— ПОЛИМЕРИЗАЦИЯ —

УДК 541(64+515):547.745

РАДИКАЛЬНАЯ СОПОЛИМЕРИЗАЦИЯ *N*-ЗАМЕЩЕННЫХ 2-АЗАНОРБОРНЕНОВ-5 С *N*-ВИНИЛПИРРОЛИДОНОМ

© 2020 г. М. Н. Горбунова^{а,*}, И. А. Борисова^а

^а Институт технической химии Уральского отделения Российской академии наук 614013 Пермь, ул. Королева, 3, Россия *e-mail: mngorb@yandex.ru Поступила в редакцию 07.06.2019 г. После доработки 19.07.2019 г. Принята к публикации 30.08.2019 г.

Изучена радикальная сополимеризация *N*-метил-2-азанорборнена-5, *N*-бензил-2-азанорборнена-5, *N*-аллил-2-азанорборнена-5 и *N*-(2-азанорборнен-5-ен)метилацетата с *N*-винилпирролидоном в массе в присутствии инициатора ДАК. Показано, что сополимеризация протекает с образованием статистических сополимеров, обогащенных звеньями *N*-винилпирролидона. Выяснено, что скорость реакции сополимеризации понижается с увеличением доли азанорборнена в исходной мономерной смеси. Методом спектроскопии ЯМР ¹³С установлено, что сополимеризация азанорборненов с *N*-винилпирролидоном протекает по двойной связи норборненового кольца. Аллильная группа *N*-аллил-2-азанорборнена-5 не участвует в сополимеризации как при эквимольном соотношении мономеров, так и при двойном избытке *N*-винилпирролидона.

DOI: 10.31857/S2308113920010027

2-Азабицикло[2.2.1]гептаны и 2-азабицикло[2.2.1]гептены представляют большой интерес в качестве эффективных лекарственных препаратов или биологически активных агентов [1-9]. Производные этих препаратов проявляют высокую селективную активность к различным подвидам никотиновых ацетилхолиновых рецепторов [4, 5, 7], их используют в производстве карбоциклических нуклеозидов, применяемых в качестве антивирусных препаратов [1, 6], для синтеза аналогов алкалоида эпибатидина [3, 8, 9]. На основе 2-азанорборненового каркаса синтезируют бициклические аналоги аминокислот для исследования структуры белка [10, 11]. Производные 2-азанорборнена также используют для синтеза хиральных пятичленных циклических структур, выступающих потенциальными биомиметиками [12].

Азанорборнены, являющиеся напряженными олефинами, могут полимеризоваться как с раскрытием цикла — метатезисная полимеризация, так и с раскрытием связи C=C с образованием насыщенных структур — аддитивная полимеризация:

Основная часть публикаций посвящена метатезисной полимеризации азанорборненов [13– 15]. Однако полимеризация азанорборненов с раскрытием связи C=C с образованием бициклических звеньев в основной цепи привлекает внимание в плане создания нового класса карбоцепных полимеров.

Ранее демонстрировалось [16], что в реакцию гомополимеризации в присутствии радикальных инициаторов (ДАК, перекись бензоила) синтезированные азанорборнены практически не вступают. В работе [17] показана принципиальная возможность синтеза сополимера *N*-аллил-2-азанорборнена-5 с *N*-винилпирролидоном.

