———— КОМПОЗИТЫ ————

УДК 541.(14+64):546.7

ФОТООКИСЛИТЕЛЬНАЯ ДЕСТРУКЦИЯ КОМПОЗИТОВ НА ОСНОВЕ ПОЛИЭТИЛЕНА И МОНТМОРИЛЛОНИТОВ, МОДИФИЦИРОВАННЫХ СОЛЯМИ ПЕРЕХОДНЫХ МЕТАЛЛОВ

© 2019 г. Е. М. Харькова^{*a*,*}, Д. И. Менделеев^{*a*}, В. А. Герасин^{*a*}

^аИнститут нефтехимического синтеза им. А.В. Топчиева Российской академии наук 119991 Москва, Ленинский пр., 29, Россия * e-mail: kharkova@ips.ac.ru Поступила в редакцию 25.02.2019 г. После доработки 12.03.2019 г. Принята к публикации 26.03.2019 г.

При взаимодействии слоистых алюмосиликатов Na⁺-монтмориллонита и Cloisite 25A с солями переходных металлов синтезированы монтмориллониты, содержащие ионы Ni²⁺, Co²⁺, Fe³⁺. Mn²⁺. Cu²⁺. Органомодифицированный Cloisite 25А насыщается ионами тяжелых металлов Ni, Co, Fe с сохранением органического модификатора. Методами рентгенофазового анализа, рентгеноспектрального флуоресцентного анализа. ИК-спектроскопии исслелованы состав и структура металломодифицированных алюмосиликатов. В зависимости от природы металла и используемого силиката получены монтмориллониты различной степени интеркаляции. Показано, что металломодифицированные алюмосиликаты в составе композитов на основе полиэтилена низкой плотности существенно увеличивают скорость фотоокисления полиэтиленовой матрицы. ИК-спектральные исследования исходных и облученных пленок свидетельствуют о том, что фотоокисление полиэтилена протекает с образованием разнообразных кислородосодержащих и ненасыщенных групп. На основании рассчитанных карбонильных и винильных индексов продемонстрирована зависимость эффективности активирования окисления при УФ-облучении от природы металла, которая увеличивается в ряду Na < Co < Ni < Cu < Mn < Fe. Введение железосодержащего наполнителя снижает время фотоокисления полиэтиленовой матрицы в 5–7 раз. Облучение пленок полиэтилена, содержащих Fe- и Mn-монтмориллонит в течение 250 ч приводит к полной потере физико-механических свойств и деструкции полимера. Установлено, что активность металломодифицированных солями переходных металлов Cloisite 25А в сенсибилизации фотохимических процессов выше, чем наполнителей, полученных модификацией на основе Na⁺-монтмориллонита, при этом разрушения образцов не происходит.

DOI: 10.1134/S2308113919040065

введение

Исследования в области фотохимических превращений полиолефинов связаны с проблемами УФ-светостабилизации и УФ-светостарения полимерных материалов. Основными продуктами фотоокисления полиолефинов молекулярным кислородом, как известно, являются карбонильные, карбоксильные, гидроксильные и непредельные соединения, что позволяет использовать этот метод для прививки различных полимеров, повышая адгезию к клеям, красителям, металлам и т.д. [1, 2].

Все возрастающее значение приобретает защита окружающей среды от отходов упаковочных материалов и пленок сельскохозяйственного назначения, состоящих в основном из полиолефинов, а именно из полиэтилена различных марок.

Несмотря на то что чистые полиолефины не должны поглощать излучение с длиной волны выше 150 нм (они практически прозрачны в УФдиапазоне), в природных условиях материалы на основе полиэтилена испытывают фотопревращения, обусловленные тем, что промышленно выпускаемые полимеры содержат различные добавки: пластификаторы, красители и следы катализаторов-инициаторов, в частности катализаторов циглеровского типа. Макромолекулы полиолефинов также содержат карбоксильные и гидропероксидные группы, образовавшиеся в процессе переработки. Сенсибилизированные ими фотохимические реакции вызывают очень медленное окисление и деструкцию макромолекул полиэтилена под действием солнечного света (УФ-излучения) и других природных факторов, что облегчает их дальнейшее разложение под действием биологических агентов в естественных условиях [3, 4].

Известно, что активную фотокаталитическую роль инициаторов процесса окислительной деструкции полимерной матрицы играют специально вводимые добавки оксидов и комплексных соединений металлов переменной валентности с неорганическими и органическими лигандами. В качестве активаторов оксо-разложения композиционных материалов были использованы соли марганца и кобальта, карбоксилаты металлов цинка и циркония, а также их смеси, нанесенные на инертные носители [5]; ацетилацетонаты кобальта, железа, марганца, ванадия и другие [6, 7], стеараты металлов [8]. Введение олигомерных компатибилизаторов в полиэтилен также ускоряет процесс УФ-окисления и деструкции, что приводит к значительному уменьшению молекулярной массы [9]. Однако не существует однозначной корреляции между природой металлакомплексообразователя и фотокаталитической способностью, которая зависит во многом от природы органического лиганда и от концентрационных параметров [1] и может варьироваться от стабилизирующей до сенсибилизирующей.

В последнее время в качестве наполнителей и нанонаполнителей композиционных полимерных материалов широкое распространение получили слоистые алюмосиликаты, в частности монтмориллониты (ММТ). Одним из способов создания нанокомпозитов является метод полимеризационного наполнения или полимеризация in situ этилена и пропилена [10-13]. Внедрение (интеркаляция) каталитически активных частиц: катализаторов Циглера-Натта, солей и металлоценовых производных переходных металлов [10-15] в межслоевое пространство ММТ или органомодифицированых ММТ и последующая полимеризация in situ олефина вызывает раздвижение слоев глины вплоть до эксфолиации и образования нанокомпозитов.

Слоистые алюмосиликаты помимо улучшения комплекса физико-механических, термических, барьерных и других свойств полимера, способствуют сенсибилизации УФ-окисления. В работах [16–18] показано, что фотоокислительную деструкцию молекулярных цепей полиэтилена активируют ММТ, модифицированные четвертичными аммонийными солями. Скорость и глубина разложения полиэтиленовой матрицы полученных нанокомпозитов выше, чем чистого полиэтилена, и увеличивается пропорционально содержанию алюмосиликата. Ионы металлов Сu, Ni или Fe, введенные в ММТ, также ускоряют процесс УФ-окисления полимера.

