——— ПОЛИМЕРИЗАЦИЯ ———

УДК 541.64:547.313.2:546(46+82)

# ИССЛЕДОВАНИЕ КИНЕТИКИ ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА В ПРИСУТСТВИИ ВОДОРОДА НА ТИТАН-МАГНИЕВЫХ КАТАЛИЗАТОРАХ НА ОСНОВЕ ДАННЫХ О ЧИСЛЕ И РЕАКЦИОННОЙ СПОСОБНОСТИ АКТИВНЫХ ЦЕНТРОВ

© 2020 г. В. В. Сукулова<sup>*a*,\*</sup>, А. А. Барабанов<sup>*a*</sup>, Т. Б. Микенас<sup>*a*</sup>, М. А. Мацько<sup>*a*</sup>, В. А. Захаров<sup>*a*,*b*</sup>

<sup>а</sup> Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук 630090 Новосибирск, пр. академика Лаврентьева, 5, Россия <sup>b</sup> Новосибирский государственный университет 630090 Новосибирск, Пирогова, 2, Россия \*e-mail: sukulova@catalysis.ru Поступила в редакцию 14.05.2019 г. После доработки 13.07.2019 г. Принята к публикации 20.08.2019 г.

С использованием метода ингибирования полимеризации радиоактивным монооксидом углерода <sup>14</sup>СО получены данные о влиянии водорода (агента переноса полимерной цепи) на число активных центров и константу скорости роста при полимеризации этилена на современных высокоактивных титан-магниевых катализаторах различного состава. Найдено, что понижение скорости полимеризации этилена в присутствии водорода связано преимущественно с уменьшением числа активных центров, и эти изменения являются обратимыми при введении и удалении водорода. Предложена схема обратимой реакции временной дезактивации предшественников активных центров, объясняющая полученные результаты. По данным о влиянии концентрации водорода на молекулярную массу полиэтилена и найденным величинам констант скорости роста рассчитана константа скорости переноса полимерной цепи водородом для катализаторов различного состава.

DOI: 10.31857/S230811392001009X

## введение

Известно, что при полимеризации этилена водород выступает эффективным переносчиком полимерной цепи, поэтому его широко применяют для регулирования молекулярной массы при производстве полиолефинов на катализаторах различного состава, в том числе титан-магниевых (TMK). Помимо переноса цепи и снижения молекулярной массы полимера водород заметно влияет на активность катализаторов при полимеризации олефинов [1–17]. Характер влияния зависит от состава каталитической системы и типа мономера.

Так, в случае полимеризации пропилена на катализаторах Циглера—Натта присутствие водорода в полимеризационной среде приводит к увеличению активности катализаторов [1—6]. При полимеризации этилена на нанесенных катализаторах, содержащих *бис*-(имино)пиридиновые комплексы железа и кобальта [7—9] также наблюдается увеличение активности катализаторов в присутствии водорода. Наконец, в случае полимеризации этилена в присутствии водорода на титан-магниевых катализаторах происходит заметное понижение скорости полимеризации [10–16].

При полимеризации пропилена на титан-магниевых катализаторах для объяснения активирующего эффекта водорода в работах [2, 3] предложена схема, включающая реакцию образования временно неактивных ("спящих") центров после 2,1-присоединения пропилена к растущей полимерной цепи и последующую реактивацию этих центров при взаимодействии с водородом.

Результаты работ [5, 6], свидетельствующие о влиянии водорода на число активных центров  $C_P$ и константу скорости роста  $k_p$ , а также данные об этих величинах [7–9] при исследовании полимеризации этилена в отсутствие и присутствии водорода на нанесенных катализаторах, содержащих *бис*-(имино)пиридиновые комплексы Fe(II) и Co(II), соответствуют этой схеме. В этом случае предполагается, что образование временно неактивных "спящих" центров происходит при 2,1внедрении в растущую полимерную цепь низкомолекулярных олигомеров, содержащих двойную связь, которые могут образоваться в таких системах при полимеризации этилена. Данные о величинах  $C_{\rm P}$  и  $k_{\rm p}$  могут дать важную информацию о причинах снижения активности при полимеризации этилена на титан-магниевых катализаторах.

Ранее в работе [17] было исследовано влияние водорода на скорость полимеризации этилена, число активных центров и константу скорости роста при использовании титан-магниевых катализаторов, содержащих очень малое количество титана (≤0.1 мас. %). Эти катализаторы имеют исключительно высокую активность на единицу массы титана за счет высокого числа активных центров [18-20] и являются удобными модельными системами для изучения состава активных центров и механизма полимеризации олефинов. В частности, были получены данные [21] об образовании в этих системах алкилированных моноядерных соединений Ti<sup>3+</sup> в качестве предшественников активных центров полимеризации этилена.