В последнее время в связи с широким применением *N*-винилпирролидона в медицине и биотехнологии исследования в области его использования вызывают интерес. Данных о радикальной сополимеризации *N*-метил-2-азанорборнена-5, *N*-бензил-2-азанорборнена-5 и *N*-(2-азанорборнен-5-ен)метилацетата с *N*-винилпирролидоном в литературе не имеется. Поэтому целью настоящей работы явилось изучение радикальной сополимеризации указанных азанорборненов с винилпирролидоном, исследование состава, структуры и свойств получаемых сополимеров.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Азанорборнены получали по методике, описанной в работе [18]. Для полимеризации использовали следующие фракции: *N*-метил-2-азанорборнена-5 (**MAH**) – температура кипения $T_{\kappa \mu n} =$ = 40–41 град/15 мм рт.ст., $n_D^{25} = 1.4726$; *N*-бензил-2-азанорборнена-5 (**БАН**) – $T_{\kappa \mu n} = 99-102$ град/0.5 мм рт.ст., $n_D^{20} = 1.5489$; *N*-аллил-2-азанорборнена-5 (**ААН**) – $T_{\kappa \mu n} = 51-53$ град/1 мм рт.ст., $n_D^{20} =$ = 1.4880; *N*-(2-азанорборнен-5-ен)метилацетата (**МААН**) – $T_{\kappa \mu n} = 80-82$ град/ 1.5 мм рт.ст., $n_D^{20} =$ = 1.4830. Чистоту контролировали элементным анализом и методом спектроскопии ЯМР ¹³С. Основные спектральные характеристики азанорборненов приведены в табл. 1.

Винилпирролидон фирмы "Lancaster" квалификации х.ч. сушили над КОН и очищали перегонкой в вакууме. Для сополимеризации использовали фракцию с температурой кипения

65 град/1.5 мм рт.ст., $d_4^{20} = 1.0450$, $n_D^{20} = 1.5117$. ДАК трижды перекристаллизовывали из метанола, сушили в вакууме при комнатной температуре до постоянной массы, температура плавления $T_{пл}$ составляла 103°С, с разложением.

Растворители и другие стандартные реактивы после очистки общепринятыми методами [19] по своим характеристикам соответствовали литературным данным.

Сополимеризацию азанорборненов с винилпирролидоном осуществляли в массе в вакууме в присутствии ДАК. Кинетику процесса изучали гравиметрическим методом [20]. При достижении нужной степени конверсии полимеризацию прерывали охлаждением и последующим осаждением диэтиловым эфиром. Осажденный сополимер отделяли из смеси центрифугированием. Скорость V_0 рассчитывали по начальным участкам кинетических кривых до степени конверсии $\leq 10\%$.

Сополимеры очищали двукратным переосаждением в диэтиловый эфир из раствора в метаноле и сушили в вакууме при 40–50°С до постоянной массы. Состав сополимеров рассчитывали по результатам элементного анализа. В случае сополимеров МАН с винилпирролидоном в связи с одинаковым содержанием азота в мономерах состав сополимера определяли методом ЯМР-спектроскопии.

Элементный анализ выполняли на элементном анализаторе Leco CHNS-9321Р (Нидерланды). Навеска образца составляла 2 мг, коэффициент вариации значений находился в диапазоне от 0.05 до 0.29%.

Эффективные константы сополимеризации r_1 и r_2 рассчитывали методами Майо—Льюиса, Файнемана—Росса и Келена—Тюдеша [21—23]. Характеристическую вязкость [η] (дл/г) определяли с помощью вискозиметра Уббелоде. Молекулярную массу сополимеров, содержащих 10 мол. % азанорборнена, оценивали по уравнению Леви и Франка для поливинилпирролидона ([η] = = 6.76 M^{0.55} × 10⁻⁴) [24].

ИК-спектры сополимеров регистрировали на спектрометре "IFS 66/S Bruker" в виде пленок из хлороформа. Спектры ЯМР ¹Н и ЯМР ¹³С регистрировали на спектрометре "Bruker AM-400" (рабочая частота 400 и 100 МГц соответственно) с широкополосным подавлением по протонам и в режиме "моно-резонанса". В качестве растворителя использовали CDCl₃ и ДМСО-d₆; внутренним стандартом служил тетраметилсилан.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

N-замещенные 2-азанорборнены-5 были синтезированы по реакции Дильса—Альдера:

١

RCH₂NH₃⁺Cl⁻+ CH₂O
$$\longrightarrow$$
 [RCH₂N⁺H=CH₂Cl⁻] \longrightarrow NCH₂R,
где R = H (MAH), C₆H₅ (БАН), CH=CH₂ (ААН), COOCH₃ (MAAH).