Однако работы по созданию материалов с новыми заданными свойствами, в частности композитов и нанокомпозитов на основе полиэтилена, способных после их использования к деградации под действием физических и биологических факторов окружающей среды, продолжают оставаться актуальными.

Цель настоящей работы – синтез и исследование алюмосиликатных добавок, содержащих ионы переходных металлов, и использование их в качестве инициаторов оксо-разложения (УФокисления) полиэтилена. Получение металломодифицированных ММТ при взаимодействии солей переходных металлов со слоистыми алюмосиликатами Na⁺-Cloisite или органомодифицированным Cloisite 25А в полярных и углеводородных средах; изучение их сенсибилизирующей способности к фотоокислительной деструкции полиэтиленовой матрицы гибридных органо-неорганических нанокомпозитов на основе полиэтилена низкой плотности и металломодифицированного ММТ: исследование структуры и свойств веществ методами рентгенофазового анализа, рентгеноспектрального флуоресцентного анализа, ИК-спектроскопии, ТГА и другими.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали слоистые алюмосиликаты производства "Southern Clay Products" (США). Натриевый монтмориллонит торговой марки Na⁺Cloisite – емкость катионного обмена 95-125 мэкв/100 г глины. В естественном (воздушно-сухом) состоянии 93-96 мас. % образца составляет натриевый монтмориллонит формулы $(Na_{0.42}Ca_{0.03})(Al_{1.61}Fe_{0.17}Mg_{0.23})(Si_{3.97}Al_{0.03}O_{10})(OH)_{2}$ и 4-7 мас. % адсорбированная вода (в зависимости от влажности). Также применяли органомолифицированный монтмориллонит Cloisite 25A с содержанием модификатора 30-34 мас.%, формулы [(CH₃)₂(C₁₆H₃₃)(C₈H₁₇)]N⁺. Растворители – толуол, этиловый спирт фирмы "Aldrich Chemical Со" и дистиллированную воду использовали в работе без дополнительной перегонки.

Для проведения катионного обмена выбрали соли переходных металлов квалификации х.ч. производства "Aldrich Co": NiCl₂ · $6H_2O$, CoCl₂, FeCl₂ · $6H_2O$, MnCl₂, CuSO₄.

Взаимодействие компонентов проводили в реакторе с магнитной мешалкой при интенсивном перемешивании при 20°С. Общий объем реакционной смеси составил 150 мл. Определенное количество алюмосиликата (2 г) суспендировали в соответствующих растворителях: Na-MMT в смеси воды и этилового спирта (объемное соотношение 1 : 1); органомодифицированный монтмориллонит Cloisite 25A (C-25) в толуоле. Время набухания 4–6 ч. При интенсивном перемешивании приливали раствор (5–10 мл) рассчитанного количества соли металла: 150 мэкв/100 г в суспензию Na-MMT и 100 мэкв/100 г в C-25 (табл. 1). В процессе модификации ММТ происходило изменение цвета реакционной смеси (глинистого минерала) от белого до светло-желтого, коричневого или зеленого (в зависимости от природы металла) и выпадение осадка в течение 3 ч. Частицы С-25, диспергированные в толуоле, при взаимодействии с хлоридами металлов образуют гель, который в ходе реакции в течение 5–6 ч расслаивается, и образуется осадок. После отстаивания реакционной смеси в течение 24 ч, сливали маточный раствор, осадки многократно промывали дистиллированной водой, затем растворителем (этиловый спирт : вода) либо толуолом. Фильтровали через бумажный фильтр и сушили до постоянной массы под вакуумом.

Для получения композитов в качестве базового выбран ПЭНП марки 15803–020 (Открытое акционерное общество "Казаньоргсинтез"), полиэтилен ПЭ-158 плотностью 0.919 \pm 0.002 г/см³, показатель текучести расплава 2 \pm 25% г/10 мин.

Приготовление композиционных материалов на основе полиэтилена и модифицированного монтмориллонита проводили методом одностадийного смешения в расплаве. В лабораторный двухшнековый микроэкструдер "НААКЕ MiniLab Rheomex CTW-5" загружали ПЭ в количестве 5 г, компатибилизатор (5 мас. %), ММТ (5 мас. %) согласно рассчитанным значениям концентрации и массовым долям. Смешение проводили при температуре 150°С и постоянной скорости вращения шнеков 100 об/мин.

В качестве компатибилизаторов использовали технологические добавки "Метален F-1018" (ПЭМА) – этилен-октеновый сополимер с привитым малеиновым ангидридом (степень прививки 1.1 мас. %) Акционерного общества "Метаклэй" либо четвертичную аммонийную соль "Arquad HTB-75" производства "AkzoNobel" (Arq) – хлорид монозамещенного бензилдиметиламмония [(CH₃)₂HT–N–CH₂Ph]⁺Cl⁻, в котором заместитель – насыщенная алкильная группа с длиной цепи от C₁₄ до C₁₈.

Из полученных композитов готовили пленки: измельчали навеску 0.2 г и прессовали в ограничительном алюминиевом кольце между листами полиамида при температуре 140°С и давлении 4 МПа в течение 5 мин. Размер пленок: толщина 100–130 мкм, диаметр 60–70 мм.

Элементный состав модифицированного наполнителя определяли методом рентгеноспектрального флуоресцентного анализа (РСФА), который проводили на спектрометре последовательного РСФА "ARL PERFORM' X" компании "Thermo Fischer Scientific", с использованием родиевой трубки. Программа UniQuant обеспечивала анализ до 79 элементов и расчет процентного состава пробы. Подготовку образцов для РСФА осуществляли следующим образом: порошок

Таблица 1. Синтез металломодифицированных добавок на основе слоистых алюмосиликатов и солей переходных металлов ($T = 20^{\circ}$ С, масса ММТ 2 г, объем растворителя 150 мл)

Условное обозначение	Соль металла	$M \times 10^{-3}$	Macca, г			
Na-MMT (растворитель вода : этанол = 1 : 1)						
Ni-MMT	$NiCl_2 \cdot 6H_2O$	238.0	0.71			
Co-MMT	MT CoCl ₂ 129.8		0.39			
Mn-MMT	MnCl ₂	125.8	0.38			
Fe-MMT	$FeCl_3 \cdot 6H_2O$	265.5	0.79			
Cu-MMT	CuSO ₄	159.6	0.48			
Cloisite 25А (растворитель толуол)						
Co-C-25	CoCl ₂	129.8	0.26			
Fe-C-25	$FeCl_3 \cdot 6H_2O$	265.5	0.53			
Ni-C-25	$NiCl_2 \cdot 6H_2O$	238.0	0.48			

борной кислоты 1.5 г помещали в специальную ячейку пресс-формы и при давлении P = 2 атм прессовали таблетку диаметром 22 мм, затем в центр таблетки насыпали мелкодисперсный порошок исследуемого образца 0.2 г, снова прессовали. Таблетку опускали в кювету прибора для съемки.