В работе [17] для таких модельных катализаторов методом обрыва полимеризации этилена радиоактивным монооксидом углерода <sup>14</sup>СО было установлено, что понижение скорости при введении водорода обусловлено, главным образом, уменьшением рассчитываемой величины  $k_p$ , и предложена схема для объяснения этого необычного результата.

В настоящей работе получены новые данные о влиянии водорода на скорость полимеризации, число активных центров и константы скорости роста при полимеризации этилена на высокоактивных титан-магниевых катализаторах с более высоким содержанием титана (1-2 мас. %). Такие катализаторы имеют высокую активность на единицу массы катализатора, соответствующую известным промышленным образцам. Использованы две модификации таких катализаторов, на которых образуется полиэтилен с различной молекулярной массой при одинаковом содержании водорода. Найдено, что для этих катализаторов, в отличие от модельных катализаторов с низким содержанием титана, понижение скорости полимеризации в присутствии водорода связано преимущественно с уменьшением числа активных центров.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

#### Катализаторы

Носители для катализаторов ТМК-Н и ТМК-М получали по методикам [22, 23] при использовании в качестве исходного магнийорганического соединения раствора Mg<sub>3</sub>Ph<sub>4</sub>Cl<sub>2</sub> в диизоамиловом эфире. Катализаторы ТМК-Н и ТМК-М (содержащие 1.0 и 1.7 мас. % титана соответственно) синтезировали путем обработки носителей тетра-

хлоридом титана. Катализатор ТМК-М содержит в своем составе этокси-группы в количестве 7.5 мас. %. Катализаторы имеют средний размер частиц 4—6 мкм и узкое распределение частиц по размерам.

#### Полимеризация этилена

Опыты с ингибированием полимеризации этилена радиоактивным монооксидом углерода <sup>14</sup>СО проводили в автоклаве из нержавеющей стали объемом 0.5 л. Перед началом полимеризации в реактор загружали катализатор (5.5-6.8 мг) в виде суспензии в гептане в запаянной стеклянной ампуле и выдерживали 90 мин при 80°С и остаточном давлении  $2 \times 10^{-2}$  торр. Полимеризацию проводили в суспензии гептана (150 мл) при постоянном давлении этилена (4 бар) и температуре (80°С). Необходимое количество водорода вводили в автоклав до начала реакции (мольное соотношение  $[H_2]/[C_2H_4]$  в газовой фазе реактора варьировали в интервале 0-1). Концентрация активатора AlEt<sub>3</sub> в реакторе составляла 2.2 ммоль/л, мольное соотношение [Al]/[Ti] в гептане для катализатора ТМК-М – 170, для катализатора ТМК-Н – 210. Реакцию начинали, разбивая ампулу с катализатором с помощью специального устройства внутри реактора. В нужный момент в реакционную среду вводили 0.5 бар <sup>14</sup>СО для ингибирования полимеризации, выдерживали 15 мин и добавляли изопропиловый спирт для разложения компонентов катализатора. В специальных экспериментах с удалением водорода газовую фазу из реактора скачивали и вволили в реактор чистый этилен. Подробное описание эксперимента по полимеризации этилена приведено в работе [17].

Серию опытов с различной концентрацией водорода без обрыва полимеризации осуществляли в стальном реакторе объемом 0.85 л в среде гептана (250 мл) в течение 1 ч. Масса катализатора в этих опытах составляла 5.5–6.8 мг. Остальные условия создавали аналогично радиохимическим опытам.

Концентрацию водорода и этилена в гептане рассчитывали с помощью констант Генри при температуре 80°С:  $K_{\rm H}^{\rm H_2} = 7.64 \times 10^{-3}$  моль/л бар [24] и  $K_{\rm H}^{\rm C_2H_4} = 0.071$  моль/л бар [25, 26] соответственно.

## Определение числа активных центров и константы скорости роста

Подробное описание методики определения величин  $C_{\rm P}$  и  $k_{\rm p}$  с помощью ингибирования полимеризации этилена на ТМК с использованием <sup>14</sup>СО представлено в работах [20, 27]. Для удаления побочных радиоактивных продуктов реакции, образующихся при ингибировании полимеризации [5, 6], в настоящей работе проводили двойное переосаждение полимеров в ундекане до достижения постоянной радиоактивности полимеров [28].

Величины  $C_{\rm P}$  и  $k_{\rm p}$  находили из радиоактивности полимера, измеренной с применением жидкостного сцинтилляционного счетчика "Intertechnique SL-4000". Расчеты проводили с использованием уравнений, приведенных в работах [17, 28–30].