Схема 2.

РАДИКАЛЬНАЯ СОПОЛИМЕРИЗАЦИЯ

Структура	Спектр ЯМР ¹ Н:	Спектр ЯМР ¹³ С: $\delta_{\rm C}$, м.д.	Основные пики ИК-спектра, υ (см ⁻¹)
MAH 5 6 1 2 N 8 CH ₃	1.23 (H ₃ - \ni <i>H</i> ∂ <i>o</i> , dd, J ₁ = 2.8, J ₂ = 8.2); 1.26 (H ₇ - <i>cu</i> _H , d, J = 8); 1.44 (H ₇ - <i>a</i> _H <i>mu</i> , d, J = 8); 2.06 (H ₈ , s); 2.85 (H ₄ , s); 3.03 (H ₃ - \ni <i>κ</i> ₃ <i>o</i> , dd, J ₁ = 2.8, J ₂ = 8); 3.65 (H ₁ , d, J = 0.8); 6.01 (H ₅ , dd, J ₁ = 2, J ₂ = 5.7); 6.32 (H ₆ , dd, J ₁ = 2.8, J ₂ = 6.3)	40.76 C ₈ ; 43.81 C ₄ ; 47.96 C ₇ ; 53.05 C ₃ ; 65.34 C ₁ ; 130.3 C ₅ ; 135.6 C ₆	1647 (C=C) 1202 (C-N)
$\begin{array}{c} 5 \\ 5 \\ 6 \\ 6 \\ 6 \\ 1 \\ 2 \\ \mathbf{N} \\ \mathbf{N} \\ 1 \\ 8 \\ \mathbf{CH}_2 \\ 9 \\ 12 \\ \mathbf$	1.33 (H ₇ - <i>cu</i> _H , d, J = 8); 1.44 (H ₃ - \ni H ∂ o, dd, J ₁ = 1.8, J ₂ = 9); 1.56 (H ₇ - <i>a</i> Hmu, d, J = 8); 2.84 (H ₄ , s); 3.09 (H ₃ - \ni K3o, dd, J ₁ = 2.8, J ₂ = 8); 3.25 (H ₈ , d, J = 13.2); 3.49 (H ₈ , d, J = 13.2); 3.79 (H ₁ , d, J = 0.8); 6.0 (H ₅ , dd, J ₁ = 2.1, J ₂ = 5.7); 6.29 (H ₆ , dd, J ₁ = 3.3, J ₂ = 5.7); 7.12-7.28 (H ₉₋₁₂ , m)	43.21 C ₄ ; 46.43 C ₇ ; 53.01 C ₃ ; 60.03 C ₈ ; 65.20 C ₁ ; 126.2 C ₁₂ ; 129.1 C ₁₀ ; 130.1 C ₁₁ ; 130.2 C ₅ ; 135.3 C ₆ ; 139.7 C ₉	1603 (C=C) 1560 (Ar) 1186 (C-N)
AAH 5 4 7 2 N 10 9 8 R $CH_2=CH-CH_2$	1.4 (H ₇ - <i>cu</i> _H , dd, J ₁ = 1.6, J ₂ = 8); 1.46 (H ₃ - <i>эH</i> ∂ o, dd, J ₁ = 1.8, J ₂ = 8.4); 1.59 (H ₇ - <i>aHmu</i> , d, J = 8); 2.78 (H ₈ , d, J = 13.2); 2.89 (H ₄ , s); 3.02 (H ₈ , d, J = 13.2); 3.13 (H ₃ - <i>эκ3o</i> , dd, J ₁ = 2.8, J ₂ = 8); 3.86 (H ₁ , m); 5.04 (H ₁₀ - <i>yuc</i> , dd, J ₁ = 1.2, J ₂ = 10); 5.11 (H ₁₀ - <i>mpaHc</i> , dd, J ₁ = 2, J ₂ = 16); 5.90 (H ₉ , m); 5.99 (H ₅ , dd, J ₁ = 2.1, J ₂ = 5.7); 6.30 (H ₆ , dd, J ₁ = 3, J ₂ = 5.4)	43.41 C ₄ ; 47.42 C ₇ ; 52.10 C ₃ ; 57.06 C ₈ ; 64.12 C ₁ ; 116.2 C ₁₀ ; 130.6 C ₅ ; 136.1 C ₆ ; 136.2 C ₉	1642 (C=C) 1195 (C-N)
MAAH 5 4 1 2 N $H_3CO - C$ CH_2 O	1.27 (H_7 - <i>cu</i> _H , d, $J = 2$); 1.39 (H_7 - <i>a</i> _H <i>mu</i> , d, $J = 2.1$); 1.46 (H_3 - <i>э</i> _H <i>do</i> , d, $J = 2.1$); 2.83 (H_8 , d, $J = 16$); 2.89 (H_4 , s); 3.15 (H_3 - <i>э</i> _K <i>so</i> , dd, $J_1 = 4.9$, $J_2 = 10.5$); 3.31 (H_8 , d, $J =$ 16); 3.59 (H_{10} , s); 3.85 (H_1 , s); 6.01 (H_5 , dd, $J_1 = 1.6$, $J_2 = 6.7$); 6.33 (H_6 , d, $J = 4$);	43.40 C ₄ ; 47.39 C ₇ ; 50.65 C ₁₀ ; 52.62 C ₈ ; 55.83 C ₃ ; 64.18 C ₁ ; 130.2 C ₅ ; 136.2 C ₆ ; 171.1 C ₉	1753 (C=O) 1647 (C=C) 1203 (C-N)

