———— ПОЛИКОНДЕНСАЦИЯ ———

УДК 541.64:547.1'128

ОЛИГОМЕРНЫЕ СИЛСЕСКВИОКСАНЫ С 3-АМИНОПРОПИЛЬНЫМИ ГРУППАМИ

© 2021 г. Н. С. Бредов^{*a*,*}, Нгуен Ван Туан^{*a*}, Д. С. Зайцева^{*a*}, В. В. Киреев^{*a*}, М. В. Горлов^{*a*}, И. Б. Сокольская^{*b*}, В. А. Поляков^{*a*}

^а Российский химико-технологический университет им. Д.И. Менделеева 125047 Москва, Миусская пл., 9, Россия

^b Государственный научно-исследовательский институт химии и технологии элементоорганических соединений 111123 Москва, ш. Энтузиастов, 38, Россия

*e-mail: koljabs@rambler.ru

Поступила в редакцию 31.03.2021 г. После доработки 14.04.2021 г. Принята к публикации 28.04.2021 г.

Гидролитической поликонденсацией 3-аминопропилтриэтоксисилана, а также его совместной конденсацией с фенилтриметоксисиланом в среде этанола синтезированы аминосодержащие олигосилсесквиоксаны. По данным спектроскопии ЯМР ¹Н и ЯМР ²⁹Si олигомеры наряду с лестничными фрагментами содержат незавершенные циклоцепные структуры. Сделано предположение о том, что самопроизвольное гелеобразование олигомеров при длительном хранении обусловлено протеканием межмолекулярных взаимодействий силоксановых цепей с силанольными и аминопропильными группами.

DOI: 10.31857/S2308113921040033

Водорастворимые олигоаминопропилсилсесквиоксаны являются весьма перспективными функциональными соединениями данного типа, которые можно использовать в качестве отвердителей термореактивных смол, для получения нанокомпозитов, а также для синтеза широкого спектра других функциональных олигосилоксанов модификацией реакционноспособных аминогрупп [1–6].

Впервые кубический *окта*-(3-аминопропил)силсесквиоксан $[H_2NCH_2CH_2CH_2SiO_{1.5}]_8$ (I) синтезирован гидролитической поликонденсацией 3-аминопропилтриэтоксисилана (**АГМ-9**) [7], однако деталей эксперимента и характеристик полученного соединения представлено не было. В работе [1] сообщалось о получении I гидролитической поликонденсацией АГМ-9 в среде метанола в присутствии концентрированной HCl при 25°C; при продолжительности реакции 6 недель выход I составил 30%.

Позже было установлено [8], что в этом случае образуется гидрохлорид I, ограниченно растворимый в большинстве органических растворителей, но легко растворимый в воде. Нейтрализация гидрохлорида I осуществлялась пропусканием его разбавленного раствора в смеси вода—этанол через колонку с ионитом "Amberlite IRA-400". Раствор I оставался стабилен в течение 1–2 суток, но образовывал так называемый Т-гель при более длительном хранении или удалении растворителя [1, 9, 10].

МALDI-TOF масс-спектр I, снятый перед образованием Т-геля, показал наличие множества пиков с m/z < 3000 [1], при этом сигналы, которые можно было бы отнести к соединениям строения (RSiO_{1.5})_n, где n = 6, 8, 10 или 12, отсутствовали. Это свидетельствует о преобладании в составе продуктов гидролитической поликонденсации АГМ-9 соединений с незавершенной полиэдрической структурой, подобной тем, которые были установлены в продуктах гидролиза [11, 12] и ацидолиза 3-метакрилоксипропилтриметоксисилана [13, 14].

При варьировании мольного соотношения вода : АГМ-9, природы и количества катализатора, в частности Et₄NOH [6], выход I удалось повысить до 72%. Наиболее эффективным оказалось проведение процесса в водном растворе трифторметансульфокислоты с постепенным повышением температуры. В результате с выходом 93% получен октатрифторметансульфонат I [15, 16]. Установлен также факт перегруппировки каркасных структур типа $T_8 \rightarrow T_{10}$ под действием сульфокислоты [16, 17].

