный максимум, на фоне которого наблюдается отражение от кристаллической фазы в области углов рассеяния $2\theta_{Cu} \sim 12^{\circ} - 13^{\circ}$ [1–3, 8–19].

Изменения рентгенограмм, полученных фотографическим методом в процессе нитрации целлюлозы Рами, были исследованы в серии работ японских авторов в 1968–1973 гг. [20–24].

Аналогичные дифрактометрические исследования были выполнены в 2006 г. на образцах бактериальной целлюлозы [15], в 2016 г. – на промышленных целлюлозах различного происхождения, включая хлопковую [19], и в 2019 г. на хлопковой целлюлозе [2]. В результате было показано, что в начале процесса нитрации целлюлозы происходит ее аморфизация, о чем свидетельствует размытие и постепенное исчезновение отражений от кристаллической фазы целлюлозы на рентгенограммах и появление широкого диффузного максимума. Затем с увеличением времени нитрации появляется отражение от кристаллической компоненты, классифицированное авторами работ [15, 19, 22, 24] как линия (110) тринитрата целлюлозы.

Строение молекулярной цепочки тринитрата целлюлозы предсказали в работе [24], опираясь на анализ меридиональной рентгенограммы и данные поляризационной ИК-спектроскопии. Длина цепочки (период идентичности вдоль оси фибриллы) составляла 2.54 нм. Было установлено, что винтовая ось симметрии цепочки тринитрата — это ось 5₂, т.е. на 2 витка спирали приходится 5 элементарных звеньев (глюкозных остатков).

Позднее в работе [25] авторы сгенерировали асимметричную единицу цепочки в модели связанных атомов. При построении атомной модели использовали известные стереохимические параметры планарной группы ONO2. В процессе релаксации модели подбирались углы связи О-NO2 (в пределах от 109.5° до 120°). Все остальные величины длины и углов связей были постоянны, в том числе и угол гликозидной связи, принятый равным 116.6°. Из асимметричных единиц с конформацией гош-транс были построены молекулы тринитрата целлюлозы с осью симметрии спирали 5₂. Длина молекулы соответствовала периоду идентичности, определенному в работе [24]. Упаковка молекул в элементарную ячейку выполнялась в работе [25] для двух ячеек, различающихся размерами периода *b*: a = 0.90 нм, b = 1.224 нм, *c* = 2.54 нм и *a* = 0.90 нм, *b* = 1.46 нм, *c* = 2.54 нм. Эти данные согласуются с результатами других авторов, приведенными в работе [26].

Значения межплоскостных расстояний и индексов отражений для модели кристаллического тринитрата целлюлозы сравнивали с экспериментальными данными, рассчитанными по рентгенограмме высокоориентированных фибрилл $(C_{\rm N} = 13.9\%)$. Рентгенограмма была получена фотометодом на медном излучении с никелевым фильтром. Анализируя возможность размещения молекул тринитрата в элементарной ячейке, авторы [25] установили, что, если разместить молекулы (конформация гош-транс) в углах и в центрах граней гранецентрированной ромбической элементарной ячейки с периодом b = 14.6 Å, то упаковка получается приблизительно гексагональная. При этом молекулы хаотически ориентированы (развернуты вокруг оси фибриллы) относительно друг друга. Как указывали авторы [25], модель кристаллического тринитрата целлюлозы нельзя было считать окончательной, так как наблюдались короткие расстояния между атомами соседних молекул.

Структура аморфной нитроцеллюлозы до сих пор не исследовалась. Ряд работ, выполненных в последние годы методом молекулярной динамики, имел своей целью изучение следующих процессов: диффузия пластификатора [27] в нитроцеллюлозе, перемешивание в смесях нитроцеллюлозы с жидкими этанолом или диэтиловым эфиром [28], проникновение салициловой кислоты через нитроцеллюлозную мембрану [29], влияние смешанных пластификаторов (нитроглицерина/триацетата глицерина) на пластифицирующую способность нитроцеллюлозы [30]; динамическая механическая релаксация нитроцеллюлозы, пластифицированной N-бутил-N-(2-нитроксиэтил)нитрамином (NC/Bu-NENA) [31].