Таблица 1. Основные спектральные характеристики азанорборненов

Реакция легко протекает в водной гетерофазной среде. Показано, что основное влияние на протекание реакции оказывает природа амина в структуре имина. При переходе от метиламингидрохлорида к бензиламингидрохлориду выход соответствующего азанорборнена возрастает: выходы для МАН, МААН, ААН и БАН составляют 55, 71, 74 и 83% соответственно.

Ранее отмечено, что указанные азанорборнены практически не гомополимеризуются [16]. Так, в присутствии ДАК в количестве 2.5% выход гомополимера БАН за 10 ч при температуре 80°С не превышает 0.5%. Более активны азанорборнены в реакциях сополимеризации с виниловыми мономерами, однако их активность в реакциях радикальной сополимеризации достаточно низкая. В частности, при сополимеризации ААН и БАН с акрилонитрилом, метилметакрилатом, стиролом при эквимольном соотношении мономеров в исходной смеси содержание азанорборнена в макроцепи составляет ~10–15 и 10– 25 мол. % соответственно. Высокая активность БАН наблюдается при его сополимеризации с винилацетатом: при эквимольном соотношении мономеров в исходной смеси содержание БАН в сополимере составляет ~70 мол. %.

В настоящей работе сополимеры азанорборненов с винилпирролидоном были получены мето-

Nº 1

2020

Рис. 1. Зависимость состава сополимеров МАН (*1*), БАН (*2*), ААН (*3*) и МААН (*4*) с винилпирролидоном от состава исходной смеси мономеров при полимеризации в массе; M_2 и m_2 – мольные доли винилпирролидона в исходной смеси и в сополимере соответственно. [ДАК] = 3 мас. %, *T* = 80°С.

дом радикальной сополимеризации в массе в присутствии инициатора ДАК. Зависимость состава сополимеров от состава исходных смесей приведена на рис. 1. Видно, что при сополимеризации азанорборненов с винилпирролидоном образующиеся продукты имеют статистическое распределение сомономерных звеньев в макромолекуле. Значения эффективных констант сополимеризации свидетельствуют (табл. 2), что винилпирролидон характеризуется более высокой реакционной способностью и присоединяется предпочтительно к "собственному" радикалу, в то время как азанорборнены легче присоединяются к "чужому" радикалу растущей полимерной цепи. В результате, при всех исходных соотношениях сомономеров образующиеся сополимеры обогащены звеньями более активного винилпирролидона. Полученные данные свидетельствуют также, что активность азанорборненов в большой степени зависит от природы заместителя у N-ато-

Рис. 2. Зависимость начальной скорости сополимеризации МАН (1), БАН (2), ААН (3) и МААН (4) с винилпирролидоном от состава исходной смеси мономеров. [ДАК] = 3 мас. %, $T = 80^{\circ}$ С.