Некоторые особенности совместной гидролитической поликонденсации АГМ-9 и фенилтриметоксисилана представлены в работах [18–20]. С целью повышения стабильности аминопропилсилсесквиоксанов, их растворимости в органических средах и совместимости с другими олигомерами представлялось целесообразным синтезировать смешанные олигомеры, содержащие у атомов кремния помимо аминопропильных групп и другие инертные или функциональные радикалы. В качестве сомономера в настоящей работе использован фенилтриметоксисилан.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3-Аминопропилтриэтоксисилан – продукт фирмы "Acros" (содержание основного вещества 98%, температура плавления $T_{пл} = -70^{\circ}$ С, температура кипения $T_{кип} = 217^{\circ}$ С, плотность $\rho = 0.946$ г/мл) применяли без дополнительной очистки. Спектр ЯМР ¹H (CDCl₃), м.д.: 0.49 (т, -CH₂-Si), 1.40 (м, -CH₂CH₂CH₂-), 1.75 (с, -CH₂CH₂CH₂NH₂), 3.65 (с, CH₃CH₂O-), 1.08 (т, CH₃CH₂O-).

Фенилтриметоксисилан (**ФТМС**) — продукт фирмы "Acros" (содержание основного вещества 98%, $T_{\text{кип}} = 211^{\circ}\text{C}$, $n_D^{25} = 1.468$) использовали без дополнительной очистки. Спектр **ЯМР** ²⁹Si (CDCl₃), м.д.: -43.5 (c); спектр **ЯМР** ¹H (CDCl₃), м.д.: 3.5 (c, CH₃O–), 7.5 (c, H), 7.7 (д, H¹).

Триэтиламин (**ТЭА**) — продукт фирмы "Acros" (содержание основного вещества 98%, $T_{\rm кип} = 89.5^{\circ}$ С, $n_D^{25} = 0.728$) применяли без дополнительной очистки. Этанол — продукт фирмы "Acros" (содержание основного вещества 96%, $T_{\rm кип} = 78.4^{\circ}$ С, $\rho = = 0.812 \, {\rm г/cm^3} \, (20^{\circ}$ С)).

Гидролитическую сополиконденсацию 3-аминопропилтриэтоксисилана и фенилтриметоксисилана проводили при их мольных соотношениях 1:1-1:10 по следующей методике. В круглодонную колбу, снабженную обратным холодильником с хлоркальциевой трубкой и перемешивающим устройством, приливали расчетное количество АГМ-9 и ФТМС в виде раствора в этаноле, объем которого обеспечивал выбранное мольное соотношение вода : силан = 6 : 1. Мольное соотношение ТЭА : силан = 0.01. Реакционную смесь перемешивали при 80–85°С в течение 10–50 ч, затем отгоняли в вакуумном испарителе растворитель и легколетучие продукты; остаток сушили в вакууме без нагревания, получая смолообразные олигомеры с выходом более 90%. Гидролитическую поликонденсацию только 3-аминопропилтриэтоксисилана или фенилтриметоксисилана осуществляли в аналогичных условиях.

Содержание аминогрупп в олигомере устанавливали методом обратного титрования по методике [18]. В колбу загружали 0.5 г образца, 20 мл 0.1 N раствора HCl и перемешивали полученную суспензию в течение 3 ч на магнитной мешалке при комнатной температуре. Далее осадок фильтровали, а фильтрат титровали водным раствором 0.1 N NaOH, используя фенолфталеин в качестве индикатора.

Спектры ЯМР ¹Н и ЯМР ²⁹Si снимали на приборах "Bruker CXP-200" и "Bruker AMX-360" при 25° С в растворах CDCl₃ или D₂O.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для установления оптимальных условий сополиконденсации АГМ-9 с ФТМС уточнялись параметры его гомоконденсации в среде этанола при мольном соотношении вода : силан = 6 : 1 в присутствии каталитического количества триэтиламина:

$$n\text{RSi}(\text{OCH}_2\text{CH}_3)_3 + \text{H}_2\text{O} \xrightarrow[-C_2\text{H}_5\text{OH}]{} (\text{RSiO}_{1.5})_n (1)$$

Здесь и ниже $R = -CH_2CH_2CH_2NH_2$. По мере протекания процесса содержание этокси-групп в образующемся продукте гидролитической поликонденсации АГМ-9 по данным спектров ЯМР ¹Н (рис. 1) постепенно уменьшается, и их полная конверсия наблюдается через 50 ч. В спектре ЯМР ¹³С олигомера прослеживаются сигналы ядер углерода 10.0 (-SiCH₂), 24.6 (-SiCH₂CH₂-) и 42.32 м.д. (-CH₂NH₂) наряду с незначительными по интенсивности сигналами ядер углерода в этокси-группах в области 57 и 17 м.д. Анализ спектров ЯМР ²⁹Si (рис. 2) позволил рассчитать содержание различных структурных фрагментов в составе продукта гидролитической поликонденсации мономера АГМ-9 (табл. 1). При анализе спектров ЯМР²⁹Si и описании строения полученных олигомеров использованы следующие условные формулы фрагментов молекул олигосилсесквиоксанов (радикалы $R = -CH_2CH_2CH_2NH_2$ на приведенных ниже формулах не показаны):