#### Определение свойств полимеров

Молекулярно-массовые характеристики полимеров  $M_n$  и  $M_w$  измерены при помощи метода гель-проникающей хроматографии на приборе "PL 220 C". Измерения проводили при 160°C; растворителем служил 1,2,4-трихлорбензол; скорость потока составляла 1 см<sup>3</sup>/мин. Калибровку прибора осуществляли на стандартных образцах полистирола и полиэтилена с узким ММР.

Характеристическую вязкость полимера определяли в декалине при 135°С на вискозиметре Уббелоде. Средневязкостную молекулярную массу рассчитывали по формуле

$$M_{\rm n} = [\eta] K^{-1} \alpha^{-1}, \tag{1}$$

где  $\eta$  — характеристическая вязкость полимера,  $K = 67.7 \times 10^{-5}$  и  $\alpha = 0.67$  — коэффициенты Марка—Хаувинка [31].

## РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

## Влияние водорода на величины C<sub>P</sub> и k<sub>p</sub> при полимеризации этилена на катализаторах TMK-M и TMK-H

На рис. 1 представлены зависимости скорости полимеризации этилена от времени для катализаторов ТМК-М и ТМК-Н в отсутствие и присутствии водорода. Видно, что при введении водорода в полимеризационную среду при мольном соотношении  $[H_2]/[C_2H_4] = 0.25$  в газовой фазе реактора происходит уменьшение скорости полимеризации в 1.7-2.2 раза по сравнению с полимеризацией без водорода. При дальнейшем увеличении мольного соотношения водород : этилен в газовой фазе до единицы, скорость полимеризации продолжает понижаться, но в значительно меньшей степени. При этом для катализатора ТМК-М в присутствии водорода наблюдается небольшое понижение активности в ходе полимеризации, в то время как катализатор ТМК-Н сохраняет относительно стабильную кинетическую кривую в присутствии водорода.

В табл. 1 приведены величины  $C_{\rm P}$  и  $k_{\rm p}$ , полученные при полимеризации этилена в отсутствие и присутствии водорода на исследованных катализаторах. Для обеих модификаций катализаторов число активных центров в отсутствие водоро-



**Рис. 1.** Влияние водорода на скорость полимеризации этилена *w* на катализаторах ТМК-М (а) и ТМК-Н (б); мольное соотношение  $[H_2]/[C_2H_4] = 0$  (*1*, *4*), 0.25 (*2*, *5*) и 1 (*3*, *6*). Момент введения <sup>14</sup>СО показан стрелками. Здесь и на рис. 2, 3 номера кривых соответствуют но-мерам опытов в таблицах.

да (опыты 1, 4) имеет близкое значение (0.116 и 0.130 моль/мольті для катализаторов ТМК-М и ТМК-Н соответственно). Понижение скорости полимеризации со временем в присутствии водорода для катализатора ТМК-М (рис. 1а) может быть обусловлено уменьшением числа активных центров. Следует отметить, что активные центры катализатора ТМК-М очень чувствительны к введению водорода, т.е. даже при небольшом его количестве ( $[H_2]/[C_2H_4] = 0.25$ ) их число понижается с 0.116 до 0.062 моль/моль<sub>ті</sub> (опыты 1, 2), в отличие от катализатора ТМК-Н, в котором введение аналогичного количества водорода не приводит к существенному уменьшению числа активных центров (опыты 4, 5) и к нестационарности кинетической кривой (рис. 1б).

2020

Nº 1

| Опыт, № | Мольное<br>соотношение<br>H <sub>2</sub> /C <sub>2</sub> H <sub>4</sub> в газовой<br>фазе | <i>w</i> * × 10 <sup>-3</sup> ,<br>кг <sub>ПЭ</sub> /моль <sub>Ті</sub> ч бар | С <sub>Р</sub> , моль/моль <sub>Ті</sub> | $k_{\rm p} 	imes 10^{-3}$ , л/моль с |  |  |  |  |
|---------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|--------------------------------------|--|--|--|--|
| TMK-M   |                                                                                           |                                                                               |                                          |                                      |  |  |  |  |
| 1       | 0                                                                                         | 8.5                                                                           | 0.116                                    | 10.2                                 |  |  |  |  |
| 2       | 0.25                                                                                      | 4.0                                                                           | 0.062                                    | 9.0                                  |  |  |  |  |
| 3       | 1                                                                                         | 3.5                                                                           | 0.050                                    | 9.6                                  |  |  |  |  |
| ТМК-Н   |                                                                                           |                                                                               |                                          |                                      |  |  |  |  |
| 4       | 0                                                                                         | 11.2                                                                          | 0.130                                    | 11.9                                 |  |  |  |  |
| 5       | 0.25                                                                                      | 6.6                                                                           | 0.110                                    | 9.0                                  |  |  |  |  |
| 6       | 1                                                                                         | 5.2                                                                           | 0.069                                    | 10.8                                 |  |  |  |  |
| 7**     | $0 \rightarrow 0.25 \rightarrow 0$                                                        | 12.6                                                                          | 0.160                                    | 11.2                                 |  |  |  |  |