ма. Реакционная активность азанорборненов по отношению к радикалу винилпирролидона повышается в ряду ААН < БАН ≤ МАН < МААН.

Анализ кинетических закономерностей сополимеризации азанорборненов с винилпирролидоном в области малых значений конверсии (менее 10%) показал, что при увеличении содержания азанорборненов в исходной мономерной смеси показатели скорости сополимеризации всех систем значительно снижаются (рис. 2). Наибольшая скорость сополимеризации наблюдается для системы МАН-винилпирролидон, и далее снижается в ряду БАН > ААН > МААН.

При сополимеризации винилпирролидона со всеми изученными азанорборненами соблюдаются обычные для радикальной сополимеризации половинные порядки реакций по инициатору, что свидетельствует о бимолекулярном механизме обрыва растущих цепей. Порядки реакций по сумме мономеров (при их эквимольном соотношении) для систем винилпирролидона с МАН,

Таблица 2. Значения эффективных констант эффективной энергии активации сополимеризации азанорборненов с винилпирролидоном (М) (ДАК, *T* = 80°C)

М	r_1	<i>r</i> ₂	$1/r_2$	$r_1 r_2$	<i>Е*_а</i> , кДж/моль
AAH	0.1 ± 0.01	4.5 ± 0.40	0.22	0.45	84.8 ± 1.5
БАН	0.2 ± 0.02	2.2 ± 0.13	0.45	0.44	77. 9 ± 1.0
MAH	0.3 ± 0.09	2.1 ± 0.11	0.48	0.63	75.7 ± 1.1
MAAH	0.2 ± 0.01	1.5 ± 0.25	0.67	0.30	88.4 ± 1.9

*При соотношении [АНБ] : [ВП] = 20 : 80.

Рис. 3. ИК-спектр МАН (1) и сополимера МАН-винилпирролидон (2) (пленка из хлороформа).

Рис. 4. ИК-спектры сополимеров БАН–винилпирролидон (*1*), ААН–винилпирролидон (*2*) и МААН–винилпирролидон (*3*) (пленка из хлороформа).

БАН, ААН и МААН равны 1.1, 1.2, 1.3 и 1.2 соответственно.

Температурную зависимость скорости реакции азанорборненов с винилпирролидоном исследовали в интервале температуры $70-90^{\circ}$ С при соотношении мономеров [АНБ] : [ВП] = 20 : 80. Значения эффективной энергии активации E_a , вычисленные по уравнению Аррениуса (табл. 2), лежат в области, свойственной для радикальной полимеризации.

Сополимеризация азанорборненов с винилпирролидоном продолжается до глубоких степеней превращения. Предельная конверсия для изученных мономерных пар зависит от содержания азанорборненов в исходной мономерной смеси. Так, при содержании МАН 22 мол. % в исходной мономерной смеси реакция протекает до степеней превращения 75% за 3.5 ч; при содержании МАН 68 мол. % в исходной смеси при проведении реакции в течение 450 мин выход не превышает 50%.

ИК-спектры МАН и его сополимера с винилпирролидоном представлены на рис. 3. В спектре сополимера присутствует сильная полоса в области 1677 см⁻¹, характерная для карбонильной группы винилпирролидона, и триплет при 1423, 1460 и 1492 см⁻¹, относящийся к колебаниям метиленовых групп. Отсутствие полос в области 1500–1670 см⁻¹ однозначно свидетельствует об отсутствии двойных связей в сополимере.

