———— КОМПОЗИТЫ ————

УДК 541.64:547.538.141:546.59

СТАБИЛИЗАЦИЯ НАНОЧАСТИЦ ЗОЛОТА БЛОК-СОПОЛИМЕРАМИ СТИРОЛА И 4-ВИНИЛПИРИДИНА, СИНТЕЗИРОВАННЫМИ ПОЛИМЕРИЗАЦИЕЙ С ОБРАТИМОЙ ПЕРЕДАЧЕЙ ЦЕПИ

© 2021 г. Я. И. Дериков^{*a*,*}, А. Д. Ябланович^{*b*}, Е. А. Литманович^{*c*}, С. В. Амарантов^{*d*}, Е. В. Черникова^{*a*,*c*}, Я. В. Кудрявцев^{*a*}

^а Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук 119991 Москва, Ленинский пр., 29, Россия ^b Московский государственный университет имени М.В. Ломоносова. Факультет наук о материалах 119991 Москва, Ленинские горы, 1, стр. 73, Россия ^c Московский государственный университет имени М.В. Ломоносова. Химический факультет 119991 Москва, Ленинские горы, 1, стр. 3, Россия ^d ФНИЦ "Кристаллография и фотоника", Институт кристаллографии им. А.В. Шубникова Российской академии наук 119333 Москва, Ленинский пр., 59, Россия *e-mail: derikoff@yandex.ru

Поступила в редакцию 24.07.2021 г. После доработки 31.08.2021 г. Принята к публикации 13.09.2021 г.

Методами статического и динамического светорассеяния, а также малоуглового рентгеновского рассеяния исследовано поведение композитов на основе блок-сополимеров стирола и 4-винилпиридина и сферических наночастиц золота в диметилформамиде. В отсутствие наночастиц сополимер молярной массой порядка 10⁴ г/моль, полученный контролируемой радикальной полимеризацией с обратимой передачей цепи, образует мицеллы из небольшого числа цепей в среде, являющейся хорошим растворителем для обоих блоков. В то же время золь наночастиц, стабилизированных бромидом тетраоктиламмония, формирует в диметилформамиде флокулы размером в десятки нанометров. Добавление блок-сополимера приводит к разрушению флокул и стабилизации наночастиц в мицеллах радиусом около 5 нм. Еще более эффективным способом получения устойчивых композитов является лигандный обмен низкомолекулярного стабилизатора наночастиц на блок-сополимер в смешанном растворителе тетрагидрофуран-этанол. Такой композит обладает хорошей пленкообразующей способностью, причем концентрация наночастиц золота в нем может быть увеличена центрифугированием как минимум до 43 мас. % После переноса композита в диметилформамид возникают мицеллы с широким распределением по размеру, средний размер которых составляет около 10 нм. Стабилизирующая способность блок-сополимера снижается при уменьшении содержания в нем звеньев 4-винилпиридина, обеспечивающих взаимодействие с поверхностью наночастиц золота.

DOI: 10.31857/S2308113921060085

ВВЕДЕНИЕ

Один из способов модификации материалов на основе блок-сополимеров связан с созданием гибридных композитов с наночастицами [1–3], которые, как и блок-сополимеры, способны образовывать высокоупорядоченные структуры посредством самоорганизации [4]. В зависимости от химической природы наночастицы могут существенно улучшить механические, барьерные, электрические, оптические и другие характеристики матричных полимеров при сохранении хорошей способности к их переработке в изделия [5, 6]. Так, блок-сополимеры, легированные наночастицами благородных металлов, рассматривают как перспективные гибридные материалы, объединяющие плазмонные, каталитические или другие функциональные свойства наночастиц с их периодическим пространственным расположением в доменах блок-сополимера, возникающих в результате микрофазного разделения [7, 8]. Подходящие для этой цели наночастицы должны обладать стабильностью к агрегации, смешиваться по меньшей мере с одним из блоков сополимера и соответствовать размеру и форме доменов образующейся микроструктуры.

К наиболее перспективным мономерам для создания блок-сополимерных материалов с четко выраженной микрофазно-расслоенной структурой

в настоящее время относят 2- и 4-винилпиридин [9]. Из литературы также известна способность поверхности золота к селективному взаимодействию с блоком винилпиридина, обусловленная присутствием пиридинового кольца в повторяющемся звене полимера [10–12]. Предполагается, что эти блоки прочно адсорбируются на наночастицах за счет большого количества контактов [12, 13].

В работе [14] нами был предложен быстрый и удобный способ перевода наночастиц золота из водной среды в органическую, в котором агентом фазового переноса выступает блок-сополимер стирола и 2- или 4-винилпиридина. С использованием ланного полхола была показана возможность формирования композитов на основе коммерческих диблок-сополимеров стирола и винилпиридина и наночастиц золота, в которых блок-сополимер одновременно играет роль стабилизатора, препятствующего агрегации наночастиц, и матрицы, обеспечивающей их селективное расположение в доменах заданного типа [15]. Из полученных композитов методом спин-коатинга были приготовлены пленки, обладающие способностью к микрофазному разделению с формированием цилиндрических доменов винилпиридина диаметром в десятки нанометров. Содержание наночастиц в композитах составляет до 5 мас. %, они диспергированы в матрице полимера и располагаются преимущественно внутри доменов винилпиридина вблизи доменных границ.

Отдельное исследование композитов на основе коммерческого диблок-сополимера стирола с 2-винилпиридином [16] было посвящено сопоставлению стабилизирующего эффекта декантиола, полистирола-SH, поли(2-винилпиридина)-SH, сополимеров полистирол-блок-поли(2винилпиридин) и полистирол-блок-поли(4-винилпиридин), способных взаимодействовать с поверхностью золота. С этой целью были приготовлены тонкие пленки композита с микрофазно-расслоенной морфологией цилиндрических мицелл. Методами АСМ и РЭМ была изучена морфология поверхности пленки и распределение наночастиц в матрице блок-сополимера. Во всех случаях наночастицы располагались внутри доменов винилпиридина или на доменных границах. Диблок-сополимер оказался наиболее эффективным стабилизатором наночастиц как с точки зрения обеспечения их нужной локализации, так и для предотвращения агрегации.