Рентгенофазовый анализ (РФА) проводили на автоматическом дифрактометре "ДРОН-2" с модифицированной коллимацией; использовали CuK_{α} -излучение, Ni-фильтр; съемку вели в режиме "на отражение", в том числе в относительно малых углах дифракции. Образцы модифицированных алюмосиликатов готовили в виде ориентированных агрегатов, которые получали нанесением дозаторами из водно-спиртовой или толуольной суспензии исходной или модифицированной глины на покровное стекло с последующим высушиванием на воздухе при комнатной температуре. Образцы композитов снимали в виде пленок. Точность определения степени кристалличности составляла ±5%.

Образцы – прессованные пленки полимеров и композитов до и после облучения – исследовали методом ИК-спектроскопии на спектрометре "Nicolet iS10" в режиме пропускания в области 400–4000 см⁻¹.

Для определения содержания окисленных групп в полимере использовали так называемый карбонильный индекс – интегральную интенсивность полос в диапазоне 1660–1850 см⁻¹, нормированную на интегральную интенсивность полосы 2020 см⁻¹. Винильный индекс, характеризующий содержание ненасыщенных групп, рассчитывали аналогично по интегральной интенсивности полос в диапазоне 890–910 см⁻¹.

Совмещенный термический анализ проводили на приборе "NETZSCH Regulus STA 2500" в токе азота (70 см³/мин) с предварительным вакуумированием; масса образца (прессованный порошок) 20–25 мг, скорость нагревания 10 град/мин, температурный диапазон 45–980°С. Точность измерения температуры составила $\pm 1^{\circ}$ С.

Механические испытания осуществляли на разрывной машине "Instron 1121" (Англия), скорость 5 мм/мин, геометрия рабочей части образцов $10 \times 3 \times 0.2$ мм. Пленки готовили прессованием композитов при температуре 140°С.

УФ-облучение образцов проводили с использованием лампы "Vilber Lourmat VL-208.BL" мощностью 16 Вт, длиной волны излучения 365 нм. Образцы пленок толщиной 100–130 мкм для предотвращения деформации в процессе облучения индивидуально фиксировали в картонных рамках с окном 36×24 мм и помещали под лампой в горизонтальном положении на расстоянии 10 см (плотность потока излучения 3.1 мВт/см²), время облучения 250 ч или до механического распада пленки.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Известно, что монтмориллониты за счет своего строения при катионном обмене могут адсорбировать значительное количество (до 20–30 мг/г) катионов переходных металлов из водных растворов. Кинетика и термодинамика этого процесса для Na-MMT и природной формы бентонитов изучалась в процессе очистки воды от растворенных солей тяжелых металлов [19].

Способность обменных катионов слоистых алюмосиликатов Na⁺, Ca²⁺, K⁺, Mg²⁺ к замещению на ионы и наночастицы переходных металлов, таких как Fe³⁺, Ni²⁺, Ru³⁺, Rh³⁺, Pd²⁺ и другие использовалась при создании каталитических систем для органического синтеза и синтеза полимеров [20–22].

Ионы, расположенные на боковой поверхности кристаллов так же, как и межслоевые, легко обмениваются на самые разнообразные неорганические и органические частицы. Предполагается, что до 80% обменных катионов находятся в межслоевом пространстве и до 20% — на боковых поверхностях [21, 23].

В процессе интеркаляции вещества в межслоевые пространства алюмосиликата существенную роль играет среда, в которой она осуществляется, и которая одновременно должна являться растворителем для интеркалируемого соединения: процесс протекает тем легче, чем больше слоистый алюмосиликат набухает в таком растворителе. Молекулы вещества, вызывающие набухание, внедряются в межслоевое пространство, где происходит некоторое раздвижение силикатных пластин [21].

Для получения наполнителей — активаторов УФ-окисления ПЭ — использовали два вида алюмосиликатов: Na-MMT, который при приготовлении композитов требует введения в полимерную матрицу совместителей (компатибилизаторов) и органомодифицированный С-25, применяемый без дополнительных добавок.

Модификация алюмосиликатов (инициаторов разложения) проводилась в растворителях, в которых слоистые алюмосиликаты способны к набуханию и диспергированию: Na-MMT в воде и полярных средах, C-25 в органическом растворителе — толуоле. Наиболее полно реакция катионного обмена межслоевых катионов Na⁺ и Ca²⁺ на катионы металлов переменной валентности в Na-MMT проходит в водно-спиртовом (1:1) растворителе при pH 5.5–5.8.

Образцы полученных модифицированных ММТ были исследованы методами РСФА (табл. 2; рис. 1), ТГА (рис. 2), РФА (рис. 3, 4).

Из результатов метода РСФА модифицированного ММТ (табл. 2) следует, что соотношение элементов Si: Al: Mg в модифицированных слоистых алюмосиликатах и исходного Na-MMT практически не отличается, что свидетельствует о неизменности состава алюмосиликатных слоев в данных условиях проведения процесса.

При модификации Na-MMT катионы металлов переменной валентности по-разному (рис. 1) вытесняют и замещают обменные катионы натрия и кальция алюмосиликата: Ni²⁺ практически полностью замещает Na и на 70% катионы Ca; Co²⁺ вытесняет около 80% катионов Na и только 40% Ca; Mn²⁺ и Cu²⁺ замещают 75% катионов Na и только 20% Ca; Fe³⁺ вытесняет ~80% катионов Na и практически полностью Ca.

Данные анализа показывают некоторый избыток ионов железа по сравнению с емкостью катионного обмена алюмосиликата, в отличие от других металлов-модификаторов. Очевидно, что кроме катионнообменной реакции, происходит взаимодействие хлорида железа с реакционноспособными гидроксильными группами алюмосиликата и образование поверхностных оксихлоридов железа, что подтверждается наличием в Fe-MMT до 0.2 мас. % Cl. Как показано в работе [24], заметная часть ионов металлов Ме³⁺ при адсорбции из растворов хлоридов находится на поверхности монтмориллонита в виде комплексов Me-Cl⁺. Количество ионов металлов (г-экв), содержащееся в металломодифицированных алюмосиликатах (рис. 1), составляет 125-130 мэкв/100 г, что превышает емкость катионного обмена (EKO).