На рис. 4 показаны спектры БАН, ААН и МААН с винилпирролидоном. В ИК-спектре со-

2020

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б том 62 № 1

полимера БАН с винилпирролидоном (спектр 1) присутствует полоса в области 1600 см⁻¹, характерная для колебаний двойных связей бензольного кольца, а в спектре сополимера ААН с винилпирролидоном (спектр 2) можно наблюдать полосу 1576 см⁻¹, относящуюся к колебаниям аллильной группы. В ИК-спектре сополимера МААН с винилпирролидоном (спектр 3) проявляется сильная полоса 1748 см⁻¹, характерная для карбонильной группы звена МААН, при этом также отсутствуют полосы поглощения в области 1500–1670 см⁻¹. В спектрах всех сополимеров азанорборненов с винилпирролидоном можно видеть сильную полосу поглощения карбонильной группы винилпирролидона в области 1677 см⁻¹ и триплет при 1424, 1460 и 1492 см⁻¹, относящийся к колебаниям метиленовых групп. Исходя из полученных данных, можно заключить, что при сополимеризации азанорборненов с винилпирролидоном образуются насыщенные сополимеры.

При сополимеризации может происходить раскрытие двойной связи C=C азанорборненов с образованием структуры (I), но теоретически также возможно появление насыщенной структуры (II):

Схема 3. которая была получена перегруппировкой норборненового радикала:

Обзорные спектры ЯМР¹Н и ЯМР¹³С сополимера МАН с винилпирролидоном представлены на рис. 5 и 6. Видно, что спектры сополимера МАН–винилпирролидон также не содержат сигналов атомов ненасыщенных связей, т.е. сополимеризация протекает исключительно с раскрытием связей С=С азанорборнена.

Следует отметить сложный характер ЯМРспектров сополимеров азанорборненов, что свидетельствует о присутствии разнообразных конформаций цепей синтезированных полимеров. При определении структуры сополимеров химические сдвиги атомов углерода были установлены с использованием спектральных литературных данных для замещенных бициклических соединений [25], а также для норборнана и димеров норборнена [26, 27]. Аддитивное влияние винилпирролидонового звена тоже было принято во внимание.

В спектре ЯМР ¹Н сополимера МАН с винилпирролидоном в области 1.3-1.5 м.д. присутствуют сигналы двух мостиковых протонов H₇-*син* и H₇-*анти* (вставка на рис. 5), что подтверждает образование в результате реакции сополимеризации 5-6 звеньев при раскрытии двойной связи МАН.

Значения химических сдвигов углеродных атомов сополимеров БАН, ААН, МААН с винилпирролидоном представлены в табл. 3. Видно, что значения хим. сдвигов атомов углерода кольца винилпирролидона в сополимере близки к величинам хим. сдвигов соответствующих углеродных атомов в молекуле мономерного винилпирролидона. В спектрах ЯМР ¹³С сополимеров имеются сигналы, соответствующие атомам бензольного

Рис. 5. Спектр ЯМР ¹Н сополимера МАН с винилпирролидоном в CDCl₃.

Рис. 6. Спектр ЯМР ¹³С сополимера МАН с винилпирролидоном в CDCl₃.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б том 62 № 1 2020

