——— СМЕСИ ПОЛИМЕРОВ ——

УДК 541(64+24):539.2

МОДИФИЦИРУЮЩЕЕ ДЕЙСТВИЕ ФРАКЦИЙ ПОЛИЭТИЛЕНА РАЗЛИЧНОЙ МОЛЕКУЛЯРНОЙ МАССЫ НА МОРФОЛОГИЮ И СВОЙСТВА РЕАКТОРНЫХ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ НА ОСНОВЕ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА

© 2023 г. С. С. Гостев^а, Е. Е. Старчак^{а,*}, Т. М. Ушакова^а, В. Г. Гринев^а, В. Г. Крашенинников^а, А. Я. Горенберг^а, Д. Н. Втюрина^а, Т. А. Ладыгина^а, Л. А. Новокшонова^а

 a Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук 119991 Москва, ул. Косыгина, 4, Россия

*e-mail: star2004i341@rambler.ru

Поступила в редакцию 04.04.2023 г. После доработки 09.06.2023 г. Принята к публикации 03.07.2023 г.

Исследованы реакторные полимерные композиции на основе сверхмолекулярного $\Pi \ni c M_w =$ = 1000 кг/моль и низкомолекулярного ПЭВП для установления влияния ММ и свойств фракции низкомолекулярного ПЭВП на морфологию, механические и реологические свойства реакторных полимерных композиций. Использованы две серии композиций сверхвысокомолекулярного ПЭ. включающие от 10 до 80 мас. % низкомолекулярного ПЭВП с $M_w = 160$ кг/моль (ПЭ-160), полученные в двустадийном процессе полимеризации этилена на металлоценовом катализаторе, которые различались порядком введения ПЭ-160 в сверхвысокомолекулярный ПЭ (ПЭ-160/сверхвысокомолекулярный ПЭ и сверхвысокомолекулярный ПЭ/ПЭ-160). Композиции сверхвысокомолекулярного $\Pi \ni$ и низкомолекулярного $\Pi \ni B\Pi$ с $M_w = 48$ кг/моль ($\Pi \ni -48$ /сверхвысокомолекулярный ПЭ) с содержанием ПЭ-48 от 6 до 30 мас. % синтезированы методом одностадийной полимеризации этилена в присутствии тандем-катализатора. Методом СЭМ сопоставлены формы и размеры частиц насцентных полимерных продуктов. Морфология, деформационно-прочностные, динамические механические и реологические свойства реакторных полимерных композиций изучены в зависимости от способа их получения, содержания низкомолекулярной фракции, ее молекулярной массы и физико-механических свойств. Повышение доли ПЭ-160 и ПЭ-48 в ПЭ-160/сверхвысокомолекулярный ПЭ и ПЭ-48/сверхвысокомолекулярного ПЭ приводит к увеличению кристалличности реакторных полимерных композиций, величин модуля упругости при растяжении и динамического механического модуля со значительными отклонениями от правила аддитивности.

DOI: 10.31857/S2308112023700542, EDN: PYROBO

ВВЕДЕНИЕ

Полиэтилен высокой плотности — это целый набор материалов, полученных в процессе каталитической полимеризации этилена, различающихся по ММ, морфологии, механическим и реологическим свойствам, которые определяют методы их переработки и области применения. Среди промышленных марок ПЭВП одним из наиболее перспективных является сверхвысокомолекулярный ПЭ с $M \ge 1 \times 10^6$ г/моль [1-3]. Сверхвысокомолекулярный ПЭ характеризуется высокими прочностными и ударными свойствами, низкими коэффициентом трения и скоростью изнашивания, биосовместимостью, химической инертностью, стойкостью к растворителям и может применяться в различных отраслях промышленности [1, 4, 5].

Этот уникальный набор свойств обеспечивается надмолекулярной структурой сверхвысокомолекулярного ПЭ, которая отличается от надмолекулярной структуры ПЭВП с более низкой ММ наличием проходных молекул, находящихся в аморфной фазе материала [1, 4]. Из-за многочисленных переплетений полимерных цепей этот полиолефин обладает низкой степенью кристалличности, а также высокой вязкостью расплава и не может быть переработан в изделия по технологиям, обычно применяемым для термопластов [1, 6]. ПЭВП с низкой ММ характеризуется пониженной по сравнению со сверхмолекулярным ПЭ прочностью, высокими показателями текучести расплава и высокой кристалличностью, которая обеспечивает жесткость материала [1].

Постреакционное смешивание сверхвысокомолекулярного ПЭ с полимерами, обладающими

текучестью, является одним из способов улучшения его перерабатываемости и ряда других физико-механических свойств. Такие смеси с бимодальным ММР могут включать любые промышленные полиолефины. В качестве компонентов, снижающих вязкость расплава сверхвысокомолекулярного ПЭ, используются ПЭНП, линейный ПЭНП [7-10]. ПЭВП со средней или низкой молекулярной массой вводят в состав сверхвысокомолекулярного ПЭ не только благодаря повышенной текучести, но также из-за схожести структур их молекулярных цепей [11-14]. Однако большое расхождение в вязкости расплавов компонентов является причиной того, что традиционный метод механического смешивания в расплаве приводит к получению плохо диспергированных смесей при содержании фракции сверхвысокомолекулярного $\Pi \ni \ge 10$ мас. % [15, 16].

