ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б, 2020, том 62, № 3, с. 183–189

_ МОДИФИКАЦИЯ _____ ПОЛИМЕРОВ

УДК 541.64:533.15

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПРИРОДЫ ХИМИЧЕСКОЙ МОДИФИКАЦИИ АДДИТИВНОГО ПОЛИ(5-ВИНИЛ-2-НОРБОРНЕНА) НА ГАЗОПРОНИЦАЕМОСТЬ УГЛЕВОДОРОДОВ

© 2020 г. А. И. Возняк^{*a*}, И. Л. Борисов^{*a*}, Е. В. Бермешева^{*a,b*}, Д. П. Зарезин^{*a*}, А. В. Волков^{*a*}, Е. Ш. Финкельштейн^{*a*}, М. В. Бермешев^{*a,b*}

^а Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук 119991 Москва, Ленинский пр., 29, Россия ^b Московский государственный медицинский университет имени И.М. Сеченова 119991 Москва, Трубецкая ул., 8, Россия *e-mail: bmv@ips.ac.ru Поступила в редакцию 02.12.2019 г. После доработки 20.01.2020 г. Принята к публикации 03.02.2020 г.

Исследована газопроницаемость углеводородов (CH₄, C₂H₆, *н*-C₄H₁₀) через четыре полинорборнена, полученных модификацией аддитивного поли(5-винил-2-норборнена). При модификации в боковые заместители были введены как полярные (оксирановые и тиоацетильные фрагменты), так и неполярные заместители (циклопропильные и этильные группы). Введение полярных групп привело к снижению газопроницаемости, в то время как гидрирование или циклопропанирование аддитивного поли(5-винил-2-норборнена) – к возрастанию газопроницаемости. Несмотря на то, что синтезированные полимеры являются стеклообразными и не микропористыми материалами, они обладают необычной для таких полимеров особенностью – селективностью разделения углеводородов, контролируемой растворимостью ($\alpha(\mu$ -C₄H₁₀/CH₄) \gg 1). Среди изученных полимеров оптимальная комбинация газопроницаемости и селективности обнаружена для циклопропанированного полимера.

DOI: 10.31857/S230811392003016X

введение

Химическая модификация полимеров является одним из наиболее эффективных подходов к новым полимерным материалам и направленному приданию полимерам требуемых свойств. Перспективный класс полимеров для проведения таких модификаций – полициклоолефины. Эти полимеры, с одной стороны, обладают высокими температурами стеклования, термической стабильностью и рядом других интересных свойств (высокая прозрачность, низкое влагопоглощение и т.д.) [1–4], а, с другой стороны, они могут быть получены полимеризацией продуктов нефтехимии – циклоалкенов, что делает их относительно доступными материалами. Высокоактивными мономерами такого типа являются норборнены напряженные циклоалкены, синтезируемые с использованием реакций Дильса–Альдера. [2+2+2]циклоприсоединения или модификации норборнадиена-2,5 [5-10]. Эти соединения могут вовлекаться в полимеризацию по нескольким механизмам, образуя полимеры с различным строением основных цепей и разными свойствами [5, 11-14]. Наиболее изученные направления их полимеризации – метатезисная полимеризация с раскрытием цикла и аддитивная (винильная) полимеризация. В случае метатезисной полимеризации образуются полимеры с ненасыщенными основными цепями, и их необходимо модифицировать, чтобы придать свойствам требуемую стабильность. Двойные связи в рассматриваемых полимерах стерически загруженные, и в некоторых случаях их трудно количественно функционализировать [15, 16]. Аддитивная полимеризация приводит к полимерам с насыщенными основными цепями и более доступными функциональными группами, находящимися в боковых заместителях. Модификация таких полимеров открывает пути к направленному созданию новых полимерных материалов с заданными свойствами, обладающих высокими температурами стеклования и сочетающих в себе термическую и химическую стабильность. Одним из перспективных исходных аддитивных полимеров для проведения таких модификаций является поли(5-винил-2-норборнен), получаемый из промышленно-доступного 5-винил-2-норборнена [17-20]. В настоящей работе мы изучили влияние четырех разных модификаций (гидрирование, циклопропанирование, эпоксидирование и тиоацетилирование) на газотранспортные свойства получаемых полимеров, в частности на газопроницаемость углеводородов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Поли(5-винил-2-норборнен) (**PVNB**), поли(5этил-2-норборнен) (**H-PVNB**), поли(5-циклопропил-2-норборнен) (**Cp-PVNB**), поли(5-оксиран-2норборнен) (**O-PVNB**), поли(5-(тиоацетил)этил-2норборнен) (**S-PVNB**) синтезировали согласно методикам, описанным ранее в работах [21, 22].