В работах [27—29] на начальном этапе работы строились модели цепочек нитроцеллюлозы, в основе которых была предложенная авторами [25] асимметричная единица. Длина цепочек была различной в разных работах, цепочки оптимизировались геометрически, а затем транслировались в двух направлениях для построения таким образом, чтобы плотность кластера лежала в пределах от 1.49 [29] до 1.619 г/см³ [27].

В работе [30] молекулярные конфигурации как чистой нитроцеллюлозы, так и ее смеси со сложными пластификаторами были сконструированы как аморфные системы без конкретного анализа атомно-молекулярной конфигурации в области ближнего упорядочения.

В работе [31] построенные с помощью Material Studio (Accelrys) две молекулярные цепи нитроцеллюлозы со степенью замещения 11.6%, представляли собой крупные фрагменты гауссовых цепей, состоящие из 320 и 240 димерных единиц нитроцеллюлозы соответственно.

Основное внимание в работах [27–31] уделялось процессам проникновения реагентов внутрь матрицы нитроцеллюлозы, построенной тем или иным способом, при этом структура нитроцеллюлозы в исходном состоянии не анализировалась.

Цель настоящей работы — исследование расположения молекул в области ближнего упорядочения аморфной составляющей нитроцеллюлозы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгенографический эксперимент и обработка данных

Исходное сырье (целлюлоза мискантуса) представляло собой целлюлозу I β . Значения периодов элементарной ячейки: *a* = 0.778(3) нм, *b* = 0.812(2) нм, *c* = 1.054(1) нм, угол моноклинности γ = 96.3(2)° [32]. Синтезированная из нее нитроцеллюлоза по данным химического анализа имеет степень замещения 2.29 [7].

Дифрактограммы образцов нитроцеллюлозы регистрировались на дифрактометрах ДРОН-3 и ДРОН-6 на излучениях Си и Мо K_{α} в геометриях на отражение и прохождение.

Из пересчитанных в электронные единицы данных эксперимента, выполненного на излучении Мо K_{α} , методом Финбака—Уоррена рассчитывались кривые распределения *s*-взвешенной интерференционной функции H(s) и затем парных функций D(r). Методика расчета представлена в работах [33, 34].

Рассчитанные методом Финбака кривые D(r)характеризуют распределение электронной плотности материала и позволяют найти координационные числа N_{ij} (число атомов j, центры которых находятся на расстоянии $r_{ii} \pm \sigma_{ii}$ от атома *i*, образуя сферу, которая называется координационной) методом наименьших квадратов, применяя СВД-разложение для повышения устойчивости решения [33, 34]. Радиусы r_{ii} (средние значения расстояний между атомом і и атомами і, находящимися от атома *i* на расстоянии *r_{ii}*) и размытия σ_{іі} (дисперсия межатомных расстояний относительно среднего значения r_{ii}) координационных сфер устанавливаются методом последовательных приближений, используя в качестве исходных данных значения, полученные для полиморфных модификаций исследуемого соединения [7, 33]. Для нитроцеллюлозы стартовыми значениями радиусов и размытий координационных сфер служили соответствующие данные для предложенной в работах [24, 25] модели кристаллической фазы тринитрата целлюлозы.

Методика построения компьютерных моделей

На рентгенограммах исследуемых образцов нитроцеллюлозы наряду с размытым максимумом рассеяния аморфной компонентой наблюдается линия, классифицируемая в многочисленных исследованиях как отражение (110) от кристаллической фазы тринитрата целлюлозы. Выполненные нами расчеты показали, что количество ее в аморфной матрице исследуемой нитроцеллюлозы порядка 5%. Кроме того, линия тринитрата наблюдается в области начальных углов рассеяния и не оказывает влияния на ход кривых H(s) и D(r).

В связи с этим под аморфным объектом будем понимать такое структурное состояние, в котором аморфная составляющая заметно превалирует над кристаллической.