		Содержание элемента (в пересчете на оксид), мас.%									
Образец	Алюмосиликатный каркас			Катионы межслоевого пространства							
	SiO ₂	Al ₂ O ₃	MgO	Fe ₂ O ₃	Na ₂ O	CaO	NiO	Co ₃ O ₄	MnO	Fe ₂ O ₃	CuO
Na-MMT	65.79	23.02	2.50	3.78	3.60	0.44	—	_	_	_	_
Ni-MMT	65.74	23.08	2.49	4.13	0.23	0.12	3.73	_	_	_	_
Co-MMT	64.83	22.30	2.33	3.98	0.75	0.25	_	3.60	_	_	_
Mn-MMT	64.79	22.69	2.50	4.11	0.81	0.32	_	—	3.56	—	_
Fe-MMT	64.90	22.75	2.52	3.94	0.31	0.16	—	—	—	4.52	—
Cu-MMT	64.36	22.56	2.54	3.99	0.88	0.34	_	—	—	—	3.84
C-25*	67.92	23.33	2.55	4.34	0.69	0.08	—	—	—	—	—
Ni-C-25*	68.07	23.86	2.53	4.35	0.07	0.05	0.71	—	—	—	—
Co-C-25*	68.30	23.48	2.51	4.35	0.07	0.02	—	0.56	_	_	_
Fe-C-25*	68.02	23.21	2.57	4.70	0.05	0.01	—	—	—	1.62	—
Погрешность	±0.24	±0.21	± 0.08	± 0.10	± 0.04	± 0.02	± 0.09	± 0.09	± 0.09	± 0.09	±0.09

Таблица 2. Элементный состав металломодифицированных алюмосиликатов, полученный методом РСФА

*За исключением органической составляющей.

Известно, что часто используемые для получения нанокомпозитов модифицированные четвертичными аммонийными солями алюмосиликаты Cloisite 20A, 25A и другие содержат непрореагировавшие в ходе органомодификации обменные катионы Na⁺ в количестве 0.5–0.8 мас. % и ~0.1 мас. % катионов Ca²⁺. В проведенных исследованиях было показано, что в результате взаимодействия C-25 с хлоридами Co, Ni, Fe катионы Na⁺ и Ca²⁺ практически полностью замещаются катионами переходных металлов (табл. 2; рис. 1). При этом, по данным ТГА (рис. 2а) количество органомодификатора остается в пределах исходного C-25 и составляет 30–34 мас. %.

Рис. 1. Содержание катионов металлов и органической фазы в металломодифицированных Na-MMT и C-25: Na – темный фон, Ca – белый, органический модификатор – серый, ионы переходных металлов – заштрихованный.

Рис. 2. Термограммы (а) и дериватограммы (б) металломодифицированных C-25: *1* – исходный C-25, *2* – Fe-C-25, *3* – Co-C-25, *4* – Ni-C-25.

Для исследования и идентификации структур модифицированных алюмосиликатов и композитов использовали метод рентгеновской дифракции. Результаты представлены на рис. 3 и 4. Дифрактограмма рентгеновского рассеяния Na-MMT отвечает рентгенографически чистой Na⁺форме: присутствует четко выраженный базальный рефлекс при угле дифракции $2\theta = 6.5^{\circ}$, первый порядок d_{001} имеет значения 1.24 нм (рис. 3, кривая 1), в межпакетных полостях содержится только один слой H₂O (базальный рефлекс полностью обезвоженного Na-MMT расположен при угле дифракции 2 θ = 9.2°, d_{001} = 0.96 нм). В воздушно-сухих модифицированных ММТ величина межплоскостных расстояний составляет от 1.24 до 1.54 нм в зависимости от типа и степени гидратации обменных катионов. Степень гидратации возрастает при увеличении заряда иона и уменьшения его радиуса [20]. На дифрактограммах воздушно-сухих (относительная влажность воздуха ~60% при 20°C) модифицированных глин (рис. 3, кривые 2-5) рефлекс при 6.5° смещается в сторону малых углов, что свидетельствует об интеркалировании катионов-модификаторов межслоевое пространство глины. При насыщении Na-MMT ионами железа (табл. 2) появляется базальный рефлекс при 20 = 5.2° отвечающий межслоевому расстоянию $d_{001} = 1.71$ нм (рис. 3, кривая 6) с порядками $d_{002} = 0.86$ и $d_{003} = 0.57$ нм, что соответствует Fe³⁺ в межпакетных полостях минерала.

Рис. 3. Дифрактограммы рентгеновского рассеяния образцов Na-MMT (1), Ni-MMT (2), Co-MMT (3), Mn-MMT (4), Cu-MMT (5) и Fe-MMT (6).

Рис. 4. Дифрактограммы рентгеновского рассеяния образцов C-25 (1), Ni-C-25 (2), Co-C-25 (3) и Fe-C-25 (4).

Методом РФА исследована также эволюция структурных превращений в результате модификации Cloisite 25A (рис. 4). В дифрактограмме С-25 в исходном состоянии (рис. 4, кривая *I*) наблюдаются два нецелочисленных базальных рефлекса глинистого компонента (2.0 и 1.0 нм). После насыщения хлоридами металлов (табл. 2) фиксируется появление новых базальных рефлексов (рис. 4, кривые 2–4), с межплоскостными расстояниями: 2.86 и 1.60 нм (Ni-C-25); 2.90 и 1.54 нм (Co-C-25); 2.40 и 1.20 нм (Fe-C-25).

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б том 61

Такой эффект связан вероятно с тем, что более положительные катионы металлов при интеркаляции разрушают агломераты, образовавшиеся в результате слипания отдельных кристаллов слоистого силиката, тем самым обеспечивая проникновение в пространство между силикатными пластинами введенных ранее молекул органомодификатора и вызывают их равномерное перераспределение во всех межплоскостных промежутках глинистого минерала в виде моно- или бислоев парафинового типа [21, 22]. Изменение конформационного

№ 4

2019

Рис. 5. Влияние добавок ПЭМА и Arq на скорость фотоокисления ПЭ (1), ПЭК (2), ПЭ + Arq (3): a -карбонильный индекс, 6 -винильный индекс.