Газопроницаемость полимеров изучали с использованием пленок толщиной 100 мкм, отлитых из 2–5%-ных растворов полимеров в толуоле или хлороформе. После испарения растворителя пленки вакуумировали в течение 24 ч при комнатной температуре до постоянной массы. Коэффициенты проницаемости и диффузии мембран определяли методом Дейнса–Баррера на установке "Helmholtz–Zentrum Geesthacht", оснащенной датчиком давления "Baratron" с точностью до 10⁻⁷ атм [23]. Коэффициент растворимости находили как отношение коэффициента проницаемости к коэффициенту диффузии.

Спектры ЯМР ¹Н зарегистрировали на ЯМРспектрометре "Bruker MSL-300" с рабочей частотой 300.13 МГц. Сигналы в спектрах ЯМР ¹Н были обозначены относительно остаточных протонов CDCl₃ (7.24 м.д.) и C₆D₆ (7.16 м.д.). Рентгенографические измерения осуществляли с использованием двухкоординатного детектора AXS (Bruker) и Cu K_{α} -излучения (длина волны 0.154 нм).

Исследования ДМА выполняли в требуемом температурном диапазоне с частотой 1 Гц в атмосфере аргона при скорости нагревания 3 град/мин. Образец для ДМА имел толщину 0.085 мм и диаметр 9.53 мм. Соответствующие измерения проводили на приборе "Mettler Toledo DMA/SDTA861e". Калориметрические исследования осуществляли с использованием дифференциального сканирующего калориметра "Mettler TA-4000" при скорости нагревания 20 град/мин в атмосфере аргона.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Модификация полимеров является эффективным методом получения материалов, обладающих рядом ценных прикладных свойств, определяемых природой вводимых заместителей и проводимых полимераналогичных превращений.

Аддитивный поли(5-винил-2-норборнен) может быть функционализирован по терминальной двойной связи в боковых заместителях и позволяет получать полинорборнены с заместителями различной природы. В настоящей работе исследована газопроницаемость углеводородов через различные полимеры, полученные модификацией PVNB:

Строение полученных полимеров было подтверждено методом спектроскопии ЯМР¹Н (рис. 1). Полноту прохождения модификации определяли по исчезновению сигналов двойной связи PVNB. В случае синтеза H-PVNB и Cp-PVNB полученные полимеры не содержали двойных связей, что свидетельствует о количественной модификации двойных связей. В спектрах O-PVNB и S-PVNB наблюдались небольшие остаточные сигналы двойной связи, что свидетельствует о незначительном присутствии звеньев PVNB в выделенных полимерах [21].

Согласно рентгенофазовому анализу, модифицированные полимеры являются аморфными. Их дифрактограммы (кроме S-PVNB) представлены двумя широкими пиками с максимумами пиков 2 θ -углов, близкими к исходному PVNB. Значения d-расстояний (4.7–4.8 и 10.1–10.2 Å), полученные по уравнению Вульфа–Брэгга, близки для исследованных полимеров (табл. 1). При этом если межплоскостные расстояния d_2 остаются практически неизменными, то d_1 незначительно возрастают с увеличением объема заместителя от незамещенного полинорборнена (PNB) к O-PVNB.

По данным ДСК, синтезированные полимеры являются стеклообразными. Температуру стеклования T_c указанных полимеров не удалось обнаружить с помощью ДСК. Это свидетельствует о том, что значения T_c для данных полимеров близки или выше температуры разложения.

Температура стеклования модифицированного полинорборнена S-PVNB была определена методом динамического механического анализа (ДМА). Согласно графику зависимости тангенса угла потерь от температуры (рис. 2), T_c составляет 277°С.