Таблица 1. Влияние водорода на число активных центров и константу скорости роста при полимеризации этилена на катализаторах ТМК-М и ТМК-Н

Примечание. Условия полимеризации:  $T = 80^{\circ}$ С; 4 бар С<sub>2</sub>H<sub>4</sub>; [AlEt<sub>3</sub>] = 2.2 ммоль/л, [Al]/[Ti] = 170 и 210 для ТМК-М и ТМК-Н соответственно; [катализатор] = 0.037-0.045 г/л; зависимости скорости от времени представлены на рис. 1.

\*Скорость полимеризации в момент ввода <sup>14</sup>СО.

\*\*Зависимость скорости от времени представлена на рис. 2.

Введение водорода в полимеризационную среду при мольном соотношении  $[H_2]/[C_2H_4] = 1$  (табл. 1, ср. опыты 1, 3 и 4, 6 для катализаторов ТМК-М и ТМК-Н соответственно) приводит в обоих случаях к заметному понижению числа активных центров (в 2.3 и 1.9 раза для катализаторов ТМК-М и ТМК-Н соответственно). Величины  $k_p$  при введении водорода меняются незначительно и находятся в пределах (10.2–9.0) × 10<sup>3</sup> л/моль с для катализатора ТМК-М и (11.9–9.0) × 10<sup>3</sup> л/моль с для катализатора ТМК-Н. При этом видна небольшая тенденция к снижению величины  $k_p$  в 1.1.–1.2 раза при полимеризации в присутствии водорода.

Для проверки обратимости изменения величин  $C_{\rm P}$  и  $k_{\rm p}$  в присутствии водорода, был проведен специальный опыт с введением и удалением водорода из реакционной среды, при полимеризации этилена на катализаторе ТМК-Н, обладающем высокой активностью и станионарной скоростью полимеризации. В этом опыте полимеризацию этилена начинали без водорода, затем вводили его при мольном соотношении  $[H_2]/[C_2H_4] = 0.25$  в газовой фазе. Наблюдали уменьшение скорости полимеризации в 3 раза. При удалении водорода из полимеризационной среды, скорость полимеризации возвращалась на прежний уровень (рис. 2). Так, полученные в табл. 1 в опыте 7 величины  $C_{\rm P}$  и  $k_{\rm p}$  после удаления водорода были близки к значениям в опыте 4, проведенном без водорода. Таким образом, изменения скорости полимеризации и величин Ср и  $k_{\rm p}$  при введении

водорода обусловлены обратимыми процессами трансформации активных центров в ходе полимеризации.

Ранее было найдено [17], что для модельных титан-магниевых катализаторов с низким содержанием титана ( $\leq 0.1$  мас. %) уменьшение скорости полимеризации в присутствии водорода происходит преимущественно за счет величины  $k_p$ . Вместе с тем, при высоком отношении [H<sub>2</sub>]/[C<sub>2</sub>H<sub>4</sub>] = 1 видно небольшое понижение числа активных центров. Также в работе [17] была предложена схема трансформации активных центров при полимеризации этилена в присутствии водорода, объясняющая полученные результаты:



20





Рис. 2. Изменение скорости от времени при полимеризации этилена на катализаторе ТМК-Н при введении и удалении водорода в процессе полимеризации.

Схема включает реакции образования поверхностного гидридного соединения титана  $Cl_xTi-H$  в результате взаимодействия водорода с активным центром  $C_P$ , содержащим растущую полимерную цепь (I); взаимодействия триэтилалюминия с гидридным соединением титана с образованием диэтилалюминийгидрида AlEt<sub>2</sub>H и предшественника активных центров  $Cl_xTi-Et$  (II); обратимой адсорбции диэтилалюминийгидрида на предшественниках активных центров, присутствующих в реакционной среде; эта реакция приводит к понижению числа активных центров при полимеризации в присутствии водорода (III); обратимой адсорбции АlEt<sub>2</sub>H на активных центрах  $C_P$  с образованием