Для получения полимерных композиций на основе сверхвысокомолекулярного ПЭ наиболее эффективными являются "реакторные" методы, позволяющие вводить в его матрицу полиолефиновые фракции непосредственно в процессе полимеризации этилена на металлоорганических катализаторах. К ним относятся двустадийные процессы полимеризации этилена с применением на каждой стадии одной и той же каталитической системы. Условия каждой стадии обеспечивают получение фракций реакторных полимерных композиций с желаемыми свойствами [17-20]. Еще одним подходом к созданию полимерных композиций непосредственно в процессе синтеза является одностадийная полимеризация в присутствии комбинации двух и более катализаторов разного типа [6]. Каждый компонент каталитической системы обеспечивает образование полимера со свойствами, определяемыми составом и структурой этого катализатора [6, 21].

Ранее оба реакторных метода были использованы нами для синтеза реакторных полимерных композиций на основе сверхвысокомолекулярного ПЭ с $M_w = 1000$ кг/моль и низкомолекулярного ПЭВП с различной ММ. Композиции сверхвысокомолекулярного ПЭ, включающие низкомолекулярную фракцию с $M_{\rm w}=160~{\rm kr/моль},$ были получены в двустадийном процессе полимеризации этилена с металлоценовым катализатором pau-(CH₃)₂Si(Ind)₂ZrCl₂/MAO [20]. Для получения композиций сверхвысокомолекулярного $\Pi \ni$ и низкомолекулярного $\Pi \ni B\Pi$ с $M_w = 48$ кг/моль проводили одностадийную полимеризацию этилена в присутствии тандем-катализатора, состоящего из цирконоценового комплекса рац-(CH₃)₂Si(Ind)₂ZrCl₂/MAO и бисиминопиридильного комплекса железа 2,6-[2,4,6- $((CH_3)_3C_6H_2NCCH_3)_2C_5H_3N]FeCl_2/MAO$ [22].

В настоящей работе изучено влияние низкомолекулярной ПЭ фракции реакторных поли-

мерных композиций (ее содержания и физикомеханических характеристик) на морфологию, деформационно-прочностные, динамические механические и реологические свойства реакторных полимерных композиций сверхвысокомолекулярный ПЭ/низкомолекулярный ПЭВП, синтезированных различными методами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для исследований использовали две серии композиций на основе сверхвысокомолекулярного ПЭ с $M_w = 1000$ кг/моль и низкомолекулярного ПЭВП с $M_w = 160$ кг/моль (ПЭ-160), полученных в двустадийных процессах полимеризации этилена с металлоценовым катализатором рац-(CH₃)₂Si(Ind)₂/MAO [20]. Композиции, обозначаемые ПЭ-160/сверхвысокомолекулярный ПЭ и сверхвысокомолекулярный ПЭ/ПЭ-160, различались последовательностью получения компонентов реакторных полимерных композиций на соответствующих стадиях синтеза. Содержание низкомолекулярной фракции (ПЭ-160) в них варьировалось от 10 до 80 мас. %. Композиции сверхвысокомолекулярного ПЭ и низкомолекулярного ПЭВП с $M_w = 48$ кг/моль (ПЭ-48) с содержанием ПЭ-48 от 6 до 30 мас. % синтезировали в одностадийной полимеризации этилена в присутствии тандем-катализатора, включающего цирконоценовый комплекс рац-(CH₃)₂Si(Ind)₂ZrCl₂/MAO и бисиминопиридильный комплекс железа 2,6-[2,4,6- $((CH_3)_3C_6H_2NCCH_3)_2C_5H_3N]FeCl_2/MAO$ [22].

ММР полимеров (M_w , и M_w/M_n) определяли методом ГПХ с использованием хроматографа "Waters 150C" в 1,2,4-трихлорбензоле при 140°C.

Эндотермы плавления полимеров регистрировали с использованием ДСК DSC 204 F1 Phoenix, NETZSCH-Gerätebau GmbH. Образцы реакторных порошков нагревали до 160° С при скорости нагревания 10 град/мин, охлаждали при той же скорости до комнатной температуры и нагревали со скоростью 10 град/мин для регистрации эндотерм плавления. Степень кристалличности χ устанавливали путем сравнения энтальпии плавления образца при втором плавлении с энтальпией плавления идеального кристалла полиэтилена ($\Delta H_{\nu} = 293 \, \text{Дж/г}$) [23].

Морфологию поверхности полученных композиционных материалов изучали методом СЭМ с применением растрового электронного микроскопа высокого разрешения JSM-7001F и микроскопа "Prisma E" ("Thermo Scientific", Чешская Республика) при ускоряющем напряжении 5 кВ. Образцы предварительно покрывали слоем золота толщиной 15 нм с помощью распылителя "Q150R ES plus" ("Quorum Technologies", Вели-

кобритания) и помещали на проводящую углеродную ленту.