Газотранспортные свойства

Коэффициенты газопроницаемости Р и коэффициенты диффузии D углеводородов (CH₄, С₂H₆, С₄H₁₀) для синтезированных полимеров были измерены методом Дейнса-Баррера (табл. 2, 3). Соответствующие коэффициенты растворимости были определены по уравнению S = P/D (табл. 4). Коэффициенты газопроницаемости исследуемых полимеров изменяются в следующем порядке: $P(C_4H_{10}) > P(C_2H_6) \ge P(CH_4)$, что прямо противоположно тенденции, характерной для незамещенного аддитивного полинорборнена, у которого газопроницаемость по метану превышает значения для этана и н-бутана. Коэффициенты диффузии газов в исследуемых полинорборненах меняются с ростом кинетического диаметра молекулы газа $D(CH_4) > D(C_2H_6) \ge D(C_4H_{10})$ (табл. 3). Поскольку из рассматриваемых газов наиболее высокой температурой кипения обладает бутан,

Таблица 1. Данные рентгенофазового анализа для модифицированных полинорборненов

Полимер	(2 0) ₁ , град	(2 0) ₂ , град	$d_1, \text{\AA}$	$d_2, \text{\AA}$
PNB [24]	10.0	17.2	8.8	4.7
PVNB [18]	9.2	18.1	9.6	4.9
H-PVNB	8.7	18.4	10.1	4.8
Cp-PVNB	8.6	18.5	10.2	4.8
O-PVNB	8.6	18.4	10.2	4.8
S-PVNB	_	18.9	_	4.7

для него наблюдается более высокий коэффициент растворимости, чем для этана и метана, таким образом, что $S(C_4H_{10}) > S(C_2H_6) > S(CH_4)$ во всех исследуемых полинорборненах (табл. 4).

Введение этильного или циклопропильного заместителя в норборненовое звено приводит к заметному увеличению газопроницаемости по сравнению с PVNB (табл. 2). В свою очередь полимеры на основе PVNB, содержащие полярные группы, оказались менее проницаемыми. Это различие во влиянии модификации может быть объяснено наличием диполь-дипольных взаимодействий в O-PVNB или в S-PVNB, которые усиливают межмолекулярные взаимодействия и тем самым делают более плотной упаковку полимерных цепей. Это предположение подтверждается значительно более низкими значениями коэффициентов диффузии для O-PVNB и S-PVNB по сравнению с H-PVNB и Cp-PVNB. Необходимо отметить, что проницаемость газов через аддитивные поли(5-алкил-2-норборнены) была изучена группой Rezac с сотрудниками [25, 26]. Однако свойства H-PVNB – аддитивного поли(5этил-2-норборнена) – ранее не исследовались и коэффициенты газопроницаемости углеводородов CH₄-C₄H₁₀ для данного полимера получены впервые в данной работе.

Необычным свойством для четырех модифицированных полимеров оказалась селективность разделения углеводородов, контролируемая растворимостью (т. е. величина α (C₄H₁₀/CH₄) \gg 1, табл. 5). Ранее считалось, что такой особенностью обладают только каучуки и микропористые стеклообразные полимеры [27–30]. Позднее было показано, что данное свойство можно направленно придавать при введении гибких кремнийорганических [31–33] или алкильных групп [24]. В настоящей работе нам удалось показать, что такого же эффекта можно добиться и введением заместителей различной природы, в том числе циклоалкильных, оксирановых и серосодержащих боковых заместителей. Обнаруженный эффект

2020

Рис. 1. Спектры ЯМР 1 Н для H-PVNB (C₆D₆) (a), Cp-PVNB (CDCl₃) (б), O-PVNB (CDCl₃) (в) и S-PVNB (CDCl₃) (г).

Полимер	Коэффициенты газопроницаемости <i>P</i> , Баррер			
	CH ₄	C_2H_6	C ₄ H ₁₀	
PNB [24]	3.1	1.8	1.0	
PVNB [18]	24.0	_	_	
H-PVNB	37.0	36.0	149.0	
Cp-PVNB	44.0	58.0	380.0	
O-PVNB	7.10	7.4	27.5	
S-PVNB	1.50	2.0	4.7	

Таблица 2. Коэффициенты газопроницаемости метана, этана и *н*-бутана для исследуемых полимеров

Таблица 3.	Коэффициенты	диффузии	метана,	этана	И
<i>н-</i> бутана дл	ія исследуемых п	юлимеров			

Полимер	Коэффициент диффузии $D \times 10^8$, см ² /с			
Полимер	CH ₄	C_2H_6	C_4H_{10}	
H-PVNB	10.0	1.70	1.10	
Cp-PVNB	14.0	2.50	2.0	
O-PVNB	3.0	0.39	0.18	
S-PVNB	2.1	0.33	0.09	

особенно четко прослеживается при сравнении с родственным незамещенным полинорборненом. Наиболее перспективным с точки зрения разделения пары C_4H_{10}/CH_4 полимером является Cp-PVNB, который сочетает относительно высокую селективность (8.6) с приемлемой проницаемостью по *н*-бутану (380 Баррер).