Продукты контролируемой радикальной полимеризации с обратимой передачей цепи, протекающей по механизму присоединения—фрагментации (ОПЦ-полимеризация), также широко применяются для стабилизации наночастиц золота [17–20]. Особый интерес представляют недавние работы, в которых были продемонстрированы возможности создания микроструктур типа "планета—спутники", состоящих из наночастиц разного размера [21–23], а также возможность формирования микрофазно-расслоенной структуры в полимерной щетке, адсорбированной на поверхности частицы [24].

Структурирование диблок-сополимеров и композитов на их основе в мицеллы различного типа наблюдали не только в пленках, но и в растворе [25, 26]. В последнем случае для характеризации таких структур лучше всего подходят методы рассеяния (видимый свет, рентген, нейтроны). Недавно методом динамического светорассеяния нам удалось исследовать агрегационное поведение ОПЦ-блок-сополимеров стирола с акрилатами [27]. Такие сополимеры характеризуются относительно небольшой молярной массой, что позволяет наблюдать за перестройкой морфологии системы при изменении температуры и степени селективности растворителя по отношению к блокам сополимера.

В настоящей работе мы используем методы статического и динамического светорассеяния, а также малоуглового рентгеновского рассеяния, чтобы изучить структуру ОПЦ-диблок- и триблок-сополимеров стирола и 4-винилпиридина в ДМФА, который, согласно литературным данным [28–35], является хорошим растворителем для обоих блоков со слабой селективностью по отношению к поли(4-винилпиридину) и плохим – для наночастиц золота, которые в этой среде не могут быть надежно стабилизированы слабыми низкомолекулярными ПАВ типа бромида тетраоктиламмония.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные вещества

Стирол и 4-винилпиридин (оба 99%, "Sigma-Aldrich") очищали перегонкой в вакууме по стандартной методике. ДАК перекристаллизовывали из этанола, хранили в темноте при -3° С. ОПЦагенты – 2-цианопропилдодецилтритиокарбонат (C₁₂H₂₅–SC(=S)S–C(CH₃)₂CN, ЦТК) и 3-азидо-1-пропиловый эфир (2-додецилтиокарбонотиоилтио)-2-метилпропионовой кислоты (C₁₂H₂₅– SC(=S)S–C(CH₃)₂C(=O)O(CH₂)₃N₃, азид-ТК) фирмы "Aldrich" дополнительной очистке не подвергали. ДМСО (99%); дибензилтритиокарбонат (C₆H₅CH₂–SC(=S)S–CH₂C₆H₅, БТК) синтезировали и охарактеризовывали, как описано ранее [36]. ДМФА (ГПХ) и метанол ("Fluka") перед применением перегоняли.

Для синтеза наночастиц золота использовали золотохлористоводородную кислоту (HAuCl₄ · nH₂O, х.ч., 49 мас. % Au, "Аурат", Россия), бромид тетраоктиламмония (**ТОАБ**, 98%, "Acros Organics") и боргидрид натрия (NaBH₄, 99%, "Acros Organics").

Синтез блок-сополимеров

Синтез блок-сополимеров проводили двустадийным методом. На первой стадии в присутствии ОПЦ-агента полимеризовали первый мономер. Полученный полимер выделяли и вводили в полимеризацию другого мономера на второй стадии.

Лля синтеза либлок-сополимеров полистирола и поли(4-винилпиридина) (П-4-ВП), содержащих концевые $C_{12}H_{25}-SC(=S)S$ и цианоизопропильную группы, вначале растворяли заданное количество ЦТК (0.09 или 0.18 моль/л) и ДАК (0.01 моль/л) в стироле. Растворы заливали в ампулы, подсоединяли их к вакуумной установке и дегазировали содержимое до остаточного давления ~5 × 10^{-3} мм рт.ст. После этого ампулы отпаивали, помещали в термостат, разогретый до 80°С, и полимеризовали в течение 5 суток. Затем ампулы охлаждали в жидком азоте, вскрывали, содержимое растворяли в бензоле и полимеры лиофильно высушивали в вакууме. По данным ГПХ синтезированные образцы ПС характеризовались $M_n = 4.5 \times 10^3$ г/моль, D = 1.13 (ПС-1) и $M_n = 95 \times 10^3$ г/моль, $\mathcal{D} = 1.12$ (ПС-2). Для синтеза блок-сополимеров ПС-1 или ПС-2 в заданной концентрации (0.04 моль/л) и ДАК (5×10^{-3} моль/л) растворяли в 4-винилпиридине, растворы заливали в ампулы и повторяли процедуры, описанные выше. Полимеризацию проводили при 80°С в течение 2 суток. Полученные образцы растворяли в хлороформе, высаживали в холодный диэтиловый эфир, промывали метанолом. Далее полимеры помещали в сушильный шкаф при 40°С, выдерживали в течение 5 дней. Синтезированные диблок-сополимеры ПС-блок-П-4-ВП были охарактеризованы методами ГПХ и ЯМР ¹Н.

Синтез диблок-сополимера с концевой азидной группой N₃-ПС-блок-П-4-ВП осуществляли следующим образом. Растворяли заданное количество азид-ТК (0.181 моль/л) и ДАК (5 × $\times 10^{-3}$ моль/л) в стироле. Реакционную смесь переносили в ампулу, дегазировали и ампулу запаивали. Полимеризацию проводили при 80°С в течение 7 суток. Полистирол выделяли лиофильным высушиванием из бензола в вакууме. По данным ГПХ $M_n = 3 \times 10^3$ г/моль и D = 1.21 (ПС-3). Затем ПС-3 (0.035 моль/л) и ДАК (5 × 10⁻³ моль/л) растворяли в 4-винилпиридине, реакционную смесь готовили как описано выше. Полимеризацию проводили при 80°С в течение 7 дней. Блоксополимер растворяли в хлороформе, высаживали в холодный диэтиловый эфир, промывали метанолом и сушили до постоянной массы при 40°C.