Используя теоретические представления о структуре нитроцеллюлозы (асимметрические структурные единицы нитроцеллюлозы, параметры элементарных ячеек для целлюлозы и тринитрата нитроцеллюлозы с различным содержанием нитрогрупп), которые описывают объект как кристаллическое вещество, мы создавали упорядоченные конфигурации, в которых затем можно было бы разрушить порядок в расположении атомов тем или иным способом. Построение атомно-молекулярной конфигурации в области ближнего упорядочения нитроцеллюлозы выполнялось с помощью программного комплекса HyperChem8 с использованием силового поля Mm+.

С помощью данного комплекса геометрическая оптимизация полученных кластеров производилась методом Полака–Рибьера [33, 35].

Ранее в работах [7, 33] было успешно выполнено построение атомно-молекулярных моделей для аморфной регенерированной лиственной целлюлозы, этилцеллюлозы [34] и лиофильновысушенных гидрогелей на основе лиственной целлюлозы [34]. Все указанные объекты характеризовались диффузными дифракционными картинами.

Построение атомно-молекулярной конфигурации в каждом случае начиналось с построения исходной модели на основе известных кристаллографических данных для кристаллических модификаций целлюлозы. В результате исходные модели представляли собой кристаллиты целлюлозы, размеры которых определялись числом трансляций элементарной ячейки по кристаллографическим осям.

Построение исходной модели нитроцеллюлозы — процесс гораздо более сложный. Авторами в работе [25] получены промежуточные значения кристаллографических параметров расположения молекул в кристалле тринитрата. Кроме того, в работе [25] приведены размеры элементарной ячейки (два варианта [25, 26]) и координаты повторяющихся асимметричных структурных единиц, представляющих собой глюкозный остаток с нитрогруппами в *гош-гош*, *гош-транс* и *транс-гош* конформациях [25] (рис. 1).

На начальном этапе была построена единичная цепочка целлюлозы длиной, равной длине пяти глюкозных остатков, в которой гидроксильные группы ОН углеродов С2, С3 и С6 (рис. 1а, 1б) были заменены на нитрогруппы (рис. 1г).

Как отмечает автор [26], в молекулах нитроцеллюлозы со степенью замещения меньше трех угол закручивания спирали может лежать в диапазоне от 180° для целлюлозы (винтовая ось второго порядка 2_1) до 144° для нитроцеллюлозы (винтовая ось пятого порядка 5_2). В последнем случае каждая асимметричная единица поворачивается на 72° относительно соседней (левый винт) [24].

При скручивании молекулы нитроцеллюлозы цепочка целлюлозы с нитрогруппами разбивалась на целое число фрагментов *n*, в состав которых входило целое число асимметричных единиц. Поворот каждого участка на угол α производился таким образом, чтобы первый и последний участок цепочки составляли заданный угол $\theta = n\alpha$,

Рис. 1. Модели асимметричных структурных единиц молекулы тринитрата целлюлозы в конформации нитрогрупп *гош-гош* (а), *гош-транс* (б) и *транс-гош* (в), с указанной нитрогруппой (г) [25].

где n — целое число. Угол разворота θ можно было варьировать от 0° до 360° с шагом 1°.

При построении моделей из двух и более цепочек учитывалось также, что наилучший результат в работе [25] отвечал антипараллельному расположению соседних цепочек, а упаковка элементарных ячеек такова, что образуется приблизительно гексагональная конфигурация молекул. Размеры моделей изменялись путем трансляции вдоль осей x, y, z ромбической элементарной ячейки с периодами a = 0.90 нм, b = 1.39 нм, c = 2.56 нм [25]. В данной работе число трансляций вдоль осей x и y варьировалось от 1 до 5, а вдоль оси z был взят фрагмент, длина которого составляла 10 глюкозных остатков соответственно.