ем временно неактивных ("спящих") центров  $C_P^d$ , содержащих связь Ті-полимер (**IV**). При ингибировании полимеризации введением <sup>14</sup>CO, радиоактивная метка входит как в растущую полимерную цепь в активных центрах  $C_P$ , так и в полимерную цепь в "спящих" центрах. В этом случае число радиоактивных меток в полимере является

суммой величин ( $C_P + C_P^d$ ) и расчет величины  $k_p$  по числу радиоактивных меток приводит к более низким значениям величины  $k_p$  по сравнению с опытами, проведенными в отсутствие водорода. Такой результат был получен в работе [17] при исследовании влияния водорода на скорость полимеризации этилена для катализаторов с низким содержанием титана. Так, скорость полимеризации этилена в присутствии водорода понижается

преимущественно за счет уменьшения рассчитываемой величины  $k_p$ , вследствие образования временно неактивных ("спящих") центров по реакции (IV). При высоком содержании водорода дополнительно наблюдается снижение величины  $C_p$ за счет реакции (III).

В случае катализаторов с высоким содержанием титана, использованных в настоящей работе, понижение скорости полимеризации в присутствии водорода происходит за счет уменьшения числа активных центров в широкой области содержания водорода в соответствии с реакцией (III).

Как отмечено в работе [22], катализатор ТМК-М обладает повышенной чувствительностью к регулированию молекулярной массы водородом по сравнению с катализатором ТМК-Н. Поэтому можно предположить, что при введении водорода в случае катализатора ТМК-М образуется больше гидридов AlEt<sub>2</sub>H, и в соответствии с реакцией (II) значительная часть активных центров может находиться в виде предшественников Срг при невысокой концентрации водорода. Это приводит к тому, что для катализатора ТМК-М понижение скорости полимеризации этилена происходит в основном за счет уменьшения величины  $C_{\rm P}$  (ср. опыты 1 и 2 в табл. 1) и блокирования предшественников активных центров по реакции (III). Для катализатора ТМК-Н уменьшение скорости полимеризации при невысоком содержании водорода  $[H_2]/[C_2H_4] = 0.25$  (опыт 5) происходит как за счет уменьшения величины  $C_{\rm P}$ , так и за счет

## СУКУЛОВА и др.

| ii iiiiii ii iipii puoi |                                                                                           |                                                                               |       |         |     |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------|---------|-----|--|--|--|--|
| Опыт, №                 | Мольное<br>соотношение<br>H <sub>2</sub> /C <sub>2</sub> H <sub>4</sub> в<br>газовой фазе | <i>w</i> * × 10 <sup>−3</sup> ,<br>кг <sub>ПЭ</sub> /моль <sub>Ті</sub> ч бар | $M_n$ | $M_{w}$ | Ð   |  |  |  |  |
| TMK-M                   |                                                                                           |                                                                               |       |         |     |  |  |  |  |
| 1                       | 0                                                                                         | 7.0                                                                           | 220** | 1100*** | _   |  |  |  |  |
| 2                       | 0.125                                                                                     | 4.7                                                                           | 44    | 220     | 5.0 |  |  |  |  |
| 3                       | 0.25                                                                                      | 4.2                                                                           | 26    | 130     | 5.0 |  |  |  |  |
| 4                       | 0.5                                                                                       | 3.9                                                                           | 14    | 85      | 6.1 |  |  |  |  |
| ТМК-Н                   |                                                                                           |                                                                               |       |         |     |  |  |  |  |
| 5                       | 0                                                                                         | 9.6                                                                           | 347** | 1700*** | _   |  |  |  |  |
| 6                       | 0.125                                                                                     | 5.6                                                                           | 63    | 310     | 4.9 |  |  |  |  |
| 7                       | 0.25                                                                                      | 6.5                                                                           | 43    | 210     | 4.9 |  |  |  |  |
| 8                       | 0.5                                                                                       | 5.7                                                                           | 30    | 150     | 5.0 |  |  |  |  |

Таблица 2. Данные о молекулярно-массовых характеристиках полимеров, полученных на катализаторах ТМК-М и ТМК-Н при разном мольном соотношении [H<sub>2</sub>]/[C<sub>2</sub>H<sub>4</sub>] в газовой фазе

Примечание. Условия полимеризации:  $T = 80^{\circ}$ C; 4 бар C<sub>2</sub>H<sub>4</sub>; [AlEt<sub>3</sub>] = 2.2 ммоль  $\pi^{-1}$ ; [катализатор] = 0.037-0.045 г/л; время 1 ч. \*Средняя скорость полимеризации.

\*\*Значения рассчитаны из данных средневязкостной молекулярной массы  $M_{\eta}/D$  (D – полидисперсность в опыте с  $[H_2]/[C_2H_4] = 0.125$ ).