Деформационно-прочностные свойства материалов определяли с использованием универсальной испытательной машины "Instron 3365" при комнатной температуре в режиме одноосного растяжения образцов (тип 5, эквивалентная длина -50 мм) в соответствии с ГОСТ 11262 и ГОСТ 9550. Скорость деформации образцов при растяжении составляла 50 мм/мин. Образцы в форме двусторонних лопаток вырезали из пластин толщиной 0.4–0.6 мм, приготовленных в пресс-форме закрытого типа при 190°С и давлении 10 МПа. Порошки реакторных полимерных композиций загружали в пресс-форму при комнатной температуре. Затем пресс-форму, помещенную в гидравлический пресс, нагревали до 190°C и выдерживали при давлении 10 МПа в течение 10 мин. Скорость охлаждения пресс-формы со 190 до 22°C водой составляла 10 град/мин. Давление во время охлаждения поддерживали постоянным на уровне 10 МПа. Статистическую обработку результатов испытаний проводили по ГОСТ 14359.

Динамический механический анализ спрессованных из расплава образцов реакторных полимерных композиций проводили с применением многофункционального анализатора "Netzsch", модель DMA-242 C, Germany. Динамические механические модули E для каждого образца получены как функции температуры в диапазоне от — 140 до 130°C, при амплитуде растяжения 0.1%, фиксированной частоте 1 Гц и при скорости нагревания 2 град/ мин. Образцы с шириной 5 и длиной 20 мм вырезали из пластин толщиной 0.3—0.5 мм, изготовленных горячим прессованием при 190°C и давлении 10 МПа. Из температурных зависимостей E определяли величины динамического механического модуля при 22°C.

Показатели текучести расплавов образцов измеряли на приборе IIRT-5 при 190° C и нагрузках 5, 10 и 21.6 кг (ГОСТ 11645-2021).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для получения полимерных композиций сверхвысокомолекулярного ПЭ с низкомолекулярным ПЭВП использованы разработанные нами метолы, позволяющие вволить в сверхвысокомолекулярный ПЭ полимерные фракции с желаемыми свойствами непосредственно в процессе полимеризации этилена на цирконоценовом и пост-металлоценовом катализаторах [20, 22, 24]. Реакторные полимерные композиции на основе сверхвысокомолекулярного ПЭ ($M_{\scriptscriptstyle W} = 1000~{\rm кг/моль})$ и низкомолекулярного ПЭВП с $M_w = 160$ кг/ моль (ПЭ-160), содержащие от 10 до 80 мас. % низкомолекулярной фракции, были получены в двустадийной последовательной полимеризации этилена на катализаторе *pau*-Me₂SiInd₂ZrCl₂/MAO при варьировании температуры полимеризации на отдельных стадиях (см. схему ниже) [20]. С изменением температуры полимеризации меняется соотношение скорости реакции роста полимерной цепи и суммы скоростей реакций ограничения роста полимерной цепи, приводящее к изменению молекулярной массы ПЭВП [25-27]. Согласно схеме двустадийного последовательного процесса на разных стадиях при температурах 70 и 30°C образуются соответственно ПЭ-160 и сверхвысокомолекулярный ПЭ [20]. Ниже приведена схема двустадийного последовательного процесса полимеризации этилена с катализатором pau-Me₂SiInd₂ZrCl₂/MAO: а – введение сверхвысокомолекулярного ПЭ в матрицу ПЭ-160 с получением композиций ПЭ-160/сверхвысокомолекулярный ПЭ: б – введение ПЭ-160 в матрицу сверхвысокомолекулярного ПЭ с получением композиций сверхвысокомолекулярный ПЭ/ПЭ-160.

$$C_2H_4 \xrightarrow{t_1=70^{\circ}\text{C}} \to \Pi \ \Im -160 \xrightarrow{t_2=30^{\circ}\text{C}} \to \Pi \ \Im -160/\text{сверхвысокомолекулярный} \ \Pi \ \Im \ (a)$$

$$C_2H_4 \xrightarrow{t_1=30^{\circ}\text{C}} \to \text{сверхвысокомолекулярный} \ \Pi \ \Im \xrightarrow{t_2=70^{\circ}\text{C}} \to \text{сверхвысокомолекулярный} \ \Pi \ \Im /\Pi \ \Im -160 \ (6)$$

Кривые ММР чистого ПЭ-160 (ММР = 3.0) и немодифицированного сверхвысокомолекулярного ПЭ (ММР = 3.5) представлены на рис. 1а (кривые I и 2 соответственно). Композиции ПЭ-160/сверхвысокомолекулярный ПЭ и сверхвысокомолекулярный ПЭ/ПЭ-160 имеют широкие ММР. Например, на кривой ММР для композиции ПЭ-160/сверхвысокомолекулярный ПЭ с 30 мас. % ПЭ-160 (рис. 1а, кривая 3) наблюдаются пики в высокомолекулярной и низкомолекулярной областях, совпадающие с максимумами

на кривых ММР чистых сверхвысокомолекулярного $\Pi \ni$ и $\Pi \ni$ -160.