Критерием приемлемости полученной модели служил фактор недостоверности *R_{pm}*:

$$R_{pm} = \frac{\sum_{k} |I_{\exp}(s) - I_{\text{mod}}(s)|_{k}}{\sum_{i} I_{\text{mod}\,k}(s)} * 100\%, \quad (1)$$

где $I_{exp}(s)$ — экспериментальная, а $I_{mod}(s)$ — рассчитанная для модели по формуле Дебая, представленной в работах [33, 34], кривые распределения интенсивности рассеяния. Кроме того, выполнялось визуальное сравнение экспериментальной и рассчитанной для модели *s*-взвешенных интерференционных функций H(s).

РЕЗУЛЬТАТЫ РЕНТГЕНОГРАФИЧЕСКОГО ЭКСПЕРИМЕНТА

На рис. 2 представлены типичные картины рассеяния целлюлозой мискантуса (рис. 2а) и

синтезированной из нее нитроцеллюлозы (рис. 26), зарегистрированные на излучении CuK_{α} .

На рентгенограммах образцов синтезированной из данной целлюлозы нитроцеллюлозы наблюдается типичная для таких объектов (полученных разными способами и из различного сырья [1–3, 8–19]) диффузная интерференционная картина, на фоне которой присутствует отражение в области углов рассеяния $2\theta_{Cu} \sim 12^{\circ}-13^{\circ}$, соответствующее, согласно литературным данным [20–25], линии (110) нитроцеллюлозы.

Результаты обработки рентгенограмм, полученных методом Финбака на излучении Мо K_{α} в геометрии на прохождение, представлены на рис. 3. Использование коротковолнового излучения позволило увеличить область обратного пространства, в которой регистрировалась дифракционная картина, т.е. уменьшить пики обрыва на кривой D(r).

В табл. 1 приведены результаты расчета радиусов и размытий координационных сфер из кривой D(r) (рис. 3в) в сравнении с теоретическими расчетами, выполненными для асимметричной структурной единицы молекулы тринитрата.

Рассчитанные из данных рентгенографического эксперимента для нитроцеллюлозы значения радиусов координационных сфер хорошо согласуются с соответствующими теоретическими значениями для ассиметричной структурной единицы молекулы тринитрата целлюлозы (табл. 1). Расхождения в значениях координационных чисел обусловлены тем, что теоретические расчеты выполнялись для одной отдельно взятой асимметричной единицы. Характеристики ближнего порядка рассчитывались (табл. 1) до сферы ОО (2)

Рис. 2. Нормированные кривые распределения интенсивности рассеяния образцом целлюлозы мискантуса и нитроцеллюлозы, полученной из данного сырья. Указаны индексы отражений целлюлозы (а) и НЦ (б).

при $r_{ij} \approx 0.25$ нм, так как мы наблюдаем хорошо различающиеся максимумы на кривой D(r) (рис. 3в) до 0.3 нм. В области от 0.3 до 0.5 нм максимумы плохо разрешаются. Следует отметить, что после 0.5 нм можно говорить о затухании корреляции в расположении атомов.

На рис. 4 экспериментальные кривые H(s) сравниваются с таковыми, полученными для исходной и спиральной с осью закручивания спирали 5₂ моделей молекул нитроцеллюлозы, состоящих из 10 глюкозных остатков. Длина молекул соответствовала удвоенному периоду ромбической элементарной ячейки, предложенной в работе [25] для тринитрата целлюлозы. В исходном варианте (рис. 4а) нитрогруппы находились в позициях C2, C3 и C6 (рис. 1), т.е. степень замещения равна трем. Фактор недостоверности составлял 49%.

Наименьший фактор недостоверности для моделей спиральных цепочек (30%) был достигнут при значении угла закручивания спиральной цепочки на 72° и степени замещения 2.29. Далее двойные цепочки упаковывались в элементарные ячейки двух размеров: согласно моделям, предложенным в работе [25]. Следуя такой модели, в плоскости *ab* было размещено семь оптимизированных одинарных закрученных цепочек. Вид модели кластера с расстоянием между центрами соседних цепочек 14.6 Å в проекции на плоскость *ab* представлен на рис. 5а. Далее для данной конфигурации была рассчитана теоретическая кривая H(s), приведенная на рис. 5б.