\*\*\*Средневязкостная молекулярная масса  $M_{\eta}$ , рассчитанная из характеристической вязкости  $\eta$ .

уменьшения рассчитываемой величины константы скорости роста (ср. опыты 4 и 5). Таким образом, в этом случае оба процесса — блокирование предшественников активных центров по реакции (III) и блокирование самих активных центров по реакции (IV) — проходят в близком соотношении. При увеличении содержания водорода преобладает процесс блокирования предшественников активных центров по реакции (III), поскольку в этих условиях их доля растет вместе с увеличением концентрации диэтилалюминийгидрида. В результате, в этих условиях (опыты 5 и 6) наблюдается значительное понижение числа активных центров.

В целом, полученные в настоящем исследовании сведения о влиянии водорода на величины  $C_P$ и  $k_p$  для катализаторов ТМК-Н и ТМК-М, а также результаты работы [17] для модельных катализаторов с низким содержанием титана соответствуют схеме превращений активных центров при полимеризации этилена в присутствии водорода. Однако эти катализаторы существенно отличаются относительным вкладом реакций временной дезактивации предшественников активных центров (III) и дезактивации активных центров (IV) при полимеризации в присутствии водорода. Такое различие приводит к разным выводам относительно роли изменения числа активных центров и рассчитываемой величины константы скорости роста в наблюдаемом эффекте уменьшения скорости полимеризации этилена в присутствии водорода.

## Влияние соотношения [H<sub>2</sub>]/[C<sub>2</sub>H<sub>4</sub>] на молекулярно-массовые характеристики полиэтилена, полученного на катализаторах TMK-M и TMK-H, и расчет константы скорости переноса цепи с водородом

В табл. 2 показано влияние концентрации водорода (мольное соотношение  $[H_2]/[C_2H_4]$  в газовой фазе в реакторе при постоянной концентрации этилена) на молекулярную массу и молекулярно-массовое распределение полиэтилена, полученного на титан-магниевых катализаторах ТМК-М и ТМК-Н.

В отсутствие водорода образуются полимеры с высокой молекулярной массой, которую трудно определить методом гель-проникающей хроматографии (табл. 2, опыты 1 и 5). В этом случае измеряли характеристическую вязкость получаемых полимеров и рассчитывали средневязкостную молекулярную массу  $M_{\eta}$ , близкую к величине  $M_{w}$ . Величины  $M_{n}$  в данных опытах рассчитывали по

| Опыт, № | Катализатор | $k_{tr}^{\mathrm{H}}/k_{\mathrm{p}}$ | $k_{\rm p} 	imes 10^{-3}$ , л/моль с | $k_{tr}^{\mathrm{H}},$ л/моль с |
|---------|-------------|--------------------------------------|--------------------------------------|---------------------------------|
| 1       | ТМК-М       | 0.036                                | 10.2                                 | 370                             |
| 2       | ТМК-Н       | 0.017                                | 11.9                                 | 200                             |

Таблица 3. Константы скорости роста и переноса цепи водородом при полимеризации этилена на катализаторах ТМК-М и ТМК-Н

Примечание. Зависимость для определения величины  $k_{tr}^{\rm H}/k_{\rm p}$  представлена на рис. 3.

формуле  $M_n = M_{\eta}/D$ , где D – полидисперсность в опытах с минимальным количеством водорода (опыты 2 и 6).

При полимеризации в отсутствие водорода величины  $M_{\eta}$  для полимера, полученного на катализаторе ТМК-М, в 1.5 раза ниже по сравнению с величиной  $M_{\eta}$  для полимера, полученного на катализаторе ТМК-Н. Введение водорода в обоих случаях влечет резкое снижение молекулярной

Ранее было показано, что при полимеризации этилена на ТМК в присутствии водорода основной реакцией ограничения цепи является перенос цепи с водородом [32]. С учетом этих данных, известное выражение для степени полимериза-

массы полимеров.



**Рис. 3.** Зависимость для определения величин  $k_{tr}^{\rm H}/k_{\rm p}$  для катализаторов ТМК-М (*1*) и ТМК-Н (*2*). 1/*P*<sub>n</sub> –  $-1/P_n^0 = (k_{tr}^{\rm H}/k_{\rm p})$  ([H<sub>2</sub>]/[C<sub>2</sub>H<sub>4</sub>]);  $k_{tr}^{\rm H}/k_{\rm p} = 0.0357 \pm \pm 0.0002$  (*1*) и 0.017 ± 0.001 (2).