набора алифатических цепочек органомодификатора отражается на характере его термического разложения. На дериватограммах (рис. 26) С-25 и металломодифицированных С-25 в диапазоне 250–500°С наблюдаются основной пик при 313°С и сложная картина с перекрывающимися максимумами при 340–480°С, соответствующими разложению органомодификатора, различной структуры и степени интеркалирования в межслоевых галереях алюмосиликата. Все дериватограммы имеют 3– 4 пика; их разделение, однозначное отнесение и сопоставление со структурой модификатора не проводилось. В работе [25] показано, что при термическом разложении С-25 образуются смеси углеводородов, состоящие из алканов, алкенов, карбонилов и аминов. Пик при 670°С соответствует разложению структурных гидроксилов алюмосиликатного каркаса ММТ.

Таким образом, взаимодействие слоистых алюмосиликатов с неорганическими катионами может проходить очень специфично [21]. Наблюдается адсорбция двух типов: первая — вследствие ионообменного механизма, вторая (сверх ЕКО) благодаря ван-дер-вальсовому притяжению между активной поверхностью глинистого минерала и солями переходных металлов. Катионообменная реакция и внедрение ионов металлов в межслоевое пространство алюмосиликатов в зависимости от природы металла и используемого силиката приводит к получению монтмориллонитов различной степени интеркаляции.

В работах [16–18] показано, что введение в полиэтиленовую матрицу слоистых алюмосиликатов, содержащих соли переходных металлов, способствует сенсибилизации фотохимических реакций, протекающих под действием солнечного света или УФ-облучения в присутствии кислорода. Фотоокисление макромолекул полиолефиновой цепи протекает по механизмам, включающим параллельно-последовательные реакции: окисление с образованием сложной смеси кислородсодержащих групп и соединений и деструкцию (разрыв) основной цепи ПЭ, сопровождающуюся, согласно механизму Нориша II, возникновением винильных и винилиденовых групп [2].

На основе ПЭНП, металломодифицированных алюмосиликатов и компатибилизаторов, которые применяются для придания наполнителю термодинамической совместимости с ПЭ, получены композиты, образцы которых были подвергнуты УФ-облучению. Продукты окисления были исследованы методами РФА и ИК-спектроскопии. Для оценки степени окисления использовались карбонильный и винильный индексы.

Некоторые добавки-совместители, в частности четвертичные аммонийные соли, содержащиеся в композитах, играют роль не только компатибилизаторов, но и сенсибилизаторов окислительного разложения полимеров [16, 17]. Было изучено влияние на процесс УФ-окисления ПЭ компатибилизаторов различной природы: ПЭМА с гидрофильными функциональными группами и Arq – четвертичная аммониевая соль, содержащая бензильный радикал. На основании расчета карбонильных и винильных индексов (рис. 5) облученных образцов смесей показано, что при данных значениях концентрации эффективность Arq

Рис. 6. ИК-спектры образцов ПЭ (1), ПЭК (2), ПЭК + Na-MMT (3): *a* – необлученные; *б*, *в* – УФ-облученные 180 и 250 ч соответственно.

выше, чем ПЭМА, причем при использовании Arq (рис. 5a, кривая 3) окисление после 100 ч облучения протекает с автоускорением. Наибольшие значения винильного индекса наблюдаются также в присутствии Arq.

Введение Arq непосредственно в процессе смешения существенно снижает окислительную стойкость ПЭ и может привести к определенным трудностям в дальнейших исследованиях и проблемам в процессах его переработки, поэтому в качестве компатибилизатора был использован ПЭМА; полученные смеси обозначены ПЭК.

На рис. 6 представлены ИК-спектры ПЭ, ПЭК и композитов на основе Na-MMT в диапазонах 1600-2100 и 860-990 см⁻¹ до УФ-облучения и облученных в течение 180 и 250 ч соответственно. ИК-спектры необлученных образцов содержат стандартные для полиэтилена полосы. В спектрах облученных пленок появляется ряд полос, указывающих на образование кислородсодержащих групп в полимерной цепи: карбонильных 1715-1720 см⁻¹, карбоксильных 1740 см⁻¹ и других. Можно видеть также полосы 1645, 910 и 890 см⁻¹, свидетельствующие об образовании винильных и винилиденовых двойных связей, интенсивность которых возрастает в ходе реакции. Из приведенных результатов (рис. 6, кривые 3) следует, что присутствие Na-MMT в композите сенсибилизирует фотохимические превращения ПЭ, ускоряя как окисление, так и разрыв цепи.

В применении для расчета винильного индекса интенсивностей полос 890, 910 и 965 см⁻¹ в литературе практически не встречается разночтений. Однако их использование для наполненных алюмосиликатами образцов ПЭ осложнено наличием у ММТ в диапазоне 850–1200 см⁻¹ сильных полос поглощения алюмосиликатного каркаса: 860, 920, 1028, 1056, 1120 см⁻¹. Используемые при расчетах винильного индекса окисленных ПЭ, содержащих металломодифицированные ММТ и С-25, полосы 890 и 910 см⁻¹ скорректированы на поглощение алюмосиликатного каркаса в диапазоне 860-943 см⁻¹ (рис. 6, кривые 3). Полоса 965 см⁻¹ (*транс*-винильные группы) перекрыта сильной полосой поглощения алюмосиликата и в расчетах не учитывается. Исходное значение винильного индекса соответствует содержанию ненасыщенных групп в исходном ПЭНП 0.2–0.4 на 1000 атомов С.

Композиты и нанокомпозиты на основе ПЭ и ММТ обладают улучшенными физико-механическими свойствами при содержании глины до 10–12 мас. % [10]. В полученных композитах металломодифицированные ММТ составляют 5 мас. %, что лимитировано концентрацией ионов металлов в алюмосиликате. Как известно [1], фотосенсибилизирующая активность соединений переходных металлов проявляется в определенном диапазоне концентрации, а именно 10^{-2} – 10^{-4} моль/кг ПЭ. При увеличении концентрации может наблюдаться стабилизация полимера в результате сильного экранирования излучения продуктами распада. Используемые в настоящей работе в исследованиях значения концентрации

2019

Рис. 7. Зависимость скорости образования карбонильных (а) и винильных (б) групп при УФ-окислении композитов ПЭ от природы металла-модификатора: $1 - \Pi$ ЭК, $2 - \Pi$ ЭК+Со-ММТ, $3 - \Pi$ ЭК + Ni-ММТ, $4 - \Pi$ ЭК + Cu-MMT, $5 - \Pi$ ЭК+Мп-ММТ, $6 - \Pi$ ЭК + Fe-MMT. Концентрация металла [M] = 2.7 × × 10⁻² моль/кг ПЭ.