Для получения композиций сверхвысокомолекулярного Π Э, включающих от 6 до 30 мас. % низкомолекулярного Π ЭВ Π с Π Э-48, применяли метод одностадийной полимеризации в присутствии тандем-катализатора [22]. В этом случае в процессе полимеризации этилена в реакторе происходит одновременное формирование фракций Π Э-48 на бисиминопиридильном комплексе железа 2,6-[2,4,6-((CH_3)₃ C_6H_2 NCC H_3)₂ C_5H_3 N]FeCl₂/MAO и

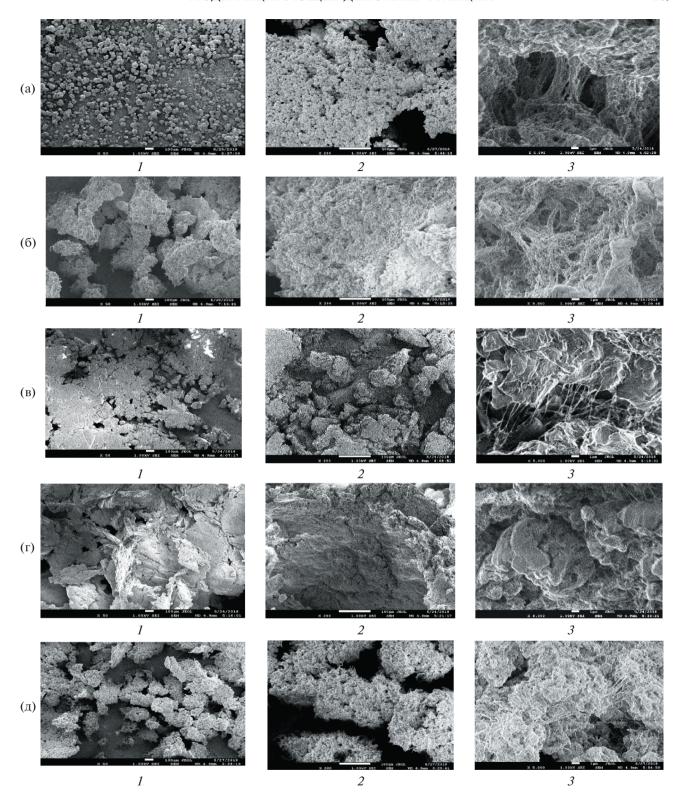


Рис. 1. ММР реакторных полимерных композиций и их компонентов. а: Π 9-160 (I), сверхвысокомолекулярный Π 9 (2), Π 9-160/сверхвысокомолекулярный Π 9 с 30 мас. % Π 9-160 (3); б: Π 9-48 (I), сверхвысокомолекулярный Π 9 с 30 мас. % Π 9-48 (3).

сверхвысокомолекулярного ПЭ на цирконоценовом комплексе *рац*-Me₂SiInd₂ZrCl₂/MAO. Композиции ПЭ-48/сверхвысокомолекулярный ПЭ, например, с 30 мас. % ПЭ-48 (рис. 16, кривая 3), обладают широким ММР с интенсивным пиком в области высоких молекулярных масс, совпадающим с пиком на кривой ММР немодифицированного сверхвысокомолекулярного ПЭ (рис. 16, кривая 2). Также наблюдается плечо в области низких ММ, его положение совпадает с максимумом на кривой для чистого ПЭ-48, который имеет широкое ММР, равное 18 (рис. 16, кривая 1).

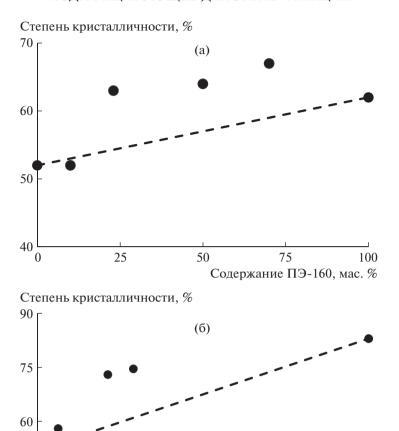
На рис. 2 представлены СЭМ-изображения насцентных частиц немодифицированного сверхвысокомолекулярного ПЭ, чистого ПЭ-160 и композиций сверхвысокомолекулярный ПЭ с

ПЭ-160 и ПЭ-48 с содержанием соответствующей низкомолекулярной фракции 30 мас. %. Композиция ПЭ-160/сверхвысокомолекулярный ПЭ получена по схеме (а) двустадийного процесса полимеризации введением сверхвысокомолекулярного ПЭ в матрицу ПЭ-160, образующуюся на первой стадии. Размер частиц чистого ПЭ-160 составляет ~ от 10 до 75 мкм (рис. 2a, фото 1). Coгласно рис. 2а, фото 2, это рыхлые агрегаты, состоящие из мелких частиц с размером ≤10 мкм. Вторая стадия процесса полимеризации и формирование фракции сверхвысокомолекулярного ПЭ протекает в зоне реакции, в которой присутствует суспензия ПЭ-160 в толуоле, содержащая каталитически активные центры. Насцентные частицы образующейся композиции ПЭ-160/ сверхвысокомолекулярный ПЭ (рис. 2в, фото 1)

Рис. 2. СЭМ-изображения частиц ПЭ-160 (а), сверхвысокомолекулярного ПЭ (б), ПЭ-160/сверхвысокомолекулярный ПЭ (в), сверхвысокомолекулярный ПЭ (п) и ПЭ-48/сверхвысокомолекулярный ПЭ (д). Композиции включают \sim 30 мас. % соответствующего низкомолекулярного полиэтилена. Увеличение 50 (фото 1), 200 (фото 2), \times 5000 (фото 3).

Рис. 3. СЭМ-изображение поверхности частиц ПЭ-48/сверхвысокомолекулярный ПЭ с 30 мас. % ПЭ-48. Увеличение 35000.