Структура	Хим. сдвиги (δ, м.д.) для атомов		
БАН-винилпирролидон +HC $-CH$ $+CH$ $-CH$ $+MC$	18.66 C ₁₇ ; 30.05 C ₁₆ ; 30.17 C ₁₃ ; 42.44 C ₁₈ ; 45.34 C ₁₄ ; 45.65 C ₇ ; 45.77 C ₄ ; 54.33 C ₃ ; 55.07 C ₅ ; 59.97 C ₈ ; 64.38 C ₁ ; 65.88 C ₆ ; 127.1 C ₁₂ ; 128.6 C ₁₀ ; 129.5 C ₁₁ ; 137.7 C ₉ ; 172.8 C ₁₅		
ААН-винилпирролидон +HC $-CH$ $+HC$ $-CH$ $+HC$ $-CH$ $+HC$ $-CH$ $+HC$ $-CH$ $+HC$ $-HC$ $-HC$ $+HC$ $-HC$ $+HC$ $-HC$ $+HC$ $-HC$ $+HC$	18.02 C ₁₅ ; 30.80 C ₁₁ ; 30.99 C ₁₄ ; 43.41 C ₁₂ ; 44.15 C ₄ ; 44.71 C ₁₆ ; 47.62 C ₇ ; 52.02 C ₃ ; 57.41 C ₅ ; 59.71 C ₈ ; 64.12 C ₁ ; 66.13 C ₆ ; 116.1 C ₁₀ ; 136.9 C ₉ ; 173.7 C ₁₃		
МААН-винилпирролидон +HC $-CH$ $+HC$ $-CH$ $+HC$ $-CH$ $+HC$ $-HC$ $-HC$ $-HC$ $-HC$ $+HC$ $-HC$	18.53 C ₁₅ ; 29.53 C ₁₄ ; 30.50 C ₁₁ ; 40.32 C ₁₂ ; 43.30 C ₇ ; 44.98 C ₁₆ ; 47.71 C ₄ ; 51.0 C ₁₀ ; 53.3 C ₅ ; 55.62 C ₃ ; 61.0 C ₈ ; 62.03 C ₆ ; 64.62 C ₁ ; 171.1 C ₉ ; 174.4 C ₁₃		

Таблица 3. Значения химических сдвигов сигналов на спектрах ЯМР ¹³С сополимеров БАН, ААН, МААН с винилпирролидоном

кольца БАН (127.1—137.7 м.д.), аллильной группы ААН (59.71, 116.1, 136.9 м.д.) и метоксикарбонильной группы МААН (51.0, 171.1 м.д.). Анализ значений хим. сдвигов сигналов свидетельствует, что полученные продукты содержат до 70% сополимеров и около 20% экзо- и эндо-стереоизомерных димеров.

Двойная связь аллильной группы ААН не участвует в сополимеризации с винилпирролидоном при всех составах исходной мономерной смеси. Такие результаты согласуются с полученными ранее данными по сополимеризации азанорборненов с SO₂ [16].

Таблица 4. Значения характеристической вязкости растворов сополимеров АНБ с ВП в воде ([АНБ]/[ВП] = = 10/90, ДАК, 80° С) и ММ сополимеров, оцененные по уравнению Леви и Франка [21]

Азанорборнены	η, дл/г	$M \times 10^{-3}$
MAH	0.09	7.3
БАН	0.15	18.44
AAH	0.11	10.49
MAAH	0.13	14.2

Сополимеры винилпирролидона с азанорборненами растворимы в воде, метаноле, хлороформе, ДМСО, ДМФА и не растворимы в диэтиловом эфире, гексане, бензоле. Значения характеристической вязкости сополимеров азанорборненов с винилпирролидоном (состава 10 : 90 мол. %) и молекулярные массы сополимеров, рассчитанные по уравнению Леви и Франка для поливинилпирролидона ([η] = 6.76 М^{0.55} × 10⁻⁴ [24]), представлены в табл. 4.