Проницаемость синтезированных полинорборненов ниже, чем родственных нанопористых и стеклообразных Me_3Si -замещенных полинорборненов ($P(CH_4) = 400-7000$ Баррер) [34, 35] или каучуков — полисилоксанов ($P(CH_4)$) = 200– 1300 Баррер) [36]. Это может быть связано с более плотной упаковкой полимерных цепей. Данное предположение подтверждается сравнением соответствующих значений *d*-расстояний, оцененных с помощью рентгенофазового анализа. Одной из основных причин формирования более плотной упаковки полимерных цепей в случае полимеров, полученных из 5-винил-2-норборнена, является повышенная подвижность основных цепей полимера благодаря наличию более гибких

Рис. 2. Температурные зависимости тангенса угла потерь (а), модуля накопления *G*'' (*1*) и модуля потерь *G*''' (*2*) (б) для S-PVNB.

Полимер	Коэффициент растворимости $S \times 10^4$, см ³ /(см ³ см рт.ст)			
	CH ₄	C ₂ H ₆	$C_{4}H_{10}$	
H-PVNB	370	2100	14000	
Cp-PVNB	310	2300	19000	
O-PVNB	240	1900	15000	
S-PVNB	71	610	5200	

Таблица 4. Коэффициенты растворимости метана, этана и *н*-бутана для исследуемых полимеров

Таблица 5. Идеальная селективность разделения углеводородов для полинорборнена и исследуемых полимеров

Полимер	Селективность проницаемости			
полимер	C ₄ H ₁₀ /CH ₄	C_4H_{10}/C_2H_6	C ₂ H ₆ /CH ₄	
PNB [24]	0.3	0.6	0.6	
H-PVNB	4.0	4.1	1.0	
Cp-PVNB	8.6	6.6	1.3	
O-PVNB	3.9	3.7	1.0	
S-PVNB	3.1	2.4	1.3	

и длинных боковых заместителей. В отличие от газопроницаемости, селективность газоразделения углеводородов для исследуемых полимеров близка к соответствующим величинам для Me_3Si -замещенных полинорборненов ($\alpha(C_4H_{10}/CH_4) = 6-12$) [34, 35] или поли(диметилсилоксана) ($\alpha(C_4H_{10}/CH_4) = 7-9$) [36, 37].

Используя уравнения $P = D \cdot S$ и α (A/B) = P_A/P_B , мы разложили идеальный фактор разде-

ления на два компонента: α (A/B) = $P_{\rm A}/P_{\rm B}$ = $= (D_A/D_B) \cdot (S_A/S_B) = \alpha_D \alpha_S (\alpha_D - ceлeктивность$ диффузии, α_s – селективность растворимости) (табл. 6). Коэффициенты селективности диффузии α_D для изучаемых полимеров для пар газов C₄H₁₀/CH₄, C₄H₁₀/C₂H₆, C₂H₆/CH₄ меньше единицы. Это свидетельствует о том, что вклад α_D в селективность проницаемости для указанных пар газов незначительный. Коэффициенты селективности растворимости а₅ для C₄H₁₀/CH₄ весьма велики. Например, α_s для рассматриваемых пар газов в изучаемых полимерах всегда больше, чем α_D. Это указывает на то, что определяющим фактором является селективность растворимости, что связано с высокой температурой кипения, более легкой конденсацией данных газов и сродства углеводородов к исследуемым полимерам.