превышают размеры частиц чистого ПЭ-160, но также являются рыхлыми образованиями, состоящими из более мелких частиц (рис. 2в, фото 2). Это свидетельствует о хорошем смешении фракций в композиции ПЭ-160/сверхвысокомолекулярный ПЭ.


При проведении синтеза по схеме (б) на первой стадии процесса формируется чистый сверхвысокомолекулярный ПЭ в виде крупных плотных образований неправильной формы с размером от 350 до 500 мкм (рис. 26, фото 1 и 2). Получение фракции ПЭ-160 на второй стадии полимеризации проходило в зоне реакции, содержащей диспергированные в растворителе крупные частицы чистого сверхвысокомолекулярного ПЭ и активные центры катализатора. Частицы композиции сверхвысокомолекулярный ПЭ/ПЭ-160, полученные после завершения двустадийного процесса, являются даже более крупными и уплотненными (рис. 2г, фото 1 и 2), чем у чистого сверхвысокомолекулярного ПЭ (рис. 26, фото 1 и 2). Это указывает на неравномерное распределение фракций в композиции сверхвысокомолекулярный ПЭ/ПЭ-160.

Сравнение СЭМ-изображений чистых ПЭ-160 и сверхвысокомолекулярного ПЭ, а также композиций ПЭ-160/сверхвысокомолекулярный ПЭ и сверхвысокомолекулярный ПЭ/ПЭ-160 при более высоком увеличении (×5000) показывает различия надмолекулярной структуры образцов. На снимках ПЭ-160 (рис. 2а, фото 3) и композиции ПЭ-160/сверхвысокомолекулярный ПЭ с хорошим смешением компонентов (рис. 2в, фото 3) видно присутствие фибрилл и пластинчатых ла-

мелей. В то же время рис. 2г, фото 3 демонстрирует наличие на поверхности частиц композиции сверхвысокомолекулярный ПЭ/ПЭ-160 с неравномерным перемешиванием компонентов наряду с фибриллами и пластинчатыми ламелями шишкебабных образований, которые отчетливо видны на СЭМ-изображении сверхвысокомолекулярного ПЭ (рис. 26, фото 3).

СЭМ-изображения насцентных частиц ПЭ-48/сверхвысокомолекулярный ПЭ, которые образуются при одновременном формировании фракций реакторных полимерных композиций в одностадийном синтезе на тандем-катализаторе, представлены на рис. 2д. Как и в случае композиции ПЭ-160/сверхвысокомолекулярный ПЭ (рис. 2в, фото 1 и 2) это мелкие рыхлые агрегаты, но с меньшими размерами составляющих их частиц ~5 мкм (рис. 2д, фото 2 и 3). Структура композиции ПЭ-48/сверхвысокомолекулярный ПЭ, согласно рис. 2д, фото 3 состоит из фибрилл, пластинчатых ламелей и шиш-кебабных образований, которые отчетливо видны на рис. 3 при увеличении в 35000 раз.

Такая морфология насцентных частиц изученных материалов свидетельствует о более равномерном смешении фракций в композициях ПЭ-48/сверхвысокомолекулярный ПЭ и ПЭ-160/сверхвысокомолекулярный ПЭ в отличие от сверхвысокомолекулярный ПЭ/ПЭ-160. Для более глубокого изучения и сравнения надмолекулярной структуры реакторных полимерных композиций и их чистых компонентов требуются дополнительные исследования.

Рис. 4. Влияние содержания низкомолекулярной фракции на кристалличность композиций ПЭ-160/сверхвысокомолекулярный ПЭ (а) и ПЭ-48/сверхвысокомолекулярный ПЭ (б).

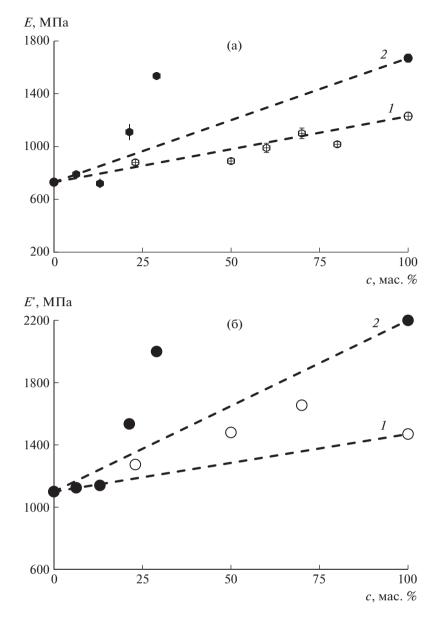
50

75

Содержание ПЭ-48, мас. %

Присутствие в матрице сверхвысокомолекулярного ПЭ с низкой степенью кристалличности $\chi = 53\%$ фракций ПЭ-160 и ПЭ-48 с более высокой степенью кристалличности (соответственно 62% и 83%) приводит к увеличению содержания кристаллической фазы в материале. Как следует из рис. 4а и 4б, с обогащением реакторных полимерных композиций низкомолекулярной фракцией величина х повышается с отклонением от правила аддитивности. Штриховыми линиями на графиках показаны линейные зависимости, соответствующие изменению кристалличности полимер-полимерных композиций при увеличении содержания соответствующей низкомолекулярной фракции в случае выполнения правила аддитивности. Так, степень кристалличности реакторных полимерных композиций на основе сверхвысокомолекулярного ПЭ и ПЭ-160, в со-