Фактор недостоверности для данных кривых (рис. 5б) составил 18%. На данном расстоянии (14.6 Å) при оптимизации кластера не возникало взаимодействия между соседними цепочками: цепочки релаксируют у своих центров тяжести, не влияя на релаксацию соседних. Методом последовательных итераций было установлено, что оптимальное значение, при котором начинает наблюдаться межцепочечное взаимодействие, составило 12.2 Å (рис. 6), что соответствовало данным работы [25] для второй модели. В связи с этим модель, представленная на рис. 5, была мо-

	<i>r_{ij}</i> , нм	N _{ij} , ат	σ _{<i>ij</i>} , нм	<i>r_{ij}</i> , нм	N _{ij} , ат
Тип сферы (номер сферы)	нитро	целлюлоза из миск (эксперимент)	теоретические значения для асимметричной структурной единицы <i>гош-транс</i> (рис. 16)		
ON (1)	0.130	0.7	0.018	0.130	0.8
CO (1)	0.136	0.8	0.010	0.142	1.4
CC (1)	0.160	3.5	0.015	0.152	1.7
CO (2)	0.230	2.9	0.020	0.240	2.7
OO (2)	0.252	4.5	0.040	0.256	4.6

Таблица 1. Радиусы r_{ij} и размытия σ_{ij} координационных сфер и координационные числа N_{ij}

Примечание. Погрешность $\Delta r_{ii} = \pm 0.005$ нм, $\Delta N_{ii} = \pm 0.1$ ат., $\Delta \sigma_{ii} = \pm 0.005$ нм; степень подгонки 6%.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А том 64 № 6 2022

Рис. 3. Кривые распределения интенсивности I(s) (а), *s*-взвешенной интерференционной функции H(s) (б) и парных функций D(r) (в) исследованной нитроцеллюлозы.

дернизирована путем уменьшения межцепочечного расстояния до 12.2 Å.

Для данной конфигурации с новым межцепочечным расстоянием 12.2 Å также была рассчитана теоретическая кривая и сопоставлена с экспериментальной кривой H(s) (рис. 6б). Процент несоответствия составил 14% для данных кривых.

Поскольку уменьшение расстояния (рис. 6) привело к взаимодействию целлюлозных цепочек, но не улучшило качественно корреляцию экспериментальных и теоретических кривых H(s), была сделана попытка установить влияние изменения фазового состава на межцепочечное взаимодействие. Было сделано предположение, что в процессе приготовления исследуемого образца нитроцеллюлозы не все цепочки целлюлозы были пронитрованы.

При трансляции кластера, представленного на рис. 6, получили в конечном итоге конфигурацию, показанную полужирным на рис. 7Б.

Рис. 4. Интерференционные функции *H*(*s*) (*s* – взвешенные): *1* – экспериментальные кривые, *2* – кривые, рассчитанные для представленных на данном рисунке исходной (а) и спиральной (б) молекул нитроцеллюлозы.

Рис. 5. а – Модель кластера в проекции на плоскость ab; 6 – расстояние между центрами цепочек 14.6 Å; s – взвешенная интерференционная функция рассеяния H(s). 1 – эксперимент, 2 – модель, представленная на рисунке.

Были рассмотрены разные конфигурации расположения цепочек целлюлозы I и нитроцеллюлозы. В узлы, которые представлены на рисунке 7Б, были помещены (и в дальнейшем оптимизированы) различные цепочки целлюлозы I и нитроцеллюлозы (как продемонстрировано на рис. 7В). Методом подбора были предложены различные кластеры, в узлах которых помещались одинарные цепочки целлюлозы I (а), одинарные закрученные цепочки нитроцеллюлозы (b), две закрученные цепочки нитроцеллюлозы (с), две незакрученные цепочки целлюлозы I (d), или данная

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А том 64 № 6 2022

Рис. 6. а – Модель кластера в проекции на плоскость *ab*; б – расстояние между центрами цепочек 12.2 Å; *s* – взвешенная интерференционная функция рассеяния *H*(*s*) (II). *1* – эксперимент, *2* – модель, представленная на рисунке.