Триблок-сополимер ПС-блок-П-4-ВП-блок-ПС синтезировали с использованием симметричного тритиокарбоната БТК. Для этого 0.1 моль/л БТК и 5 × 10⁻³ моль/л ДАК растворяли в стироле. Реакционную смесь готовили по описанной выше методике. Полимеризацию стирола проводили при 80°С в течение 7 дней. По данным ГПХ $M_n = 6.4 \times 10^3$ г/моль и D = 1.18 (ПС-4). Для синтеза блок-сополимера с 4-винилпиридином использовали 0.035 моль/л ПС-3 и 5 × 10⁻³ моль/л ДАК. Полимеризацию осуществляли при 80°С в течение 7 дней. Блок-сополимер выделяли как описано выше.

Синтез наночастиц и нанокомпозитов на их основе

Синтез сферических (диаметр 4–5 нм) органофильных наночастиц золота проводили методом Сондерса [37], восстанавливая золото из раствора HAuCl₄ боргидридом натрия. В качестве стабилизатора и агента фазового переноса использовали ТОАБ [38]. Подробная методика синтеза описана в нашей работе [15], а ПЭМ-микрофотография высушенного золя наночастиц приведена в работе [14]. Перенос наночастиц из толуола в ДМФА осложнен их склонностью к агрегации как при удалении растворителя, так и при разбавлении исходного золя. В связи с этим золь упаривали до 70-80% от исходного объема на роторном испарителе с последующим разбавлением ДМФА до изначального объема. Циклы упаривания-разбавления повторяли до тех пор, пока добавленный объем ДМФА не становился равным исходному объему золя. Наблюдали небольшое уширение плазмонного пика поглощения золя наночастиц в ДМФА по сравнению с золем в толуоле, но положение максимума пика не менялось, что свидетельствовало об успешном переносе наночастиц.

Нанокомпозиты на основе блок-сополимеров ПС-П-4-ВП и наночастиц золота получали из раствора образцов полимера в смеси этанола (хороший растворитель для П-4-ВП и осадитель для ПС) и ТГФ (хороший растворитель для ПС и осадитель для П-4-ВП). К растворам при перемешивании добавляли рассчитанное количество золя наночастиц в толуоле. Перемешивание продолжали 3 суток, затем растворитель упаривали на роторном испарителе, добавляли толуол, обрабатывали ультразвуком в течение 5 мин, центрифугировали, осадок промывали толуолом и сушили до постоянной массы. По окончании реакции регистрировали спектр поглощения и по калибровочной кривой определяли концентрацию наночастиц золота.

Для дополнительной очистки композита от несвязанного полимера его растворяли в хлороформе и центрифугировали при 15000 об/мин на протяжении 7—8 ч. По окончании центрифугирования верхний, наименее окрашенный слой раствора, быстро отбирали пипеткой. Интенсивно окрашенный осадок почти моментально начинал переходить обратно в раствор, поэтому отделить твердый осадок от раствора не удавалось. Концентрированный раствор композита объемом 10–25% от начального собирали, а отделенный слабо окрашенный раствор центрифугировали повторно. Осадки, полученные после двух циклов центрифугирования, объединяли, разбавляли растворителем до исходного объема, пропускали через фильтр 0.2 мкм и регистрировали спектр поглощения наночастиц для определения содержания золота в композите.

Светорассеяние

Перед опытами по светорассеянию растворы очищали от пыли фильтрованием через мембранные фильтры "Millipore" с тефлоновой мембраной с диаметром пор 0.2 мкм. Измерения проводили, используя многоугловой спектрометр динамического и статического рассеяния света "Photocor Complex" фирмы "Photocor Instruments" (Россия), оборудованный He-Ne-лазером (мощность 10 мВт, $\lambda = 633$ нм) и кросс-корреляционной системой счета фотонов "Photocor-PC2" (время накопления сигнала 600 с).

Математическую обработку результатов измерений выполняли при помощи программы DynaLS как описано в работе [39]. Из значений коэффициента диффузии D_e , экстраполированного к нулевой концентрации полимера, рассчитывали гидродинамический радиус R_h по уравне-

нию Стокса-Эйнштейна:
$$R_h = \frac{kT}{6\pi\eta D_e}$$
, где η -

вязкость растворителя.

Молекулярно-массовые характеристики агрегатов диблок-сополимера определяли методом статического светорассеяния под углом 90° при концентрации раствора полимера в ДМФА в диапазоне 1.25-10.0 г/л. Инкремент показателя преломления $dn/dc = 0.139 \pm 0.004$ см³/г при температуре 25°С находили с помощью дифференциального рефрактометра "T-Rex" фирмы "Wyatt Technology" со светодиодным лазером $\lambda = 633$ нм. Результаты статического светорассеяния обрабатывали с использованием уравнения Дебая [40]

$$\frac{Kc}{R_{\theta}} = \frac{1}{M_{w}} + 2A_2c$$

Здесь $K = \frac{4\pi^2 n_0^2}{\lambda^4 N_A} \left(\frac{dn}{dc}\right)^2$ – оптическая постоянная

раствора, R_{θ} — отношение Рэлея, M_w — средневесовая ММ, A_2 — второй вириальный коэффициент.

Отношение Рэлея определяли по формуле $R_{\theta} =$ = $\alpha(G - G_0)$, где $\alpha = \frac{1.1415 \times 10^{-5}}{(G_{mon} - G_{memh})} * \frac{n_0}{n_{mon}} - прибор-$

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б том 63

ный коэффициент, $n_{\text{тол}} = 1.494$ — показатель преломления толуола, $G_{\text{темн}}$ — темновой ток, $G_{\text{тол}}$ — интенсивность рассеяния для толуола, G_0 — интенсивность рассеяния для чистого растворителя, G — интенсивность рассеяния для исследуемого раствора.

Малоугловое рентгеновское рассеяние

Эксперименты методом малоуглового рентгеновского рассеяния выполняли на лабораторной установке "HECUS" (Австрия). Источником излучения служила рентгеновская трубка с медным анодом и длиной волны характеристического излучения $\lambda(CuK_{\alpha}) = 1.54$ Å в режиме U = 50 кВ, I = 40 мА. Отсечку β -линии характеристического излучения выполняли с помощью никелевой фольги толщиной 50 мкм. Штриховую геометрию рентгеновского пучка на образце размером 0.25 × × 8 мм формировали с помощью коллиматора Кратки [41]. Рассеянное излучение регистрировали линейным позиционно-чувствительным газовым детектором, установленным на расстоянии 267 мм от образца. Переход к шкале модуля вектора рассеяния и введение коллимационной поправки, учитывающей неточечный размер пучка на образце, выполняли по стандарту бегената серебра [42].