Таким образом, методом радикальной сополимеризации впервые получены новые водорастворимые сополимеры *N*-замещенных 2-азанорборненов-5 с *N*-винилпирролидоном. Установлено, что сополимеризация азанорборненов с *N*-винилпирролидоном протекает по двойной связи норборненового кольца. Сополимеры *N*-замещенных 2-азанорборненов-5 с *N*-винилпирролидоном растворимы в воде и являются перспективным для разработки новых водорастворимых материалов медицинского назначения.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 19-43-590019-р_урал-а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ishikura Minoru, Murakami Atsushi, Katagiri Nobuya // Heterocycles. 2002. V. 58. P. 317.
- 2. *Mitch C.H., Quimby S.J.* Pat. 6559171 USA. // РЖХим. 2003. № 23. 19О.161П.
- Hodgson D.M., Maxwell C.R., Wisedale R., Matthews I.R., Carpenter K.J., Dickenson A.H., Wonnacott S. // J. Chem. Soc. Perkin Trans. 1. 2001. № 23. P. 3150.
- 4. *Cox Caroline D., Malpass John R., Gordon J., Rosen A.* // J. Chem. Soc. Perkin Trans. 1. 2001. № 19. P. 2372.
- 5. *Schiemann K., Leibrock J.* Pat. 10044905 DE. // РЖХим. 2002. № 22. 190.57П.
- 6. *Fukumoto T., Ikarashi R.* Pat. 1048650 ЕР. // РЖХим. 2001. № 7. 19Н.136П.
- Perrin V., Riveron V., Balme G., Gore J. // J. Chem. Res. Synop. 2000. № 2. P. 60.
- 8. *Hadgson D.M., Maxwell C.R., Matthews I.R.* // Synlett. 1998. № 12. P. 1349.
- 9. *Malpass John.R., Cox Caroline D.* // Tetrahedron Lett. 1999. V. 40. № 7. P. 1419.
- Sunden H., Ibrahem I., Eriksson L., Cordova A. // Angew. Chem. Int. Ed. 2005. V. 44. P. 4877.
- Ruggiu A.A., Lysek R., Moreno-Clavijo E., Moreno-Vargas A.J., Robina I., Vogel P. // Tetrahedron. 2010. V. 66. P. 7309.
- Wojaczyńska E., Wojaczyński J., Kleniewska K., Dorsz M., Olszewski T.K. // Org. Biomol. Chem. 2015. V. 13. P. 6116.
- 13. *Dragutan V., Streck R.* Catalytic Polymerization of Cycloolefins: Ionic, Ziegler-Natta and Ring-Opening Metathesis Polymerization. Amsterdam: Elsevier, 2000.

- Berger G., Fusaro L., Luhmer M., der Lee A., Crousse B., Meyer F. // Tetrahedron Lett. 2014. V. 55. P. 6339.
- Rossegger E., Oláh L., Fischer R., Kaschnitz P., Varga O., Kállay M., Scheipl G., Stelzer F., Wiesbrock F. // Polym. Chem. 2012. V. 3. P. 2760.
- Воробьева А.И., Горбунова М.Н., Сурков В.Д., Муслухов Р.Р., Сатаева Ф.А., Колесов С.В., Толстиков А.Г., Монаков Ю.Б. // Журн. прикл. химии. 2007. Т. 80. № 10. С. 1683.
- 17. *Горбунова М.Н.* // Журн. прикл. химии. 2010. Т. 83. № 8. С. 1324.
- Larsen S.D., Grieco P.A. // J. Am. Chem. Soc. 1985. V. 107. P. 1768.
- 19. Гордон А., Форд Р. Спутник химика. М.: Мир, 1976.
- Торопцева А.М., Белогорская К.В., Бондаренко В.М. Лабораторный практикум по химии и технологии высокомолекулярных соединений. Л.: Химия, 1972.
- Mayo F.R., Lewis F.J. // J. Am. Chem. Soc. 1944. V. 66. P. 1594.
- 22. Finemann M., Ross S.D. // J. Polym. Sci. 1950. V. 5. P. 269.
- Kelen T., Tüdős F. // J. Macromol. Sci., Chem. 1975. V. 9. № 1. P. 27.
- 24. Levy G.B., Frank H.P. // J. Polym. Sci. 1955. V. 17. № 84. P. 247.
- 25. *Clerk P., Simon S.* Spectral Data for Structure Determination of Organic Compounds. Berlin: Springer-Verlag, 1983. P. 380.
- 26. Olah G.A., White A.M., DeMember J.R., Commeyras A., Liu C.Y. // J. Am. Chem. Soc. 1970. V. 92. P. 4627.
- 27. Arnold D.R., Trecker D.J., Whipple E.B. // J. Am. Chem. Soc. 1965. V. 87. P. 2596.