Рис. 7. Схема выбора расположения цепочек в кластере в плоскости *ab* (А, Б), а также схемы расположения цепочек целлюлозы I и нитроцеллюлозы в проекции *ab* (В); а – одинарная закрученная цепочка целлюлозы I, b – одинарная закрученная цепочка нитроцеллюлозы, с – двойная цепочка нитроцеллюлозы, d – двойная цепочка целлюлозы I. Пояснения в тексте.

Рис. 8. Кривые распределения I(s) (а), функций радиального распределения W(r) (б) и интерференционных функций H(s) (в). 1 – эксперимент, 2 – модель, представленная на рисунке.

позиция оставалась пустой. Все цепочки имели длину, равную длине десяти глюкозных остатков (52 Å).

Для всех рассмотренных вариантов были построены кривые H(s) и рассчитаны коэффициенты R_p . Минимальный фактор недостоверности (7.5%), и лучшее совпадение экспериментальных и теоретических кривых H(s) (рис. 8) наблюдается для варианта 4 (рис. 7). Окончательный кластер представлен на рис. 9 в проекции *ab* и *bc*. Итоговый кластер (рис. 9) состоит из 3300 атомов, степень полимеризации n = 130; формульная единица асимметричного фрагмента $[C_6H_{7.24}O_2(OH)_{0.92}(ONO_2)_{2.08}]_{130}$. Таким образом, степень замещения получилась равной 2.08. Энергия данного кластера после геометрической оптимизации (рис. 9) равна 1456.26 ккал/моль. Процесс релаксации занял 993 итерации с шагом 0.1 ккал/моль.

Как показали соответствующие расчеты, средний угол между закрученными соседними глю-

2022

Рис. 9. Модель итогового кластера в проекциях на плоскость *ab* и *bc*.

козными остатками итогового кластера (рис. 9) составляет $\approx 75^{\circ}$, что также коррелирует с данными работ [24, 25].

В табл. 2 усредненные значения межатомных расстояний в асимметричных единицах итогово-

го кластера сравниваются с соответствующими данными, представленными в работе [28] и данными, рассчитанными по приведенным в работе [25] координатам атомов асимметричной единицы с *гош-транс*-конформацией нитрогрупп. Из табл. 2 следует, что межатомные расстояния в

Пара атомов	Межатомное расстояние, Å				Угол связи, град		
	[28]	[25]	настоящая работа	Пара атомов	[28]	[25]	настоящая работа
O ₃₁ -N ₃	1.232	1.22	1.368	O ₃₁ -N ₃ -O ₃₂	131.29	124.03	108.30
O ₃₂ -N ₃	1.236	1.22	1.366	$O_{31} - N_3 - O_3$	112.96	117.96	106.72
N ₃ -O ₃	1.485	1.37	1.367	O ₃₂ -N ₃ -O ₃	115.74	118.01	105.86
O ₃ -C ₃	1.441	1.43	1.443	N ₃ -O ₃ -C ₃	111.26	117.53	111.26
$C_3 - C_4$	1.520	1.52	1.553	O ₃ -C ₃ -C ₄	109.97	109.71	112.75
$C_4 - O_4$	1.446	1.42	1.438	$C_3 - C_4 - O_4$	109.94	110.45	107.83
$C_4 - C_5$	1.540	1.52	1.558	$C_3 - C_4 - C_5$	106.85	110.2	108.74
C ₅ –C ₆	1.529	1.51	1.552	$C_5 - C_6 - O_6$	109.36	111.3	110.23
C ₆ –O ₆	1.447	1.44	1.442	$C_5 - O_5 - C_1$	116.58	112.28	112.70
N ₆ -O ₆	—	1.37	1.372	$O_{61} - N_6 - O_{62}$	—	123.95	111.13
$O_{61} - N_6$	_	1.22	1.367	$O_{61} - N_6 - O_6$	_	118.04	110.80
O ₆₂ -N ₆	_	1.22	1.367	$O_{62} - N_6 - O_6$	_	118.00	110.17
C ₅ -O ₅	1.444	1.44	1.445	$O_5 - C_1 - O_1$	110.13	107.31	—
O ₅ -C ₁	1.420	1.43	1.443	$O_5 - C_1 - C_2$	107.31	109.35	109.87
$C_1 - O_1$	1.431	1.39	1.440	$C_1 - C_2 - O_2$	111.73	108.35	—
$C_1 - C_2$	1.544	1.52	1.558	$C_2 - O_2 - N_2$	111.3	117.30	112.74
C ₂ –O ₂	1.444	1.43	1.443	$O_2 - N_2 - O_{22}$	111.71	117.87	106.96
$O_2 - N_2$	1.518	1.37	1.367	$O_{22} - N_2 - O_{21}$	130.24	124.00	107.27
N ₂ -O ₂₂	1.226	1.22	1.368	$O_{21} - N_2 - O_2$	118.05	118.03	105.45
N ₂ -O ₂₁	1.235	1.22	1.365	$C_1 - C_2 - C_3$	106.32	110.55	110.51
C ₂ -C ₃	1.559	1.52	1.556	$C_2 - C_3 - C_4$	109.19	110.35	112.74