Для анализа экспериментальной кривой рассеяния $I_{exp}(q)$ от полимерного раствора использовали модельные системы, структурные факторы которых известны из литературы: "массовый фрактал", используемый для описания агрегатов [43], персистентная цепь с исключенным объемом [44] и диблок-сополимер [45]. Суммарную интенсивность рассеяния $I_{mod}(q)$ представляли в виде

$$I_{mod}(q) = w_{Agg}V_{Agg}^{2}I_{Agg}(q) + w_{PCh}V_{PCh}^{2}I_{PCh}(q)(1+S(q)),$$

где через *w* и *V* обозначены объемная доля и объем агрегатов (Agg) и отдельных цепей сополимера (PCh). Вклад агрегатов дается формулой [43]

$$I_{Agg}(q) = \frac{\Gamma(D_m - 1)\sin[(D_m - 1)\operatorname{arctg}(l_c q)]}{l_c q [1 + (l_c q)^2]^{(D_m - 1)/2}},$$

в которой $\Gamma(\mu)$ – гамма-функция, l_c – корреляционная длина, D_m – размерность фрактального пространства. Вклад отдельных полимерных цепей [44]

$$I_{PCh}(q) = \frac{2N}{x^2}(e^{-x} - 1 + x) + \left[\frac{4}{15} + \frac{7}{15x} - \left(\frac{11}{15} + \frac{7}{15x}\right)e^{-x}\right]\frac{1}{N_K}$$
$$x = R_{gPCh}^2q^2$$

499

том 63 № 6 2021

возрастает за счет их блочного строения [45]:

$$S(q) = \left(\frac{F(x)}{N} - 2\chi\right)^{-1},$$

$$F(x) = \frac{g(1, x)}{g(f, x)g(1 - f, x) - (g(1, x) - g(f, x) - g(1 - f, x))^2/4},$$

где N, $N_{\rm K}$, $R_{\rm g\ PCh}$ и f – степень полимеризации, число сегментов Куна, радиус инерции и состав

полимерной цепи,
$$g(p, x) = \frac{2(e^{-px} - 1 + px)}{x^2}$$
.

Поиск параметров модели проводили путем минимизации среднеквадратичной невязки $\chi^2 =$

 $= rac{1}{n-1} \sum_{j=1}^{n} [q_j^2 I_{\exp}(q_j) - q_j^2 I_{mod}(q_j)]^2$ между экспери-

ментальной и модельной кривыми рассеяния по методу BFGS [46], численно реализованному в алгоритме NL2SOL [47], *n* – число экспериментальных точек.

В случае рассеяния на композите использовали модель ядро—оболочка, в которой составляющая ядро наночастица представлена либо однородным телом (сфера, трехосный эллипсоид), либо телом с радиально-симметричным спадающим распределением плотности, вокруг которого полимер образует сферически-симметричную оболочку. Максимальный диаметр D_{max} частицы находили с помощью программы GNOM [48] из условия обращения в ноль функции парных расстояний P(d), связанной с интенсивностью рассеяния интегральным уравнением Фредгольма пер-

вого рода
$$I(q) = 4\pi \int_{0}^{D_{max}} P(r) \frac{\sin(qr)}{qr}, r = d/2.$$
 Ради-

альное распределение плотности $\rho(r)$ рассчитывали

как сумму ряда $\rho(r) \approx \rho_L(r) = \sum_{l=0}^{L} \rho_l(r)$, вычисляя пар-

циальные плотности из парциальных амплитуд рассеяния $A_i(q)$ с помощью преобразования Ханкеля

$$\rho_{l}(r) = (-1)^{l} \sqrt{2/\pi} \int_{0}^{q_{max}} q^{2} A_{l}(q) J_{l}(qr) dq,$$

где $I(q) = 2\pi^{2} \sum_{l=0}^{L} |A_{l}(q)|^{2}$, а $J_{l}(qr) - функция Бес-$

селя первого рода порядка *l*. Поскольку интенсивность рассеяния инвариантна относительно смены знака коэффициентов радиальной функции плотности, в качестве критерия сходимости использовали *R*-фактор для обеих этих функций в виде

$$R(I_{exp}, I_{mod}^{(k)}) =$$

$$= \int_{0}^{\infty} [I_{exp}(q) - I_{mod}^{(k)}(q)]^{2} q^{4} dq / \int_{0}^{\infty} I_{exp}^{2}(q) q^{4} dq,$$

$$R(\rho_{l}^{(k)}, \rho_{l}^{(k+1)}) =$$

$$= \int_{0}^{R} [\rho_{l}^{(k)}(r) - \rho_{l}^{(k+1)}(r)]^{2} r^{2} dr / \int_{0}^{R} [r\rho_{l}^{(k)}(r)]^{2} dr$$

(*k* – число итераций).

Спектроскопия и атомно-силовая микроскопия

Спектры поглощения растворов регистрировали с помощью спектрофотометра "Unicam UV-500", работающего в УФ- и видимом диапазоне.

Пленки отливали с помощью спин-коатера WS-650Mz-23NPP ("Laurell", США). 60–70 мкл 0.5 мас. % растворов композитов в хлороформе наносили на кремниевую подложку и раскручивали ее до 3000 об/мин. Измерения методом ACM проводили с помощью зондового микроскопа "NTEGRA Prima" ("HT-MДТ", Россия) в полуконтактной моде с амплитудой колебаний зонда 20–25 нм.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Синтез блок-сополимера и его структура в ДМФА

Синтез блок-сополимеров стирола и 4-винилпиридина методом ОПЦ-полимеризации с использованием дитиобензоатов и циклических тритиокарбонатов описан в литературе [49-51]. В данной работе при синтезе диблок-сополимеров предпочтительнее использовать стирол в качестве первого мономера. В этом случае продукт блок-сополимеризации характеризуется более узким ММР. Блок-сополимеры синтезировали в присутствии несимметричного и симметричного тритиокарбонатов, позволяющих получить в две стадии диблок- и триблок-сополимер, соответственно [52]. Как показал эксперимент, эта стратегия оправдала себя, и во всех случаях удалось получить блок-сополимеры, не содержащие примеси полимерного ОПЦ-агента (ПС).