трации металлов в образцах композитов: металло-модифицированный ММТ – 2.7×10^{-2} моль/кг ПЭ, металломодифицированный С-25 – 0.9 × $\times 10^{-2}$ моль/кг ПЭ.

Композиты, содержащие ПЭНП, металломодифицированные алюмосиликаты (ММТ) и ПЭМА в качестве компатибилизатора обозначены, как ПЭК + металломодифицированный ММТ.

Рассчитанные на основании ИК-спектральных исследований карбонильные и винильные индексы УФ-облученных образцов композитов приведены на рис. 7.

Из представленных результатов следует, что активаторы, присутствующие в полимере, сенсибилизируют (катализируют) фотохимические процессы окисления—деструкции, существенно увеличивая скорость образования как карбонильных, так и винильных групп. Скорость окисления полимера возрастает в зависимости от природы металла в ряду Co < Ni < Cu < Mn < Fe. Окисление ПЭ-матрицы композита, содержащего Fe-MMT протекает на порядок быстрее по сравнению с исходным ПЭ (рис. 7а); при этом образец начинает терять механические свойства уже после 150 ч облучения.

Значительное возрастание скорости образования винилиденовых и виниленовых групп, сопутствующее деструкции полимерной цепи наблюдается у образцов, содержащих Fe-MMT и Mn-MMT по сравнению с Cu-MMT, Ni-MMT, Co-MMT (рис. 76).

Согласно работе [26], концентрация карбонильных групп, по достижении которой ПЭ теряет механические свойства и становится биоразлагаемым соответствует карбонильному индексу ~40 в используемой в данной работе методике расчета.

Как показали исследования, полученные металломодифицированные С-25 при введении в ПЭ повышают деформационно-прочностные свойства и также являются сенсибилизаторами процесса УФ-окисления ПЭ-матрицы (рис. 8).

Скорость образования продуктов окисления увеличивается по сравнению с композитом, содержащим исходный С-25 в 3–4 раза (рис. 8а). В этих композитах влияние природы металла на сенсибилизирующую способность выражено незначительно. Следует отметить, что деструкция (растрескивание) ПЭ не происходит при значениях карбонильного индекса ~ 40, что можно связать с образованием меньшего количества винильных и винилиденовых групп, (рис. 8б) по сравнению с композитами, содержащими металломодифицированный ММТ.

Наиболее интенсивно фотохимические процессы окисления ПЭ протекают в композитах, содержащих железо. Концентрация ионов железа в композитах Fe-MMT составляет 2.7×10^{-2} моль/кг ПЭ и Fe-C-25 – 0.9×10^{-2} моль/кг ПЭ, определяется процессом получения металломодифицированного MMT и обусловлена 5 мас. % содержанием MMT в композите. Для сравнения каталитической активности ионов Fe³⁺ в процессе УФ-окис-

Рис. 8. Влияние природы металла на скорость образования карбонильных (а) и винильных (б) групп при УФ-окислении композитов $\Pi \ni + C-25$ (*1*), $\Pi \ni + Fe-C-25$ (*2*), $\Pi \ni + Ni-C-25$ (*3*), $\Pi \ni + Co-C-25$ (*4*). Концентрация металла [M] = 0.9×10^{-2} моль/кг ПЭ.

ления железосодержащих MMT: Fe-MMT и Fe-C-25 была введена и рассчитана относительная величина — активность A, характеризующая скорость окисления (количество образовавшихся карбонильных групп) в пересчете на один г-ат Fe в час: A = [карбонильный индекс/г-ат Fe ч].

Рис. 9. Кинетические кривые окисления ПЭ в присутствии железосодержащих MMT: $1 - \Pi \Im + Arq + Fe-MMT$, $2 - \Pi \Im K + Fe-MMT$, $3 - \Pi \Im + Fe-C-25$.

Кинетические кривые, иллюстрирующие влияние состава и структуры каталитически активного центра Fe в реакции УФ-окисления ПЭ представлены на рис. 9. При использовании в качестве компатибилизатора Arq, активность повышается пропорционально времени окисления (рис. 9, кривая 1); в присутствии ПЭМА наблюдается повышение активности на начальном участке, затем она достигает постоянного во времени значения (кривая 2). Органомодифицированный Fe-C-25 наиболее активен (кривая 3); после индукционного периода в 70–80 ч (предварительное накопление гидропероксидов) образование продуктов окисления происходит с существенным ускорением.

Каталитическое влияние ионов переходных металлов на процессы, происходящие при УФоблучении ПЭ может быть основано на фотовосстановлении Fe³⁺ до Fe²⁺, фотоокислении Ni²⁺ до Ni³⁺ и других окислительно-восстановительных процессах [17]. Реакции фотовосстановления ионов металлов переменной валентности в полимерной матрице инициируют образование гидроперекисей и свободных радикалов [2].

Предположительно, эффективность наполнителя определяется стандартным окислительновосстановительным потенциалом металла и положением в электрохимическом ряду активности.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б том 61 № 4 2019

Образец	Степень кристалличности РФА, %			
Образец	0ч	250 ч		
ПЭК	35	38		
Na ⁺ -MMT	38	46		
Fe ⁺ -MMT	30	36		
Co ⁺ -MMT	31	42		
Ni ⁺ -MMT	34	43		

Таблица 3. Изменение степени кристалличности композита при УФ-облучении

Известно, что величина окислительно-восстановительного потенциала зависит от степени окисления металла и природы противоиона. В металломодифицированном ММТ ион металла находится в галереях слоистого алюмосиликата; его реакционноспособность определяется зарядом, размерами и лигандным окружением, что отражается на характере упорядоченности и степени интеркаляции модификатора в ММТ (рис. 3, 4). Влияние степени окисления металлов и строения каталитически-активного комплекса не изучались. Потенциал перехода Fe²⁺/Fe³⁺ (+0.77 В) ниже, чем для Со, Ni и других металлов и определяет его наивысшую активность. Для объяснения активности Мп можно предположить, что более высокие степени окисления (от 4 до 7) также вносят свой вклад.