а также наиболее вероятностные структуры соединений типа

Расчет по интегральной интенсивности сигналов атомов кремния в различных структурах с учетом их относительной доли в продукте поликонденсации показал содержание силанольных групп в пределах 7–8%. Это свидетельствует о значительной незавершенности второй стадии гидролитической поликонденсации, а именно силанольной конденсации.

Как и в рассмотренных выше случаях, продукты гидролитической поликонденсации мономера АГМ-9 при длительном хранении в растворах образуют гели, а при выделении из раствора – нерастворимые полимерные продукты. Причина гелеобразования пока не ясна, но можно предположить, что это, скорее всего, не только реакция силанольной конденсации. Невысокое по данным спектроскопии ЯМР содержание в олигомере силанольных групп (табл. 1), тем более локализованных на концах жестких двутяжевых молекул типа Т_n, позволяет рассмотреть еще один возможный путь образования трехмерной сетки за счет реакций межцепного обмена с участием силанольных групп и силоксановых связей молекул олигомера по типу хорошо известной деполимеризации линейных полисилоксанов:

№ 4

2021

По мере образования разветвленных молекул, редкой пространственной сетки и затруднений контактов силанольных групп реакции "сшивания" по схеме (2) будут преобладать. Естественно реакция (2) может ускоряться как под каталитическим действием аминогрупп олигомера, так и по типу межцепного взаимодействия:

Для повышения стабильности аминопропилсодержащих олигосилсесквиоксанов была осуществлена совместная гидролитическая поликонденсация $A\Gamma M$ -9 с фенилтриметоксисиланом (ΦTMC) в мольных соотношениях соответственно от 1 : 1 до 1 : 10. Условия реакции были аналогичны для гомополиконденсации $A\Gamma M$ -9.

Продукты реакций представляют собой прозрачные вязкие жидкости или твердые стеклообразные вещества белого цвета в зависимости от содержания фенилсилсесквиоксановых фрагментов. Условия реакции приведены в табл. 2.

Процесс совместной гидролитической поликонденсации АГМ-9 и ФТМС в этаноле в присутствии 1 мол. % ТЭА от суммы молей силанов протекает с большими степенями конверсии по этокси- и метокси-группам. При проведении гидролитической поликонденсации только ФТМС из реакционной смеси выпадал белый осадок, в то время как в случае гидролитической поликонденсации АГМ-9 реакционная смесь являлась гомогенной. Это может быть связано с сильным

Формула	Усл. обозначения	Область хим. сдвигов сигналов δ_{Si} , м.д.	Содержание фрагмента в олигомере, мас. %	Содержание групп SiOH, мас. %	
соединения или фрагмента				во фрагменте	в олигомере*
RSi(OH) ₃	—	-40.5	3.4	37.2	1.3
RSi(OH) ₂ O _{0.5}	М	от —49 до —51	12.9	26.6	3.4
R Si-O	D	от —59 до —61	21.7	14.3	3.1
ОН					
RSiO _{1.5}	Т	от —65 до —71	62	—	—
T _{6+x} **	—	—	14.5(T) + 5.1(D)	1.9-5.0	0.4-1.0
T _{8+y} **	_	_	47.5(T) + 16.6(D)	1.1-3.8	0.7-2.4

Таблица 1. Содержание силанольных групп в продукте гидролитической поликонденсации АГМ-9 по данным спектра ЯМР ²⁹Si

Примечание. По данным спектра ЯМР²⁹Si общее суммарное содержание силанольных групп 7.8.

*Вклад соединения или фрагмента в общее содержание силанольных групп в олигомере с учетом его доли.

Таблица 2. Выход и аминное число продуктов гидролитической (со)поликонденсации АГМ-9 и ФТМС

Мольное соотношение АГМ-9 : ФТМС	Время реакции, ч	Выход олигомеров, %	Аминное число*, ммоль/г	
1:0	50	83	- / 9.09	
1:1	10	94	- / 4.18	
1:1	30	96	- / 4.18	
1:1	50	98	- / 4.18	
1:3	50	96	1.88 / 2.01	
1:5	50	96	1.29 / 1.32	
1:7	50	96	0.96 / 0.99	
1:10	50	96	0.70 / 0.71	
0:1	50	92	-/-	

*Найдено – в числителе, вычислено – в знаменателе.