В табл. 1 суммированы данные по синтезу блок-сополимеров. Видно, что при использова-

	Стадия 1				Стадия 2					
Блок- сополимер	ОПЦ- агент	$M_n imes 10^{-3},$ г/моль	Ð	Полимер	Выход, %	[полиОПЦ], моль/л	Выход, %	$M_n imes 10^{-3},$ г/моль	Ð	$M_n \times 10^{-3},$ г/моль
	ГПХ				, -	,	, -	ГПХ		(AMB)
Б-1	ЦТК	4.5	1.13	ПС-1	68.7	0.04	82.5	9.8	1.29	7.7
Б-2	ЦТК	9.5	1.12	ПС-2	71.4	0.04	68.3	16.7	1.28	14.6
Б-3	азид-ТК	3.0	1.21	ПС-3	71.9	0.035	98.1	28.1	1.16	—
Б-4	БТК	6.4	1.18	ПС-4	86.1	0.035	96.2	22.2	1.74	—

Таблица 1. Условия синтеза и ММ характеристики блок-сополимеров

нии монофункциональных тритиокарбонатов сополимеры характеризуются узким MMP, в случае БТК молекулярно-массовое распределение триблок-сополимера уширяется, однако на хроматограммах отсутствуют следы исходного полимерного ОПЦ-агента (ПС-4).

Для изучения поведения блок-сополимеров в ДМФА были использованы методы рассеяния света и рентгеновских лучей. Ранее мы показали, что диблок-, триблок- и пентаблок-сополимеры стирола и алкилакрилатов склонны к самоорганизации в этой среде [27]. В работе [29] на основании данных РЭМ и измерений краевого угла для пленок сополимера ПС–*блок*–П-4-ВП, полученных из ДМФА, сделан вывод о том, что при любом соотношении длин блоков в этом растворителе образуются рыхлые мицеллы, сердцевину которых составляют блоки ПС, а оболочку – блоки П-4-ВП.

На рис. 1а приведены кривые распределения интенсивности рассеянного света по гидродинамическому радиусу для растворов диблок-сополимера Б-2 в ДМФА при разной концентрации полимера. Видно, что распределение унимодально, а положение максимума, отвечающего наиболее вероятному значению радиуса частиц $R_h = 6 \pm \pm 1$ нм, не изменяется. Кажущееся уширение пика при малых концентрациях вызвано снижением соотношения сигнал : фон. Интенсивность рассеяния линейно возрастает с увеличением концентрации полимера (рис. 16), что также свидетельствует об отсутствии дополнительной агрегации макромолекул.

Для анализа молекулярно-массовых характеристик сополимера построили зависимость коэффициента рассеяния R_{θ} от концентрации раствора в координатах уравнения Дебая—Зимма (рис. 2). Анализ параметров полученной прямой позволил оценить $M_w = 47.6 \times 10^3$ г/моль и второй вириальный коэффициент $A_2 = 4.8 \times 10^{-7}$ моль л/г². Поскольку $A_2 > 0$, ДМФА является термодинамически хорошим растворителем для блок-сополимера Б-2. В то же время значение M_w , определен-

ное методом светорассеяния, примерно втрое превышает значение M_n , найденное из данных ЯМР ¹Н. Такое различие противоречит экспериментальным данным о величине дисперсности D, которая по данным ГПХ для блок-сополимера не превышает 1.3 (табл. 1). Противоречие исчезает, если предположить, что цепи сополимера Б-2 самоорганизуются в ДМФА в мицеллы, что согласуется с литературными данными о поведении диблок-сополимера ПС-*блок*-П-4-ВП в слабо селективном растворителе [28, 29, 35].

Анализ кривой малоуглового рентгеновского рассеяния, полученной для раствора блок-сополимера Б-2 в ДМФА концентрацией c = 19.7 г/л и построенной на рис. 3, показывает, что зависимость интенсивности рассеяния от волнового вектора можно представить в виде взвешенной суммы вкладов, вносимых агрегатами $I_{mod}(q)$ и отдельными цепями $I_{PCh}(q)$. Агрегаты характеризуются фрактальной размерностью $D_m = 2.78$ и радиусом инерции $R_{gAgg} = 4.1$ нм, на них рассеивается 82% интенсивности падающего излучения. Рассеяние на отдельных цепях существенно усиливается в диапазоне значений волнового вектора q = 0.5 - 2.0 нм⁻¹ за счет сегрегации блоков ПС и П-4-ВП в сополимере, которая характеризуется пространственным масштабом $R_{g PCh} = 1.8$ нм.

Полученные методом малоуглового рентгеновского рассеяния оценки размера агрегатов и отдельных цепей существенно занижены по сравнению с данными светорассеяния. В этой связи отметим, что количественные расхождения между результатами рассеяния света и рентгеновских лучей типичны для структурированных полимерных растворов [53]. Тем не менее, оба метода свидетельствуют об агрегации сополимера ПС– блок–П-4-ВП в ДМФА.

Стабилизация наночастиц золота в ДМФА

Хотя наночастицы золота, стабилизированные ТОАБ, устойчивы в ДМФА в течение длительного времени, их исследование методом светорассеяния затруднено, так как не удается провести

Nº 6

2021

Рис. 1. Изменение распределения интенсивности *I* по гидродинамическому радиусу R_h (а) и общей интенсивности светорассеяния *G* (б) с ростом концентрации c = 1.25 (*1*), 2.5 (*2*), 5.0 (*3*) и 10.0 г/л (*4*) сополимера ПС-*блок*-П-4-ВП в ДМФА. Цветные рисунки можно посмотреть в электронной версии.