45


30

став которых входит от 30 до 70 мас. % низкомолекулярной фракции, превышает эту характеристику чистого ПЭ-160 (рис. 4а). Синергетический эффект известен для кристалличности механических смесей сверхвысокомолекулярного ПЭ с ПЭВП [11, 14, 16, 28], но не имеет четкого объяснения. Было сделано предположение, что это явление связано с нуклеирующим действием фракции сверхвысокомолекулярного ПЭ в композиции сверхвысокомолекулярный ПЭ/ПЭВП [16, 28]. Кроме того, процесс самонуклеирования в условиях сдвига был обнаружен в случае бимодальных реакторных смесей низкомолекулярного полиэтилена со сверхвысокомолекулярным ПЭ, полученных в полимеризации этилена на тандем-катализаторе [29, 30].

100

Исследование механических свойств реакторных полимерных композиций при растяжении

25

Рис. 5. Влияние содержания низкомолекулярного ПЭВП c на величины E (а) и E (б) для композиций ПЭ-160/сверх-высокомолекулярный ПЭ (1) и ПЭ-48/сверхвысокомолекулярный ПЭ (2).

выполнялось в режиме однократного кратковременного нагружения и в режиме периодического нагружения образцов. Показано, что повышение содержания фракции низкомолекулярного полиэтилена сопровождается увеличением как модуля упругости при растяжении E, так и динамического механического модуля E' материалов (рис. 5а и 5б соответственно). На рисунках видны различия в поведении композиций ПЭ-160/сверхвысокомолекулярный ПЭ и ПЭ-48/сверхвысокомолекулярный ПЭ в области упругих деформаций. Так, модуль упругости при растяжении E композиции ПЭ-160/сверхвысокомолекулярный ПЭ возрастает пропорционально повышению доли ПЭ-160 (рис. 5а, кривая I), в случае композиции ПЭ-48/

сверхвысокомолекулярный $\Pi \Theta$ имеет место значительное отклонение от аддитивности уже при содержании $\Pi \Theta$ -48 в композиции около 25—30 мас. % (рис. 5а, кривая 2).

Заметное отклонение от аддитивных значений динамического модуля упругости E' композиций ПЭ-48/сверхвысокомолекулярный ПЭ наблюдали в той же области содержания низкомолекулярного ПЭВП 25—30 мас. % (рис. 56, кривая 2), что и при псевдостатических испытаниях на растяжение (рис. 5а, кривая 2). В случае композиций ПЭ-160/сверхвысокомолекулярный ПЭ существенные отклонения E' от аддитивности выявлены при более высоком содержании (50 и 70 мас. %)

Таблица 1. Деформационно-прочностные свойства немодифицированных сверхвысокомолекулярного ПЭ, ПЭ-160, ПЭ-48 и их композиций

Образец	Содержание низкомолекулярного ПЭВП, мас. %	σ_p , МПа	$\epsilon_p,\%$
Сверхвысокомолекулярный ПЭ	0	40 ± 4	550 ± 30
ПЭ-160	100	33 ± 2	800 ± 30
ПЭ-48	100	28 ± 2	2.4 ± 0.5
ПЭ-160/сверхвысокомолекулярный ПЭ	30	39 ± 3	690 ± 30
	50	38 ± 2	720 ± 40
	60	33 ± 1	720 ± 40
	70	32 ± 2	850 ± 20
	80	34 ± 5	720 ± 90
Сверхвысокомолекулярный ПЭ/ПЭ-160	10	35 ± 3	590 ± 20
	30	35 ± 1	570 ± 20
	50	31 ± 1	620 ± 20
	70	35 ± 2	650 ± 70
ПЭ-48/сверхвысокомолекулярный ПЭ	6	43 ± 4	560 ± 40
	13	24 ± 3	400 ± 50
	21	31 ± 1	600 ± 30
	30	31 ± 1	150 ± 70

 Π 9-160 в реакторных полимерных композициях (рис. 56, кривая I).

При этом модули упругости E и E' композиции ПЭ-48/ сверхвысокомолекулярный ПЭ, содержащей 30 мас. % ПЭ-48, составляют соответственно 1540 и 2000 МПа и незначительно уступают соответствующим модулям упругости полимера ПЭ-48 (E=1670 и E'=2200 МПа). Величины динамического модуля упругости композиций ПЭ-160/ сверхвысокомолекулярный ПЭ, содержащих ПЭ-160 в количестве 50 мас. % (1480 МПа) и 70 мас. % (1635 МПа), близки и даже превышают эту характеристику чистого ПЭ-160 (1470 МПа).

Сопоставление данных по изменению степени кристалличности реакторных полимерных композиций (рис. 3) и их поведению в области упругих деформаций (рис. 4) показывает, что имеется зависимость между степенью кристалличности и величинами модуля упругости при растяжении и динамического модуля. Связь между χ и E в механических смесях сверхвысокомолекулярного ПЭ с ПЭВП была отмечена в работах [11, 29—31].