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б том 62

ции [33] можно преобразовать к следующему более простому виду:

$$\frac{1}{P_n} - \frac{1}{P_n^0} = \frac{k_{tr}^{\rm H} [{\rm H}_2]^m}{k_{\rm p} [{\rm C}_2 {\rm H}_4]},\tag{2}$$

где  $\overline{P_n}$  – среднечисловая степень полимеризации;  $\overline{P_n^0}$  – среднечисловая степень полимеризации в опыте без водорода, рассчитанная по формуле  $\overline{P_n^0} = M_{\eta}/(28D)$ , где  $M_{\eta}$  – средневязкостная молекулярная масса, D – полидисперность, полученная в опыте с минимальным количеством водорода (табл. 3, опыт 2);  $[C_2H_4]$  и  $[H_2]$  – значения концентрации этилена и водорода в гептане;  $k_{lr}^H$  и  $k_p$  – константы скорости переноса цепи с водородом и роста соответственно; m – порядок реакции переноса цепи с водородом, который, согласно литературным данным о полимеризации этилена с водородом, близок к единице [12, 18].

На рис. 3 приведена зависимость  $(1/P_n - 1/P_n^0)$  от соотношения [H<sub>2</sub>]/[C<sub>2</sub>H<sub>4</sub>], построенная по данным о влиянии концентрации водорода на молекулярную массу полимеров, полученных на катализаторах ТМК-М и ТМК-Н (табл. 2). Из этой зависимости найдены  $k_n^H/k_p$  (табл. 3). Используя величины константы скорости роста, полученные в опытах без водорода (10.2 × 10<sup>3</sup> и 11.9 × 10<sup>3</sup> л/моль с для катализаторов ТМК-М и ТМК-Н соответственно), были рассчитаны вели-

чины  $k_{tr}^{\rm H}$  (табл. 3). Видно, что константа скорости переноса цепи с водородом для модифицированного катализатора ТМК-М (370 л/моль с) в 1.8 раза выше, чем величина  $k_{tr}^{\rm H}$  для катализатора ТМК-Н (200 л/моль с), которая близка к величине  $k_{tr}^{\rm H}$ , полученной в работе [17] для модельного катализатора ТМК-А с низким содержанием титана и не модифицированного этокси-группами (160 л /моль с).

2020

Nº 1

## ЗАКЛЮЧЕНИЕ

Получены данные о влиянии водорода на число активных центров и константы скорости роста цепи при полимеризации этилена на высокоактивных титан-магниевых катализаторах ТМК-М и ТМК-Н, содержащих 1.0–1.7 мас. % Ті. Найдено, что снижение скорости полимеризации при вводе водорода в реакционную среду преимущественно связано с уменьшением числа активных центров. С этой точки зрения, катализаторы ТМК-М и ТМК-Н отличаются от ранее исследованных модельных катализаторов с низким содержанием титана (<0.1 мас. %), в которых понижение скорости полимеризации происходит в основном за счет рассчитываемой величины константы скорости роста.

Показано, что уменьшение величины С<sub>Р</sub> для катализатора ТМК-М происходит при вводе даже небольшого количества водорода (мольное соотношение в газовой фазе  $[H_2]/[C_2H_4] = 0.25)$ , в то время как в случае катализатора ТМК-Н введение аналогичного количества водорода приводит к небольшому понижению величин C<sub>P</sub> и k<sub>n</sub> в равной степени, и только при мольном соотношении  $[H_2]/[C_2H_4] = 1$  заметно понижение числа активных центров. Установлено, что уменьшение величины С<sub>Р</sub> при введении водорода в полимеризационную среду является обратимым процессом. Полученные данные могут быть объяснены с использованием схемы, включающей реакции образования гидридов титана в результате взаимодействия активных центров с водородом; взаимодействия гидридов титана с AlEt<sub>3</sub> с образованием молекул AlEt<sub>2</sub>H их обратимой адсорбцией как на активных центрах, так и на их предшественниках.

Авторы выражают благодарность М.П. Ваниной за анализ молекулярно-массовых характеристик образцов полимеров.

Работа выполнена в рамках Госзадания Института катализа Сибирского отделения РАН и частично поддержана Министерством науки и высшего образования Российской Федерации.

# СПИСОК ЛИТЕРАТУРЫ

- Guastalla G., Giannini U. // Makromol. Chem. Rapid Commun. 1983. V. 4. P. 519.
- Busico V., Cipullo R., Corradini P. // Makromol. Chem. Rapid Commun. 1992. V. 13. P. 15.
- Chadwick J.C., Miedema A., Sudmeijer O. // Makromol. Chem. 1994. V. 195. P. 167.
- Mori H., Tashino K., Terano M. // Macromol. Chem. Phys. 1995. V. 196. P. 651.