предварительное фильтрование раствора. При использовании целлюлозного фильтра раствор мутнеет, а в случае нейлонового фильтра происходит увеличение интенсивности сигнала после фильтрования. В обоих случаях фильтры не являются химически инертными по отношению к ДМФА. Если брали тефлоновый фильтр с диаметром пор 200 нм, то золь из красного становился бледно-розовым, и резкое падение концентрации наночастиц подтверждалось светорассеянием и по спектру поглощения. Разбавление раствора путем добавления ДМФА ничего не меняет. Поскольку даже чистый ТОАБ фильтруется плохо, можно предположить, что его длинные молекулы формируют в растворе лабильные агре-

гаты — флокулы. Характерный размер этих образований (~50 нм) можно оценить по кривым светорассеяния для нефильтрованных образцов, показанным на рис. 4. Его небольшое увеличение (от 60 до 70 нм) с разбавлением золя наночастиц свидетельствует в пользу того, что флокулы воз-

Рис. 3. Зависимость интенсивности *I* рентгеновского излучения от волнового вектора *q* рассеяния для раствора $\Pi C - \delta n \kappa - \Pi - 4 - B \Pi$ в ДМФА (*c* = 19.7 г/л). Точки – эксперимент, красная линия – модельный расчет. Расчетные кривые рассеяния на агрегатах (*Agg*) и цепях (*PCh*) с учетом вклада блоков (*BCopoly*) показаны черными кривыми, указаны интегральные вклады w_v агрегатов и цепей в общую интенсивность рассеяния. На вставке построены те же зависимости в координатах Кратки.

Рис. 4. Кривые распределения интенсивности *I* светорассеяния по гидродинамическому радиусу R_h для золя наночастиц золота с концентрацией 0.025 (*I*) и 0.0125 (*2*) г/л, стабилизированных ТОАБ, в ДМФА.

никают в результате взаимодействия молекул ТОАБ. Наночастицы золота в них не агрегируют и сохраняют свои индивидуальные особенности, так как положение максимума плазмонного пика в спектре поглощения не изменяется.

Сначала мы исследовали возможность замещения ТОАБ в оболочке наночастиц на макромолекулы ПС-блок-П-4-ВП непосредственно в ДМФА. С этой целью 0.333 мл золя наночастиц в ДМФА смешивали с 0.666 мл раствора ТОАБ в ДМФА (20 г/л) и затем с 0.33 мл раствора сополимера Б-2 в ДМФА (66.7 г/л). Полученный композит выдерживали в течение 3 суток в темноте без перемешивания, затем разбавляли раствором ТОАБ в ДМФА (20 г/л) в 2 (образец 1) или 4 (образец 2) раза и фильтровали через тефлоновый фильтр с диаметром пор 200 нм. Характеристики образцов 1 и 2 приведены в табл. 2. Из данных таблицы следует, что в присутствии полимера фильтрование не приводит к критическому уменьшению концентрации наночастиц в растворе. Поскольку при этом максимум пика поглощения не смещается, агрегации наночастиц также не происходит. Кривые светорассеяния растворов 1 и 2 после фильтрования показаны на рис. 5.

Помимо уже упомянутых флокул, в растворе присутствуют частицы радиусом 3-8 нм, которые соответствуют наночастицам, стабилизированным диблок-сополимером. Для системы, состоящей из частиц двух размеров, можно по кривым светорассеяния определить массовую долю частиц каждого типа [54]. В режиме малых углов $qR_i <$ < 1.78 (i = 1, 2), который имеет место в нашем случае, $w_i = (A_i/R_{hi}^3)/(A_1/R_{hi}^3 + A_2/R_{h2}^3)$, где A_i, R_{hi} – интенсивность и положение пиков. Из данных рис. 5 нетрудно оценить, что массовая доля флокул в наших образцах составляет 0.3%. Хотя такая оценка является достаточно грубой, поскольку не учитывает угловую зависимость интенсивности рассеяния и тем самым занижает вклад больших частиц, можно заключить, что добавление сополимера ПС-блок-П-4-ВП разрушает значительную часть флокул. Таким образом, сополимер эффективно препятствует самоорганизации молекул ТОАБ, хотя фильтрование и в этом случае приводит к потере значительной доли (50-75%) наночастиц.

Нанокомпозиты на основе сополимеров ПС-блок-П-4-ВП и наночастиц золота

Используя в качестве растворителя для полимера смесь этанола с ТГФ, а для золя наночастиц – толуол, удается ввести синтезированные диблоксополимеры в оболочку наночастиц Au с минимальными потерями [15]. Следуя процедуре, описанной в Экспериментальной части, мы получили набор нанокомпозитов (табл. 3), различающихся строением полимерного стабилизатора (MM, соотношение звеньев стирола и 4-винилпиридина, количество блоков) и содержанием наночастиц, определяемым по спектру поглощения.

Оказалось, что в отличие от низкомолекулярного стабилизатора ТОАБ, не способного предотвратить агрегацию частиц при удалении растворителя, сополимеры ПС-*блок*-П-4-ВП позволяют сохранить оптические свойства наночастиц золота после многократных циклов вакуумной сушки и редиспергирования в любой органической среде, где растворяется ПС. Из табл. 3 следует, что в композите на основе сополимера Б-2

Раствор	Расчетная концентрация	Расчетная доля	Концентрация наночастиц по поглощению, г/л			
	наночастиц, г/л	nommepa, mae. 70	до фильтрования	после фильтрования		
Исходный	0.05	1.7	0.041	0.021		
1	0.025	0.85	0.021	0.006		
2	0.0125	0.425	0.011	0.003		

Таблица 2. Характеристики растворов наночастиц, ТОАБ и полимера в ДМФА

Рис. 5. Кривые распределения интенсивности *I* светорассеяния по гидродинамическому радиусу R_h для золя наночастиц золота с концентрацией 0.025 (а) и 0.0125 г/л (б), стабилизированных ТОАБ и сополимером ПС–*блок*–П-4-ВП, в ДМФА.

максимум плазмонного пика наблюдается при 530 нм независимо от концентрации наночастиц. При использовании двух других блок-сополимеров Б-3 и Б-4 максимум пика смещается в длиноволновую область спектра на 30 нм, а интенсивность пика растет, что позволяет предполагать увеличение средних размеров частиц за счет образования агрегатов. Эти блок-сополимеры отличаются от Б-1 и Б-2 сравнительно более коротким блоком ПС и длинным блоком П-4-ВП, что, повидимому, ухудшает их стабилизирующую способность.