Особенности синтеза реакторных полимерных композиций (получение композиций в одностадийном процессе на тандем-катализаторе или в двустадийном последовательном процессе полимеризации этилена, порядок синтеза компонентов реакторных полимерных композиций в этом процессе, ММ полимеров) значительно повлияли на деформационно-прочностные свойства композиций (табл. 1).

Как следует из табл. 1, прочность σ_p низкомолекулярных фракций ПЭ-160 и ПЭ-48 меньше, чем прочность немодифицированного сверхвысокомолекулярного ПЭ. Однако для композиции ПЭ-160/сверхвысокомолекулярный ПЭ при увеличении содержания фракции низкомолекулярного ПЭ до 50 мас. % прочность возросла практически до значений σ_p немодифицированного сверхвысокомолекулярного ПЭ, а относительное удлинение при разрыве ε_p заметно увеличилось по сравнению с ε_p сверхвысокомолекулярного ПЭ.

Композиция сверхвысокомолекулярный ПЭ/ПЭ-160 с такой же долей ПЭ-160, полученная при обратной последовательности стадий в двустадийном процессе полимеризации этилена, обладает более низкими прочностными и деформационными свойствами. Это может быть связано с тем, что композиции сверхвысокомолекулярный ПЭ/ПЭ-160, как уже отмечалось, характеризуются менее равномерным смешением фракций, чем ПЭ-160/сверхвысокомолекулярный ПЭ.

ПЭ с M=48 кг/моль разрушается хрупко ($\epsilon_p \approx 2\%$). Несмотря на это, композиция ПЭ-48/сверхвысокомолекулярный ПЭ, содержащая 6 мас. % ПЭ-48, имела прочность и относительное удлинение при разрыве практически равные σ_p и ϵ_p немодифицированного сверхвысокомолекулярного ПЭ. Увеличение содержания ПЭ-48 в реакторных полимерных композициях ПЭ-48/сверхвысокомолекулярный ПЭ до 30 мас. % привело к некоторому снижению деформационно-прочностных

Образец	Показатель текучести расплава при 190°С и нагрузке, кг			
	21.6	10	5	
Сверхвысокомолекулярный ПЭ	0	0	0	
ПЭ-160	_	1.8	_	
ПЭ-48	_	_	40	
ПЭ-160/сверхвысокомолекулярный ПЭ	2.6	0.52	0.03	
Сверхвысокомолекулярный ПЭ /ПЭ-160	0	0	0	
ПЭ-48/сверхвысокомолекулярный ПЭ	3.84	0.62	0.11	

Таблица 2. Показатели текучести расплава реакторных полимерных композиций, содержащих 30 мас. % низкомолекулярной фракции, и их компонентов

характеристик по сравнению с немодифицированным сверхвысокомолекулярным ПЭ. Тем не менее, композиция ПЭ-48/сверхвысокомолекулярный ПЭ, содержащая 30 мас. % ПЭ-48, обладает достаточно высокими механическими свойствами.

Наличие в реакторных полимерных композициях низкомолекулярных фракций ПЭ-160 и ПЭ-48 и равномерное их распределение в матрице сверхвысокомолекулярного ПЭ обеспечивает повышение текучести материала. В отличие от композиции сверхвысокомолекулярный ПЭ/ПЭ-160, более гомогенные композиции ПЭ-160/сверхвысокомолекулярный ПЭ и ПЭ-48/сверхвысокомолекулярный ПЭ текут при нагрузке 5 кг, сохраняя при этом высокие деформационно-прочностные свойства (табл. 2).

ЗАКЛЮЧЕНИЕ

Методом СЭМ показано, что морфология насцентных частиц реакторных композиций, полученных в двустадийной последовательной полимеризации этилена, и равномерность распределения в них фракций зависит от морфологии частиц полимера, синтезированного на первой стадии процесса.

Модификация сверхвысокомолекулярного ПЭ введением в его матрицу низкомолекулярного ПЭВП приводит к увеличению модуля упругости при растяжении и динамического механического модуля материала с отклонением от правила аддитивности. Это коррелирует с синергетическим эффектом изменения степени кристалличности полученных композиций сверхвысокомолекулярный ПЭ/низкомолекулярный ПЭВП и свидетельствует о связи между кристалличностью реакторных полимерных композиций и их поведением в области малых деформаций.

Реакторные полимерные композиции на основе сверхвысокомолекулярного ПЭ и низкомолекулярного ПЭВП различной ММ имеют высокие деформационно-прочностные свойства, зависящие от содержания фракции низкомолеку-

лярного ПЭВП, ее ММ и механических свойств. Ряд композиций с равномерным распределением фракций обладают текучестью с сохранением прочностных и пластических свойств, характерных для компонентов полимерных композиций.

Композиции ПЭ-160/сверхвысокомолекулярный ПЭ, содержащие 30 и 50 мас. % ПЭ-160, обладают прочностью, не уступающей прочности немодифицированного сверхвысокомолекулярного ПЭ, но превосходят его по величине модулей упругости E и E', относительного удлинения при разрыве и показателя текучести расплава, позволяющего перерабатывать материал не только спеканием и прессованием, но и более высокопроизводительными методами (например, экструзией).

Работа выполнена при финансовой поддержке госзадания (проект № FFZE-2022-0009).