Таблица 2. Значения межатомных расстояний и углов связей для асимметричной единицы

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А том 64 № 6 2022

асимметричных единицах достаточно хорошо коррелируют между собой.

ЗАКЛЮЧЕНИЕ

Таким образом, в работе получены данные об атомно-молекулярном строении аморфной компоненты нитроцеллюлозы из мискантуса. Установлено, что ближний порядок в расположении молекул в аморфной составляющей нитроцеллюлозы соответствует искаженной гексагональной упаковке из двух шестиугольников, ориентированных в проекции кластера на плоскость *ab*.

Наилучшее совпадение (фактор недостоверности $R_{pm} = 7.5\%$) с результатами рентгенографического эксперимента было получено при замене части молекул нитроцеллюлозы на две закрученные и две незакрученные молекулы непронитрованной целлюлозы. Возможно, что добавление нитрогрупп в эти молекулы в количестве, соответствующем степени замещения, характерной для моно- и динитрата, приведет к дальнейшему уменьшению фактора недостоверности.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 20-03-00699).

СПИСОК ЛИТЕРАТУРЫ

- Mattar H., Baz Z., Saleh A., Shalaby A.S.A., Azzazy A.E., Salah H., Ismail I. // Wat. Ener. Food. Env. J. 2020. V. 1. № 3. P. 1.
- Nikolsky S.N., Zlenko D.V., Melnikov V.P., Stovbun S.V. // Carbohydr. Polymers. 2019. V. 204. P. 232.
- Trache D., Tarchoun A.F. // J. Chemometrics. 2019. V. 33. № 8. P. 3163.
- Korchagina A.A., Gismatulina Yu.A., Budaeva V.V., Kukhlenko A.A., Vdovina N.P., Ivanov P.P. / Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2020. V. 63. № 1. P. 92.
- 5. *Gismatulina Yu.A., Budaeva V.V., Sakovich G.V. //* Russ. Chem. Bull., Int. Ed. 2015. V. 64. № 12. P. 949.
- Gismatulina Y.A., Budaeva V.V., Sakovich G.V. // Propellants Explos. Pyrotech. 2018. V. 43. P. 96.
- Sakovich G.V., Mikhailov Yu.M., Budaeva V. V., Korchagina A.A., Gismatulina Yu.A., Kozyrev N.V. // Dokl. Chem. 2018. V. 483. P. 287.
- Trache D., Khimeche K., Mezroua A., Benziane M. // J. Thermal Analysis Calorimetry. 2016. V. 124. P. 1485.
- 9. Tarchoun A.F., Trache D., Klapötke T.M., Chelouche S., Derradji M., Bessa W., Mezroua A.A. // Macromol. Chem. Phys. 2019. V. 220. P. 1900358.
- Tarchoun A.F., Trache D., Klapötke T.M., Krumm B., Khimeche K., Mezroua A. // Carbohydr. Polymers. 2020. V. 249. P. 116820.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А