взаимодействием аминогрупп с полярными этанолом и водой. При совместной гидролитической поликонденсации наличие или отсутствие гетерофазы зависит от мольного соотношения $A\Gamma M$ -9 и ΦTMC . В случае мольного соотношения $A\Gamma M$ -9: : $\Phi TMC < 3$: 1 в реакционной смеси можно видеть появление белого осадка. При указанном соотношении больше 3: 1 реакционная смесь остается гомогенной, что, вероятно, связано с высоким содержанием аминогрупп в смешанных олиго(аминопропил)фенилсилсесквиоксанах, способствующих растворению в полярных средах.

По данным спектров ЯМР ¹Н продуктов совместного гидролиза АГМ-9 и ФТМС найденное содержание аминогрупп в олигомерах несколько ниже по сравнению с вычисленными значениями. Эти результаты согласуются с данными работы [21] по модификации частиц кремнезема рав-

(б)

(B)

Рис. 1. ЯМР ¹Н-спектры АГМ-9 (а – спектр снят в CDCl₃) и продуктов его гидролитической поликонденсации в среде этанола (б, в – спектры сняты в D_2O) в присутствии каталитического количества триэтиламина; $T = 80^{\circ}$ С, продолжительность – 10 (б) и 50 ч (в).

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б том 63 № 4 2021

Рис. 2. Спектр ЯМР ²⁹Si продукта гидролитической поликонденсации АГМ-9, проводимой в течение 50 ч. Спектр снят в D_2O .

номольным количеством АГМ-9 и тетраэтоксисилана: содержание аминопропильных звеньев в продуктах модификации не превышало 18.5 мол. % при расчетном 50 мол. %.

Важным моментом для практического использования синтезированных олигосилсесквиоксанов считается их растворимость в воде и органических растворителях (табл. 3).

Олигомеры с преобладающим содержанием аминопропильных радикалов растворимы в воде,

а олигомеры с большим количеством фенильных групп — в полярных органических растворителях.

Интересным остается факт образования нерастворимых или ограниченно растворимых в органических растворителях олигомеров при проведении согидролиза в ТГФ, диоксане, ацетоне и других подобных средах. В то же время, в среде этанола, даже несмотря на частичное выпадение продуктов из раствора, они, как правило, растворяются в полярных органических растворителях. Это, вероятно, связано с сольватацией групп и их возможным взаимодействием с этанолом:

$$\sim$$
Si-OH + HOCH₂CH₃ \sim Si-OCH₂CH₃, (4)

хотя это равновесие и сильно сдвинуто влево.

Таблица 3. Растворимость продуктов гидролитической (со)поликонденсации АГМ-9, ФТМС и АГМ-9/ФТМС в различных растворителях

Мольное соотношение	Растворимость*						
АГМ-9: ФТМС	H ₂ O	CHCl ₃	CH ₃ COCH ₃	τγφ	ДМСО		
1:0	+	—	—	_	—		
5:1	<u>+</u>	—	-	—	—		
3:1	<u>+</u>	—	-	—	—		
1:1	—	+	±	+	+		
1:3	—	+	+	+	+		
1:5	—	+	+	+	+		
1:7	_	+	+	+	+		
1:10	_	+	+	+	+		
0:1	_	+	+	+	+		

*Обозначения "+" – растворим, "±" – частично растворим, "–" – не растворим.

Рис. 3. Спектр ЯМР ¹Н продукта гидролитической (со)поликонденсации при мольном соотношении АГМ-9 : Φ TMC = = 1 : 3 в течение 50 ч.

Рис. 4. Спектр ЯМР ²⁹Si продукта гидролитической поликонденсации АГМ-9 и Φ TMC при мольном соотношении 1 : 3 в течение 50 ч.

Изложенное выше позволяет заключить, что совместная гидролитическая поликонденсация АГМ-9 и ФТМС в среде этанола по сравнению

с другими растворителями протекает со значительной долей реакции гетерофункциональной конденсации:

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б том 63 № 4 2021

$$Si - OCH_2CH_3 + OH - Si \longrightarrow Si - O - Si \longrightarrow + CH_3CH_2OH$$
(5)

Спектр ЯМР ¹Н продукта гидролитической сополиконденсации АГМ-9 и ФТМС при мольном соотношении 1 : 3 (рис. 3) показал, что гидролиз метокси- и этокси-групп протекает полностью после 50 ч реакции: сигналы протонов групп –OCH₃ и –OCH₂CH₃ в спектре ЯМР ¹Н олигомера почти отсутствует.