ЗАКЛЮЧЕНИЕ

Исследована газопроницаемость углеводородов через группу полинорборненов, полученных модификацией PVNB. В частности были изучены свойства аддитивных полинорборненов с этильными, циклопропильными, оксирановыми и тиоацетилэтильными заместителями. Показано, что введение циклопропильной и этильной группы вместо винильной приводит к росту газопроницаемости, в то время как введение полярных заместителей (оксиранового кольца и тиоацетильных остатков) снижает коэффициент газопроницаемости. Для изученных полимеров обнаружена необычная особенность для стеклообразных полимеров с небольшим свободным объемом -селективность газоразделения, контролируемая растворимостью (α (C₄H₁₀/CH₄) \gg 1). Среди изученных полимеров наиболее оптимальная комбинация свойств проницаемости и селективности обнаружена для циклопропанированного полимера.

Таблица 6. Селективность диффузии и растворимости для пар газов C₄H₁₀/CH₄, C₄H₁₀/C₂H₆, C₂H₆/CH₄ для исследуемых полимеров

Полимер	Селективность диффузии/растворимости для пар газов		
	C_4H_{10}/CH_4	C ₄ H ₁₀ / C ₂ H ₆	C_2H_6/CH_4
H-PVNB	0.11/37.84	0.65/6.67	0.17/5.67
Cp-PVNB	0.14/61.29	0.80/8.26	0.18/7.42
O-PVNB	0.06/62.50	0.46/7.89	0.13/7.92
S-PVNB	0.04/73.24	0.27/8.52	0.16/8.59

Работа выполнена при финансовой поддержке Российского научного фонда (проект 17-19-01595). Изучение свойств кремнийсодержащих полинорборненов осуществлено в рамках Госзадания ИНХС РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Blank F., Janiak C. //* Coord. Chem. Rev. 2009. V. 253. № 7–8. P. 827.
- 2. *Ivin K.J., Mol J.C.* // Olefin Metathesis and Metathesis Polymerization. London: Acad. Press, 1997. P. 340.
- Goodall B.L. // Late Transition Metal Polymerization Catalysis. 2005. P. 101.
- 4. Goodall B.L., McIntosh L.H. Pat. 7041758B2 USA. 2008.
- Flid V.R., Gringolts M.L., Shamsiev R.S., Finkelshtein E.S. // Russ. Chem. Rev. 2018. V. 87. № 12. P. 1169.
- 6. Suslov D.S., Bykov M.V., Kravchenko O.V. // Polymer Science, Series C. 2019. V. 61. № 1. P. 145.
- Bulgakov B.A., Bermeshev M.V., Demchuk D.V., Lakhtin V.G., Kazmin A.G., Finkelshtein E.S. // Tetrahedron. 2012. V. 68. № 9. P. 2166.
- Alentiev D.A., Chapala P.P., Filatova M.P., Finkelshtein E.S., Bermeshev M.V. // Mendeleev Commun. 2016. V. 26. № P. 530.
- Guseva M.A., Alentiev D.A., Bermesheva E.V., Zamilatskov I.A., Bermeshev M.V. // RSC Advances. 2019. V. 9. № 57. P. 33029.
- 10. *Stosur M., Szymańska-Buzar T.* // J. Mol. Catal. A. 2008. V. 286. № 1. P. 98.
- 11. Bermeshev M.V., Chapala P.P. // Prog. Polym. Sci. 2018. V. 84. № P. 1.
- Chapala P., Bermeshev M., Starannikova L., Borisov I., Shantarovich V., Lakhtin V., Volkov V., Finkelshtein E. // Macromol. Chem. Phys. 2016. V. 217. № 17. P. 1966.
- Alupei V., Choi S.W., Alupei I.C., Ritter H. // Polymer. 2004. V. 45. № 7. P. 2111.
- 14. Peetz R.M., Moustafa A.F., Kennedy J.P. // J. Polym. Sci., Polym. Chem. 2003. V. 41. № 6. P. 732.
- Morontsev A.A., Gringol'ts M.L., Filatova M.P., Finkelshtein E.Sh. // Polymer Science B. 2016. V. 58. № 6. P. 695.
- Morontsev A.A., Zhigarev V.A., Nikiforov R.Y., Belov N.A., Gringolts M.L., Finkelshtein E.S., Yampolskii Y.P. // Eur. Polym. J. 2018. V. 99. P. 340.
- Commarieu B., Potier J., Compaore M., Dessureault S., Goodall B.L., Li X., Claverie J.P. // Macromolecules. 2016. V. 49. № 3. P. 920.
- Bermesheva E.V., Wozniak A.I., Borisov I.L., Yevlampieva N.P., Vezo O.S., Karpov G.O., Bermeshev M.V., Asachenko A.F., Topchiy M.A., Gribanov P.S., Nechaev M.S.,

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б

Volkov V.V., Finkelshtein E.S. // Polymer Science C. 2019. V. 61. № 1. P. 86.