Композиты на основе сополимера Б-2 были перенесены из хлороформа в ДМФА по методике, описанной в Экспериментальной части для перевода золя наночастиц из толуола в ДМФА, после чего исследованы методами рассеяния света и малоуглового рентгеновского рассеяния. Как следует из рис. ба, в растворе присутствуют мицеллы размером порядка 10 нм с небольшой добавкой гораздо более крупных (200 нм) мицелл. Согласно рис. бб, существенного изменения морфологии системы с повышением концентрации наночастиц не происходит. Вместе с тем происходящие в ней перестройки могут быть достаточно сложными, поскольку мицеллы, содержащие в ядре наночастицы Au с адсорбированным на них блоком П-4-ВП, имеют в качестве короны блоки ПС, а мицеллы из чистого блок-сополимера ПС– П-4-ВП, согласно литературным данным [29], образуют в ДМФА ядро из блоков ПС и корону из блоков П-4-ВП.

Кривая малоуглового рентгеновского рассеяния, как и в случае чистого сополимера, показывает значительный вклад агрегатов (рис. 7), доминирующий при q < 1.2 нм⁻¹. Отдельные частицы композита могут быть представлены как в виде системы ядро-оболочка с явно выраженными компонентами (рис. 7), так и в виде сферы с плотностью, плавно уменьшающейся с расстоянием от ее центра (рис. 8). В первом случае ядро моделировали либо твердой сферой с радиусом инерции $R_{\rm g}$ либо трехосным эллипсоидом с полуосями *a*, *b* и *c*. Подгонка расчетной кривой рассеяния к экспериментальным данным привела к значениям $R_g = 3.4$ нм, a = 5.6 нм, b = 4.5 нм, c = 3.0 нм, характеризующим размер наночастиц золота. Во втором случае было получено, что модельная сферическая частица композита имеет радиус 4 нм, из которых ~2 нм занимает более плотное ядро, что

Блок-сополимер	Массовая доля наночастиц в исходной смеси, %	Выход, мас. %	Пик поглощения λ _{max} , нм	Содержание наночастиц в композите, мас. %
Б-2	1	17	530	0.8
	5	67	530	7
	10	89	530	11
Б-3	8	94	560	10
Б-4	9	99	560	10

Рис. 6. Распределение интенсивности светорассеяния *I* по гидродинамическому радиусу R_h при концентрации наночастиц Au в ДМФА c = 0.05 г/л (а) и изменение суммарной интенсивности светорассеяния *G* с концентрацией *c* (б). Композит содержит сополимер Б-2 и 7 мас. % наночастиц.

Рис. 7. Зависимость интенсивности рентгеновского излучения от волнового вектора рассеяния для композита на основе сополимера Б-2 (c = 19.7 г/л) и 11 мас. % наночастиц Аи в ДМФА. Точки – эксперимент, кривые – модельный расчет. Показаны вклады от рассеяния на агрегатах (I_{Agg}) и отдельных частицах (I_{Comp}). На вставке построена функция парных расстояний P(d) для частицы с явно выраженными компонентами ядра и оболочки, вычисленная регуляризованным методом наименьших квадратов (RLS).

ближе к ожидаемому при использованных условиях синтеза радиусу наночастицы Au, равному 4–5 нм. Для функции парных расстояний P(d) (рис. 7, вставка) и радиального распределения плотности $\rho(r)$ (рис. 8) видна переходная область шириной $\Delta R \sim 1$ нм между ядром и оболочкой.

Следует отметить, что получение нанокомпозита с высоким содержанием золота простым смешением золя наночастиц и раствора полимера проблематично, поскольку для протекания реакции обмена низкомолекулярного стабилизатора на полимерный нужен большой избыток полимера. Вместе с тем такие нанокомпозиты представляют большой практический интерес из-за возможности взаимодействия близко расположенных наночастиц. Для решения этой задачи мы разработали специальную методику концентрирования наночастиц золота в нанокомпозите путем отделения несвязанного полимера. Композит, содержащий 7 мас. % наночастиц и диблоксополимер Б-2 (табл. 3), растворяли в хлороформе, центрифугировали в течение 7–8 ч со скоро-

Рис. 8. Радиальное распределение плотности $\rho(r)$ для частицы того же композита, что и на рис. 7, моделируемой сферой переменной плотности. На вставке выполнено фитирование экспериментальной кривой (*Comp*) без рассеяния от агрегатов и показана интенсивность рассеяния ядром частицы (*Core*).

стью 15000 об/мин, затем быстро отделяли верхний малоокрашенный слой и повторяли с ним аналогичную процедуру. Затем собирали концентрированные остатки золя, разбавляли растворителем до исходного объема, фильтровали и регистрировали спектр поглощения. В первом цикле содержание наночастиц в композите выросло до 18 мас. %, во втором — до 28 мас. %, а в третьем — до 43 мас. %. Потери массы при концентрировании не превышали 2 мас. % за цикл. На рис. 9 приведены нормированные спектры поглощения исходных наночастиц золота, стабилизированных ТОАБ (кривая 1), и их композитов с Б-2 до (кривая 2) и после 1—3 циклов очистки (кривые 3-5) от несвязанного полимера. На спектрах наблюдается незначительный, в пределах 10 нм, сдвиг плазмонного пика в длинноволновую область спектра. Таким образом, концентрирование композитов практически не сопровождается агрегацией наночастиц.

Интересно, что исследованные композиты, несмотря на относительно невысокую молярную массу ОПЦ-блок-сополимеров, обладают хорошей пленкообразующей способностью. Как видно на рис. 10, спин-коатинг композита на основе сополимера Б-2 из раствора в хлороформе, являющегося, как и ДМФА, хорошим растворителем для обоих блоков, приводит к образованию гладкой пленки толщиной порядка 20 нм. Микрофазно-расслоенная структура не успевает сформироваться за короткое время высыхания такой пленки. однако последующая выдержка в насыщенных парах 1,4-диоксана в течение 1 суток приводит к образованию морфологии горизонтальных цилиндров, хорошо различимой на поверхности пленки. Можно предположить, что эти цилиндры представляют собой мицеллы из блоков П-4-ВП, поскольку 1,4-диоксан селективен по отношению к блоку ПС.