В кремниевых спектрах ЯМР продуктов сополиконденсации АГМ-9 и ФТМС при их мольном соотношении 1 : 3 (рис. 4) прослеживаются значительные по интенсивности сигналы атомов кремния, отнесенные, предположительно, к силсесквиоксановым структурам с фенильными (в области $\delta_{si} =$ от -78 до -84 м.д.) и аминопропильными фрагментами ($\delta_{si} =$ от -65 до -68 м.д.). Звеньям D с заместителями R и Ph соответствуют малоинтенсивные сигналы в областях от -58 до -60 и от -72 до -74 м.д. соответственно с относительной интенсивностью не более 1-5%.

В отличие от олигосилсесквиоксанов только с аминопропильными радикалами у атомов кремния смешанные олигомеры являются более стабильными. Так, олигомеры, синтезированные при соотношении $A\Gamma M$ -9 : $\Phi TMC = 1 : 1-1 : 10$, не изменяются при хранении их растворов в хлороформе более 30 суток. Эти олигомеры представляют интерес в качестве модификаторов органических термореактивных олигомеров, например эпоксидных.

СПИСОК ЛИТЕРАТУРЫ

- 1. Feher F.J., Wyndham K.D. // Chem. Commun. 1998. P. 323.
- Kim K., Adachi K., Chujo Y. // Polymer. 2002. V. 43. P. 1171.
- 3. *Zhao Y., Song G., Chen G., Zhou Z., Li Q.* // Polym. Plast. Technol. Mater. 2021. V. 60. № 1. P. 37.
- Ni M., Chen G., Wang Y., Peng H., Liao Y., Xie X. // Composites. B. 2019. P. 107045.

- 5. *Mohamed M.G., Kuo S.-W.* // Polymers. 2016. V. 8. P. 225.
- Zhang Z., Liang G., Lu T. // J. Appl. Polym. Sci. 2007. V. 103. P. 2608.
- 7. Weidner R., Zeller N., Deubzer B., Frey V. Pat. 5047492 USA. 1991.
- Gravel M.-C., Laine R.M. // ACS Polym. Prepr. 1997. V. 38. P. 155.
- 9. Neyertz S., Brown D., Pilz M., Rival N., Arstad B., Mannle F., Simon C. // J. Phys. Chem. B. 2015. V. 119. № 21. P. 6433.
- Feher F.J., Wyndham K.D., Soulivong D., Nguyen F. // J. Chem. Soc., Dalton Trans. 1999. P. 1491.
- Zaikin V.G., Borisov R.S., Polovikov N.Yu., Filatov S.N., Kireev V.V. // Eur. J. Mass Spectrom. 2009. V. 15. P. 231.
- 12. Борисов Р.С., Половков Н.Ю., Заикин В.Г., Филатов С.Н. // Масс-спектрометрия. 2008. Т. 5. № 1. С. 25.
- Bredov N.S., Shporta E.Yu., Liu Yanqing, Kireev V.V., Borisov R.S., Gorlov M.V., Posokhova V.F., Chuev V.P. // Polymer Science B. 2013. V. 55. № 7–8. P. 472.
- Bredov N.S., Le Phu Soan, Kireev V.V., Bykovskaya A.A., Sokol'skaya I.B., Gorlov M.V., Esin A.S., Bekmukhamedova S.R., Polyakov V.A. // Polymer Science B. 2017. V. 59. № 3. P. 240.
- Kaneko Y., Shoiriki M., Mizumo T. // J. Mater. Chem. 2012. V. 22. P. 14475.
- Tokunaga T., Koge S., Mizumo T., Ohshita J., Kaneko Y. // Polym. Chem. 2015. V. 6. P. 3039.
- Janeta M., John L., Ejfler J., Szafert S. // RSC Adv. 2015. V. 5. P. 72340.
- Liu S., Lang X., Ye H., Zhang S., Zhao J. // Eur. Polym. J. 2005. V. 41. P. 996.
- Wang H., Wang X., Yu C. // Appl. Mechan. Mater. 2012. V. 182–183. P. 114.
- 20. *Liu S., Fu Y., Jiang Z., Zhao J., Zhang C. //* J. Wuhan Univ. Technol. Mater. Sci. Ed. 2009. V. 24. P. 945.
- Van Blaaderen A., Vrij A. // J. Colloid Interface Sci. 1993. V. 156. P. 1.