- 19. Blank F., Vieth J.K., Ruiz J., Rodríguez V., Janiak C. // J. Organomet. Chem. 2011. V. 696. № 2. P. 473.
- 20. Saito T., Wakatsuki Y. // Polymer. 2012. V. 53. № 2. P. 308.
- Wozniak A., Bermesheva E., Andreyanov F., Borisov I., Zarezin D., Bakhtin D., Gavrilova N., Ilyasov I., Nechaev M., Asachenko A., Topchiy M., Volkov A., Finkelshtein E., Ren X., Bermeshev M. // React. Funct. Poiymers. 2020. V. 149. P. 104513.
- 22. Bermesheva E.V., Wozniak A.I., Andreyanov F.A., Karpov G.O., Nechaev M.S., Asachenko A.F., Topchiy M.A., Melnikova E.K., Nelyubina Y.V., Gribanov P.S., Bermeshev M.V. // ACS Catalysis. 2020. V. 10. № 3. P. 1663.
- 23. Macchione M., Jansen J.C., De Luca G., Tocci E., Longeri M., Drioli E. // Polymer. 2007. V. 48. № 9. P. 2619.
- 24. Wozniak A.I., Bermesheva E.V., Borisov I.L., Petukhov D.I., Bermeshev M.V., Volkov A.V., Finkelshtein E.S. // Macromol. Rapid Commun. 2019. P. 1900206.
- 25. Dorkenoo K.D., Pfromm P.H., Rezac M.E. // J. Polym. Sci., Polym. Phys. 1998. V. 36. № 5. P. 797.
- 26. *Thrasher S.R., Rezac M.E.* // Polymer. 2004. V. 45. Nº 8. P. 2641.
- Yampolskii Y., Starannikova L., Belov N., Bermeshev M., Gringolts M., Finkelshtein E. // J. Membr. Sci. 2014. V. 453. № 3. P. 532.
- 28. Kim S., Lee Y.M. // Prog. Polym. Sci. 2015. V. 43. P. 1.
- 29. Nagai K., Masuda T., Nakagawa T., Freeman B.D., Pinnau I. // Prog. Polym. Sci. 2001. V. 26. P. 721.
- Budd P.M., McKeown N.B., Ghanem B.S., Msayib K.J., Fritsch D., Starannikova L., Belov N., Sanfirova O., Yampolskii Y., Shantarovich V. // J. Membr. Sci. 2008. V. 325. P. 851.
- Alentiev D.A., Egorova E.S., Bermeshev M.V., Starannikova L.E., Topchiy M.A., Asachenko A.F., Gribanov P.S., Nechaev M.S., Yampolskii Y.P., Finkelshtein E.S. // J. Mater. Chem. A. 2018. V. 6. № 40. P. 19393.
- Bermeshev M.V., Syromolotov A.V., Starannikova L.E., Gringolts M.L., Lakhtin V.G., Yampolskii Y.P., Finkelshtein E.S. // Macromolecules. 2013. V. 46. № 22. P. 8973.
- Vaughn J. T., Harrigan D.J., Sundell B.J., Lawrence Iii J.A., Yang J. // J. Membr. Sci. 2017. V. 522. P. 68.
- Finkelshtein E., Gringolts M., Bermeshev M., Chapala P., Rogan Y. // Membr. Materials Gas Vapor Sep. 2017. P. 143.
- Chapala P.P., Bermeshev M.V., Starannikova L.E., Belov N.A., Ryzhikh V.E., Shantarovich V.P., Lakhtin V.G., Gavrilova N.N., Yampolskii Y.P., Finkelshtein E.S. // Macromolecules. 2015. V. 48. № 22. P. 8055.
- Stern S.A., Shah V.M., Hardy B.J. // J. Polym. Sci., Polym. Phys. 1987. V. 25. P. 1263.
- 37. *Robb W.L.* // Ann. N.Y. Acad. Sci. 1968. V. 146. № 1. P. 119.

том 62 № 3 2020