Основные каталитические реакции, определяющие влияние соединений металлов на окисление полимерной цепи можно представить следующим образом: прямое взаимодействие ионов металла с полимером на ранних стадиях процесса УФ-окисления:

$$M^{n+} + \mathrm{RH} \xrightarrow{h_V} M^{(n-1)+} + \mathrm{R} \cdot + \mathrm{H}^+$$

каталитическое разложение гидроперекисей

$$M^{(n-1)+} + \text{ROOH} \longrightarrow M^{n+} + \text{RO} \cdot + \text{HO}^{-}$$
$$M^{(n-1)+} + \text{ROOH} \longrightarrow M^{n+} + \text{ROO} \cdot + \text{H}^{+},$$

непосредственное взаимодействие ионов переходных металлов с кислородом, с образованием комплексов с кислородом и гидропероксидов

 $M^{(n-1)+} + \mathcal{O}_2 \xrightarrow{\mathbb{R} \cdot , \mathbb{H}^+, hv} M^{n+} + \mathcal{ROOH}.$

Можно полагать, что основным путем ускорения УФ-окисления-деструкции полиолефинов в присутствии соединений металлов переменной валентности является фотосенсибилизация образования и распада полимерных гидроперекисей. Механизм появления винильных, винилиденовых групп и разрыв основной цепи представляется, как нерадикальный внутримолекулярный процесс (реакции Норриша II и III типа) [2], протекающий через промежуточное шестичленное циклическое соединение (интермедиат). Отрыв водорода от атома углерода в γ- или β-положении к кислородосодержащей группе (каталитическое дегидрирование) приводит к последующему распаду с образованием ненасыщенных и кислородосодержащих соединений.

Известно, что ПЭ состоит из трех фаз: полностью кристаллической, полностью аморфной и промежуточной (или граничной), именно в которой и происходят основные структурные перестройки при γ -облучении [27]. Вероятно, в процессе УФ-облучения промежуточная фаза частично или полностью может переходить в кристаллическую. Исследования композитов на основе ПЭ и металломодифицированного ММТ методом РФА показали, что при фотоокислении меняется кристалличность полимера (табл. 3). При этом увеличение размеров кристаллитов во всех направлениях незначительное (1–2 нм), в отличие от эффектов, показанных в работе [4].

Увеличение степени кристалличности приводит к тому, что у всех исследованных образцов при ускоренном облучении сушественно меняются механические свойства – повышается хрупкость. Под действием света могут происходить сшивки ПЭ цепей, что также влечет увеличение хрупкости полимерного образца. Окисление в такой пленке сопровождается интенсивной деструкцией, которая быстро разрушает первоначально образовавшуюся сетку. Деформационнопрочностные свойства композитов на основе ПЭ и металломодифицированных алюмосиликатов до УФ-облучения образцов и после облучения в течение 250 ч (табл. 4) существенно изменяются: уменьшаются модуль упругости, предел прочности и относительное удлинение при разрыве.

Пленки толщиной 100—130 мкм не растрескивались вплоть до определенного времени облучения, но становились хрупкими и рассыпались при дальнейшей деформации (образцы, содержащие Fe-MMT и Mn-MMT). О механизмах проявления внутреннего напряжения при старении, приводящих к разрушению полимеров, высказывались различные предположения [28]: уменьшение молекулярной массы — разрыв основной цепи, кристаллизация и рекристаллизация, приводящие к изменениям надмолекулярной структуры, образование неравновесных конформаций в аморфной фазе и неравномерность окисления по толщине образца. Однако достоверных результатов, подтверждающих тот или иной механизм пока нет.

Таблица 4. Деформационно-прочностные характеристики композитов на основе ПЭ и металломодифицирован-
ных алюмосиликатов. В числителе значения до УФ-облучения образцов, в знаменателе – после облучения в те-
чение 250 ч

Образец	Модуль Юнга, МПа	Предел прочности при разрыве, МПа	Относительная деформация при разрыве, %				
ПЭ исходный	110 ± 10	13 ± 1.3	600 ± 50				
ПЭК+металломодифицированный ММТ							
ПЭК	150/165	13.0/10.3	570/20				
Na ⁺ -MMT	155/95	12.3/3.3	500/5				
Cu ⁺ -MMT	155/80	11.3/3.4	450/15				
Mn ⁺ -MMT	195/—	9.7/-	250/-				
Fe ⁺ -MMT	160/-	10.0/-	470/-				
Co ⁺ -MMT	180/80	11.1/3.5	430/10				
Ni ⁺ -MMT	150/75	12.3/3.7	520/20				
$\Pi \Im$ + Cloisite 25A							
ПЭ+С-25	160/10	12/3.2	430/50				
ПЭ + Fe-C-25	195/65	14/3.3	550/35				
ПЭ + Ni-C-25	175/80	14/4.8	550/50				
ПЭ + Со-С-25	170/80	14/4.5	540/55				

Примечание. Погрешность измерения модуля Юнга ± 15 МПа, предела прочности при разрыве ± 1.0 МПа, относительной деформации при разрыве $\pm 50\%$; "—" означает деструкцию образца.

Результат окислительно-деструктивного процесса УФ-облученных пленок композитов ПЭ, содержащих Fe-MMT представлен на рис. 10. Присутствие в образцах в качестве компатибилизатора Arq ускоряет разрыв цепи и деструкцию полимера более значительно, чем добавка ПЭМА. Наличие в Arq бензольного кольца существенно увеличивает поглощение в УФ-диапазоне, за счет чего он сенсибилизирует разложение ПЭ более активно (рис. 5), так же как и добавки ароматических кетонов и хинонов [1] в полимеры сенсибилизирующие УФ-окисление. Кроме того, возможно образование и влияние на активацию фотоокислительной деструкции ПЭ комплексного

Рис. 10. Фотографии пленок композитов ПЭ после 250 ч облучения: $a - \Pi Э$, $6 - \Pi Э + Fe-C25$, $B - \Pi ЭK + Fe-MMT$, $r - \Pi Э + Arq + Fe-MMT$.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б том 61 № 4 2019

сенсибилизатора, состоящего из металломодифицированного ММТ и компатибилизатора, а именно — хлорида монозамещенного бензилдиметиламмония.

Композиты на основе органомодифицированного C-25, содержащие ионы переходных металлов, в частности Fe, разрушаются медленнее: растрескивание происходит после 400 ч облучения. Можно предположить некоторое влияние структуры и строения каталитического активного наполнителя, содержащего кроме иона металла, интеркалированный органомодификатор (рис. 4).