- Bukatov G.D., Goncharov V.S., Zakharov V.A. // Macromol. Chem. 1986. V. 187. P. 1041.
- 6. *Bukatov G.D., Zakharov V.A.* // Macromol. Chem. Phys. 2001. V. 202. P. 2003.
- Barabanov A.A., Bukatov G.D., Zakharov V.A., Semikolenova N.V., Mikenas T.B., Echevskaja L.G., Matsko M.A. // Macromol. Chem. Phys. 2006. V. 207. P. 1368.
- 8. Barabanov A.A., Bukatov G.D., Zakharov V.A. // J. Polym. Sci., Polym. Chem. 2008. V. 46. P. 6621.
- Barabanov A.A., Bukatov G.D., Zakharov V.A., Semikolenova N.V., Echevskaja L.G., Matsko M.A. // Macromol. Chem. Phys. 2008. V. 209. P. 2510.
- Albizzati E., Giannini U., Morini G., Galimberti M., Barino I., Scardamaglia R. // Macromol. Symp. 1995. V. 89. P. 73.
- 11. Soares J.B.P., Hamielec A.E. // Polymer. 1996. V. 37. P. 4607.
- Echevskaya L.G., Matsko M.A., Mikenas T.B., Nikitin V.E., Zakharov V.A. // J. Appl. Polym. Sci. 2006. V. 102. P. 5436.
- 13. Grieveson B.M. // Macromol. Chem. 1965. V. 84. P. 93.
- Kissin Yu.V. // J. Polym. Sci., Polym. Chem. 2001. V. 39. P. 1681.
- Kissin Yu.V., Rishina L.A. // Polymer Science A. 2008.
  V. 50. № 11. P. 1101.
- 16. Kissin Yu.V., Mink R.I., Nowlin T.E., Brandolini A.J. // Top. Catal. 1999. V. 7. P. 69.
- 17. Sukulova V.V., Barabanov A.A., Mikenas T.B., Matsko M.A., Zakharov V.A. // J. Mol. Catal. 2018. V. 445. P. 299.
- Nikolaeva M.I., Mikenas T.B., Matsko M.A., Echevskaya L.G., Zakharov V.A. // J. Appl. Polym. Sci. 2010. V. 115. P. 2432.
- 19. Zakharov V.A., Bukatov G.D., Barabanov A.A. // Macromol. Symp. 2004. V. 213. P. 19.
- Barabanov A.A., Sukulova V.V., Matsko M.A., Zakharov V.A. // J. Mol. Catal. Chem. 2015. V. 396. P. 328.
- Koshevoy E.I., Mikenas T.B., Zakharov V.A., Shubin A.A., Barabanov A.A. // J. Phys. Chem. C. 2016. V. 120. P. 1121.
- Mikenas T.B., Koshevoy E.I., Cherepanova S.V., Zakharov V.A. // J. Polym. Sci, Part A, Polym. Chem. 2016. V. 54. P. 2545.
- 23. *Mikenas T.B., Koshevoy E.I., Zakharov V.A.* // J. Polym. Sci, Part A, Polym. Chem. 2017, V. 55. P. 2298.
- 24. Веселовская Е.И., Северова Н.Н., Дунтов Ф.И. Сополимеры этилена. Москва: Химия, 1983. 1–224 р.
- 25. *Kissin Yu.V.* // J. Polym. Sci, Part A, Polym. Chem. 2003. V. 41. P. 1745.
- 26. *Meshkova I.N., Ushakova T.M., Gul'tceva N.M.* // Polymer Science A. 2004. V. 46. № 12. P. 1213.

- 27. Barabanov A.A., Zakharov V.A. // Catal. Commun. 2014. V. 45. P. 79.
- Barabanov A.A., Bukatov G.D., Zakharov V.A., Semikolenova N.V., Echevskaja L.G., Matsko M.A. // Macromol. Chem. Phys. 2005. V. 206. P. 2292.
- 29. Barabanov A.A., Semikolenova N.V., Matsko M.A., Echevskaja L.G., Zakharov V.A. // Polymer. 2010. V. 51. P. 3354.
- Barabanov A.A., Semikolenova N.V., Bukatov G.D., Matsko M.A., Zakharov V.A. // J. Polym. Res. 2012.
   V. 19. № 11. P. 9998.
- Wilson T.P., Hurley C.P. // J. Polym. Sci., Polym. Symp. 1963. V. 1. P. 281.
- Nikolaeva M.I., Mikenas T.B., Matsko M.A., Echevskaya L.G., Zakharov V.A. // J. Appl. Polym. Sci. 2011. V. 122. № 5. P. 3092.
- 33. Natta G., Pasquon I. // Adv. Catal. 1959. V. 11. P. 1.