- Chelouche S., Trache D., Tarchoun A.F., Khimeche A.A., Mezroua K.A. // Thermochim. Acta, 2019. V. 673. P. 78.
- 12. Trache D., Tarchoun A.F., Klapötke T.M., Krumm B., Kofen B. // Fuel. 2021. V. 292. P. 1.
- Tarchoun A.F., Trache D., Klapötke T.M., Krumm B., Mezroua A., Derradji M., Bessa W. // Cellulose. 2021. V. 48. P. 6107.
- Chelouche S., Trache D., Tarchoun A.F., Khimeche A.A., Mezroua K.A. // J. Thermal Analysis Calorimetry. 2019. P. 1.
- Yamamoto H., Horii F., Hirai A. // Cellulose. 2006. V. 13. P. 327.
- Yu J., Wu Y., Wang S., Ma X. // Carbohydr. Polymers. 2007. V. 70. P. 8.
- 17. Косточко А.В., Валишина З.Т., Лузянина М.В. // Вестн. Казанского технол. ун-та. 2012. № 9. Р. 45.
- Валишина З.Т., Клочков В.В., Галиуллина Г.Н., Лошиева К.А., Косточко А.В. // Вестн. технол. ун-та. 2015. Т. 18. № 18. Р. 142.
- Stovbuna S.V., Nikol'skii S.N., Mel'nikov V.P., Mikhaleva M.G., Litvin Ya.A., Shchegolikhin A.N., Zlenko D.V., Tverdislov V.A., Gerasimov D.S., Rogozin A.D. // Russ. J. Phys. Chem. B. 2016. V. 10. № 2. P. 245.
- Watanabe S., Imai K., Hayashi J. // J. Chem. Soc. Jpn., Ind. Chem. Sec. 1971. V. 74. P. 1420.
- Watanabe S., Imai K. Hayashi J. // J. Chem. Soc. Jpn., Ind. Chem. Sec. 1971. V. 74. P. 1427.
- 22. *Hayashi J., Imai K., Hamazaki T., Watanabe S.* // Jpn J. Chem. 1973. № 8. P. 1582.
- 23. *Hayashi J., Imai K., Hamazaki T., Watanabe S.* // Jpn J. Chem. 1973. № 8. P. 1587.
- 24. Watanabe S., Hayashi J., Imai K.A. // J. Polym. Sci. 1968. № 23. P. 809.
- 25. *Meader D., Atkins E.D.T., Happey F. //* Polimer. 1978. V. 19. P. 1371.
- 26. Kovalenko V.I. // Russ. Chem. Revs. 1995. V. 64. P. 753.
- 27. *Richards L.A., Nash A., Phipps M.J.S., de Leeu N.H. //* New J. Chem. 2018. V. 42. P. 17420.
- 28. Liu P., Sun R., Sui P., Gao S., Feng Zh, Zou G., Qi H. // Mater. Res. Express 7. 2020. P. 1.
- 29. Otto D.P., Combrinck J., Otto A., Tiedt L.R., de Villiers M.M. // Pharmaceuticals. 2018. V. 11. P. 134.
- 30. Yang L., Wu X., Li J., Chen T., Liu M., He Q. // Roy. Soc. Open Sci. 2021. V. 8. P. 211033.
- 31. *Qi X., Li H., Zhao Yu, Liu P., Yan Q.* // Cellulose. 2022. V. 29. P. 1307.
- 32. Алешина Л.А., Люханова И.В., Будаева В.В., Золотухин В.Н., Митрофанов Р.Ю., Сакович Г.В. // Уч. записки Петрозаводского гос. ун-та. Сер. Естественные и технические науки. 2011. № 8. С. 114.
- Prusskii A.I., Aleshina L.A. // Polymer Science A. 2016.
 V. 58. № 3. P. 386.
- 34. *Melekh N.V., Frolova S.V., Aleshina L.A.* // Polymer Science A. 2014. V. 56. № 2. P. 129.
- 35. *Tsai C.S.* An Introduction to Computational Biochemistry. New York: Wiley-Liss, 2002.

том 64 № 6 2022