СПИСОК ЛИТЕРАТУРЫ

- Patel K., Chikkali S.H., Sivarama S. // Prog. Polym. Sci. 2020. V. 109. P. 101290.
- 2. Tran H.Q., Brookhart M., Daugulis O.J. // J. Am. Chem. Soc. 2020. V. 142. № 15. P. 7198.
- 3. *Antonov A.A., Bryliakov K.P.* // Eur. Polym. J. 2021. V. 142. P. 110162.
- 4. *Kurtz S.M.* In The UHMWPE Handbook. San Diego: Elsevier Acad. Press, 2004.
- Liang P., Chen Y., Ren C., Chen M., Jiang B., Wang J., Yang Y., Li W. // Ind. Eng. Chemy. Res. 2020. V. 59. № 45. P. 19964.
- Kurtz S.M. // UHMWPE Biomaterials Handbook, New York: Elsevier Acad. Press. 2015. P. 840.
- Chen Y., Zou H., Liang M., Liu P. // J. Appl. Polym. Sci. 2012. V. 129. № 3. P. 945.
- 8. Adhikari R., Godehardt R., Lebek W., Michler G.H. // J.Appl. Polym. Sci. 2007. V. 103. № 3. P. 1887.
- 9. Chen Y., Nie X., Zou H., Liang M., Li P. // J. Appl. Polym. Sci. 2013. V. 130. № 4. P. 2487.
- Gonzalez J., Rosales C., Gonzalez M., Leon N., Escalona R., Rojas H. // J. Appl. Polym. Sci. 2017. V. 134.
 № 26. P. 44996.

- 11. Lim K.L.K., Mohd Z.A., Ishak U.S., Ishiaku A.M., Fuad Y., Yusof A.H., Czigany T., Pukanszky B., Ogunniyi D.S.J. // J. Appl. Polym. Sci. 2005. V. 97. № 1. P. 413.
- 12. Ahmad M., Wahit M.U., Kadir M.R.A., Dahlan K.Z.M., Jawaid M. // J. Polym. Eng. 2013. V. 33. № 7. P. 599.
- 13. *Suwanprateeb J.J.* // J. Appl. Polym. Sci. 2000. V. 75. № 12. P. 1503.
- Lucas A.A., Ambrósiob J.D., Otagurob H., Costab L.C., Agnellia J.A.M. // Wear. 2011. V. 270. № 9-10. P. 576.
- Stürzel M., Mihan S., Mülhaupt R. // Chem. Rev. 2016.
 V. 116. № 3. P. 1398.
- 16. *Boscoletto A., Franco R., Scapin M., Tavan M.* // Eur. Polym. J. 1997. V. 33. № 1. P. 97.
- 17. Lafleur S., Berthoud R., Ensinck R., Cordier A., Cremer GDe., Philippaerts A., Bastiaansen K., Margossian T., Severn J.R. // J. Polym. Sci., Polym. Chem. 2018. V. 56. № 15. P. 1645.
- 18. *Ruff M., Lang C., Paulik R.W.* // Macromol. React. Eng. 2013. V. 7. № 7. P. 328.
- Ushakova T.M., Starchak E.E., Krasheninnikov V.G., Shcherbina M.A., Gostev S.S., Novokshonova L.A. // J. Appl. Polym. Sci. 2022. V. 139. № 16. P. 52000.
- Ushakova T.M., Starchak E.E., Gostev S.S., Grinev V.G., Krasheninnikov V.G., Gorenberg A.Ya., Novokshonova L.A. // J. Appl. Polym. Sci. 2020. V. 137. № 38. P. 49121.

- Sturzel M., Hees T., Enders M., Thomann Y., Blattmann H., Mulhaupt R. // Macromolecules. 2016. V. 49. № 21. P. 8048.
- 22. Ushakova T., Gostev S., Starchak E., Krasheninnikov V., Grynev V., Kudinova O., Novokshonova L. // Iran. Polym. J. 2023. V. 32. № 5. P. 523.
- Ehrenstein G.W., Riedel G., Trawiel P. // Thermal Analysis of Plastics, Munich: Carl Hanser Verlag, 2004. P. 236.
- 24. Ushakova T.M., Starchak E.E., Krasheninnikov V.G., Grinev V.G., Ladygina T.A., Novokshonova L.A. // J. Appl. Polym. Sc. 2014. V. 131. № 8. P. 40151.
- 25. *Alt H.G.*, *Koppl A.* // Chem. Rev. 2000. V. 100. № 4. P. 1205.
- 26. Alelyunas Y.W., Guo Z., Lapointe R.E., Jordan R.F. // Organometallics. 1993. V. 12. № 2. P. 544.
- 27. *Guo Z., Swenson D., Jordan R.F.* // Organometallics. 1994. V. 13. № 4. P. 1424.
- 28. *Lacroix F.V., Loos J., Schulte K.* // Polymer. 1999. V. 40. № 4. P. 843.
- 29. *Balzano L., Rastogi S., Peters G.* // Macromolecules. 2011. V. 44. № 8. P. 2926.
- 30. Kukalyekar N., Balzano L., Peters G.W.M., Rastogi S., Chadwick J.C. // Macromol. React. Eng. 2009. V. 3. № 8. P. 448.
- Ferreira E., Fechine G. // J Appl. Polym. Sci. 2020.
 V. 137. № 38. P. 49604.