ЗАКЛЮЧЕНИЕ

Слоистые алюмосиликаты, модифицированные солями переходных металлов, введенные в композиты на основе ПЭНП улучшают комплекс физико-механических свойств полимера и сенсибилизируют ПЭ к УФ-окислению. ИК-спектральные исследования УФ-облученных композитов и рассчитанные на их основе карбонильные и винильные индексы показывают значительное ускорение фотохимических реакций. Наблюлаемые изменения свойств ПЭ обусловлены процессами как чисто химической природы: окисление с образованием кислородосодержащих групп, появление винильных и винилиденовых групп, указывающих на разрыв основной цепи, сшивка и т.д., так и процессами, в основе которых лежат физические явления: кристаллизация, рекристаллизация, деструкция, растрескивание и другие.

Монтмориллониты, содержащие ионы переходных металлов, являются эффективными активаторами УФ-деструкции, особенно Fe-MMT, при сравнительной простоте и технологичности получения и введения в полимер. Каталитически активные частицы (ионы металлов), находящиеся в галереях и порах MMT, не вымываются растворителями: водой, спиртом, толуолом. В процессе УФ-облучения остается неизменным химический состав и структура наполнителей, т.е. они превращаются в так называемые "микромогильники металлов", не загрязняя окружающую среду.

Таким образом, полученные добавки сенсибилизируют разложение композитов ПЭ за счет абиотического УФ-окисления, что существенно ускоряет процесс дальнейшего оксоразложения полимерных материалов под действием химических, физических и биологических факторов в естественной среде в течение заданного времени. Полимерную цепь ПЭ, окисленную до карбонильных групп, микроорганизмы способны метаболизировать до жирных кислот, с дальнейшим полным окислением до низкомолекулярных продуктов в цикле Кребса [29]. Работа выполнена в рамках Госзадания Института нефтехимического синтеза РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Качан А.А., Замотаев П.В.* Фотохимическое модифицирование полиолефинов. Киев: Наукова думка, 1990.
- 2. *Рэнби Б., Рабек Я.* Фотодеструкция, фотоокисление, фотостабилизация полимеров. М.: Мир, 1978.
- Ojeda T.F.M., Dalmolin E., Forte M.M., Jacques R., Bento F.M., Camargo F.A.O. // Polym. Degrad. Stab. 2009. V. 94. № 6. P. 965.
- 4. Khar'kova E.M., Mendeleev D.I., Guseva M.A., Gerasin V.A. // J. Polym. Environ. 2019. V. 27. № 1. P. 165.
- 5. *Попов А.А*. А. с. 2540273 Россия. 2013 // Б.И. 2015. № 4. С. 3.
- *Kiryakova D., Mihaleva S., Atanassov A.* // Mater. Res. 2016. V. 19. № 4. P. 901.
- Oluz Z., Tinçer T. // J. Appl. Polym. Sci. 2016. V. 133. № 17. P. 43354.
- 8. *Roy P.K., Surekha P., Roman R., Rajagopal C.* // Polym. Degrad. Stab. 2009. V. 94. № 7. P. 1033.
- 9. *Al Abdulla W.A., Hill D.J.T., Whittaker A.K.* // J. Appl. Polym. Sci. 2014. V. 131. № 18. P. 9423.
- Khar'kova E.M., Mendeleev D.I., Korolev Yu.M., Shklyaruk B.F., Gerasin V.A., Antipov E.M. // Polymer Science A. 2013. V. 55. № 8. P. 493.
- Khar'kova E.M., Mendeleev D.I., Aulov V.A., Shklyaruk B.F., Gerasin V.A., Piryazev A.A., Antipov A.E. // Polymer Science A. 2014. V. 56. № 1. P. 72.
- 12. *Khar'kova E.M., Mendeleev D.I., Smetannikov O.V., Chinova M.S., Ivanyuk A.V., Antipov E.M.* // Polymer Science B. 2014. V. 56. № 5. P. 664.
- Brevnov P.N., Zabolotnov A.S., Krasheninnikov V.G., Pokid'ko B.V., Bakirov A.V., Babkina O.N., Novokshonova L.A. // Kinet. Katal. 2016. V. 57. № 4. P. 482.
- 14. Heinemann J., Reichert P., Thomann R., Mülhaupt R. // Macromol. Rapid Commun. 1999. V. 20. № 8. P. 423.
- 15. *Leone G., Bertini F., Canetti M., Tritto J.* // J. Polym. Sci., Polym. Chem. 2008. V. 46. № 16. P. 5390.
- 16. *Qin H., Zhao C., Zhang S., Chen G., Yang M.* // Polym. Degrad. Stab. 2003. V. 81. № 3. P. 497.
- Qin H., Zhang S., Feng M., Gong F., Zhang S., Yang M. // J. Polym. Sci., Polym. Phys. 2004. V. 42. № 16. P. 3006.
- 18. Kumanayaka T.O., Parthasarathy R., Jollands M. // Polym. Degrad. Stab. 2010. V. 95. № 4. P. 672.
- 19. *Bhattacharyya K.G., Gupta S.S.* // Adv. Colloid Int. Sci. 2008. V. 140. № 2. P. 114.
- 20. Розенгарт М.И., Вьюнова Г.М., Исагулянц Г.В. // Успехи химии. 1988. Т. 57. № 2. С. 204.
- 21. *Bergaya F., Lagaly G.* Handbook of Clay Science. Netherlands: Elsevier, 2013.

- Khar'kova E.M., Korolev Yu.M., Mendeleev D.I., Antipov E.M. // Nanotechnol. Russ. 2016. V. 11. № 3–4. P. 157.
- 23. *Barrer R.M.* Zeolites and Clay Minerals as Sorbents and Molecular Sieves. London; New York: Acad. Press, 1978.
- Charlet L., Tournassat C. // Aquat. Geochem. 2005.
 V. 11. № 2. P. 115.
- 25. Cervantes-Uc J.M., Cauich-Rodríguez J.V., Vázquez-Torres H., Garfias-Mesías L.F., Paul D.R. // Thermochim. Acta. 2007. V. 457. № 1–2. P. 92.
- Fontanella S., Bonhomme S., Koutny M., Husarova L., Brusson J.M. // Polym. Degrad. Stab. 2010. V. 95. № 6. P. 1011.
- 27. Barron D., Birkinshaw C. // Polymer. 2008. V. 49. № 13-14. P. 3111.
- 28. Быков Е.В., Быстрицкая Е.В., Карпухин О.Н. // Высокомолек. соед. А. 1985. Т. 27. № 10. С. 776.
- 29. Annamalai P.K., Martin D.J. // Mater. Sci. Technol. 2014. V. 30. № 5. P. 593.