Таким образом, нами показано, что блок-сополимеры стирола и винилпиридина способны стабилизировать в мицеллах сферические наночастицы золота в ДМФА – хорошем растворителе

Рис. 9. Спектр поглощения золя наночастиц золота, стабилизированных ТОАБ в толуоле (1) и сополимером Б-2 в хлороформе при концентрации наночастиц в композите 6 (2), 18 (3), 28 (4) и 43 мас. % (5). Спектры для сополимера сняты при десятикратном разбавлении золя, все кривые нормированы на значение пика при 530 нм.

Рис. 10. Пространственный профиль пленки композита на основе сополимера Б-2, содержащего 11 мас. % наночастиц золота, (а) и топографические ACM-изображения поверхности пленки сразу после ее получения (б) и через 1 сутки выдержки в парах 1,4-диоксана (в).

для обоих блоков со слабой селективностью (по литературным данным) по отношению к П-4-ВП. Соответствующие композиты могут быть получены заменой низкомолекулярного ПАВ на блоксополимер, которую удобно проводить в смешанном растворителе этанол—ТГФ с последующим переносом в ДМФА. Разработана методика очистки таких композитов от несвязанного полимера с помощью центрифугирования, позволяющая достичь содержания золота в нанокомпозите более 40 мас. %.

Авторы выражают признательность А.А. Ежову (МГУ им. М.В. Ломоносова и ИНХС РАН) за проведение АСМ-измерений.

Исследования методом малоуглового рентгеновского рассеяния выполнены с использованием оборудования Центра коллективного пользования Федерального научно-исследовательского центра "Кристаллография и фотоника" РАН при поддержке Министерства образования и науки РФ.

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (код проекта 19-03-00900).

СПИСОК ЛИТЕРАТУРЫ

- 1. Bockstaller M.R., Mickiewicz R.A., Thomas E.L. // Adv Mater. 2005. V. 17. № 11. P. 1331.
- Hoheisel T.N., Hur K., Wiesner U.B. // Prog. Polym. Sci. 2015. V. 40. № 1. P. 3.
- Sarkar B., Alexandridis P. // Prog. Polym. Sci. 2015. V. 40. № 1. P. 33.
- Boles M.A., Engel M., Talapin D.V. // Chem. Rev. 2016.
 V. 116. № 18. P. 11220.
- Balazs A.C., Emrick T., Russell T.P. // Science. 2006. V. 314. № 5802. P. 1107.
- 6. Gerasin V.A., Antipov E.M., Karbushev V.V., Kulichikhin V.G., Karpacheva G.P., Talroze R.V., Kudryavtsev Y.V. // Russ. Chem. Rev. 2013. V. 82. № 4. P. 303.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б

- Gao B., Rozin M.J., Tao A.R. // Nanoscale. 2013. V. 5. № 13. P. 5677.
- Saldias C., Bonardd S., Quezada C., Radic D., Leiva A. // J. Nanosci. Nanotech. 2017. V. 17. № 1. P. 87.
- 9. *Kennemur J.G.* // Macromolecules. 2019. V. 52. № 4. P. 1354.
- Roescher A., Möller M. // Adv. Mater. 1995. V. 7. № 2. P. 151.
- 11. *Kim B.J., Bang J., Hawker C., Kramer E.J.* // Macromolecules. 2006. V. 39. № 12. P. 4108.
- 12. Fan Z., Köhn Serrano M., Agarwal S., Greiner A. // Adv. Mater. 2015. V. 27. № 26. P. 3888.
- 13. Posel Z., Posocco P., Lisal M., Fermeglia M., Pricl S. // Soft Matter. 2016. V. 12. № 15. P. 3600.
- Derikov Y.I., Shandryuk G.A., Talroze R.V., Ezhov A.A., Kudryavtsev Y.V. // Beilstein J. Nanotechnol. 2018. V. 9. P. 616.
- 15. Derikov Y.I., Abetz C., Shandryuk G.A., Talroze R.V., Ezhov A.A., Abetz V., Kudryavtsev Y.V., Osipov M.A. // Polymer Science C. 2018. V. 60. № 1. P. 78.
- Derikov Y.I., Abetz C., Karpov O.N., Shangryuk G.A., Ezhov A.A., Kudryavtsev Y.V., Abetz V. // Polymer Science C 2018. V. 60. Suppl. 1. P. 240.
- 17. Moad G. // Polym. Chem. 2017. V. 8. № 1. P. 177.
- Blakey I., Schiller T.L., Merican Z., Fredericks P.M. // Langmuir. 2010. V. 26. № 2. P. 692.
- Slavin S., Soeriyadi A.H., Voorhaar L., Whittaker M.R., Becer C.R., Boyer C., Davis T.P., Haddleton D.M. // Soft Matter. 2012. V. 8. № 1. P. 118.
- 20. Semsarilar M., Abetz V. // Macromol. Chem. Phys. 2021. V. 222. № 1. Art. 2000311.
- Guo J., Tardy B.L., Christofferson A.J., Dai Y., Richardson J.J., Zhu W., Hu M., Ju Y., Cui J., Dagastine R.R., Yarovsky I., Caruso F. // Nat. Nanotechnol. 2016. V. 11. P. 1105.
- 22. Rossner C., Roddatis V., Lopatin S., Vana P. // Macromol. Rapid Commun. 2016. V. 37. № 21. P. 1742.
- 23. *Rossner C., Glatter O., Vana P. //* Macromolecules. 2017. V. 50. № 18. P. 7344.

том 63 № 6 2021

- 24. *Rossner C., Tang Q., Mueller M., Kothleitner G. //* Soft Matter. 2018. V. 14. № 22. P. 4551.
- 25. *Hamley I.W.* Block Copolymers in Solution: Fundamentals and Applications. West Sussex: Wiley, 2005.
- Calderara F., Riess G. // Macromol. Chem. Phys. 1996.
 V. 197. № 7. P. 2115.
- Vishnevetski D.V., Lysenko E.A., Plutalova A.V., Chernikova E.V. // Polymer Science A. 2016. V. 58. № 1. P. 1.
- Du B., Zhao B., Tao P., Yin K., Lei P., Wang Q. // Colloid. Surf. A. 2008. V. 317. № 1–3. P. 194.
- Ye X., Niroomand H., Hu S., Khomami B. // Colloid Polym. Sci. 2015. V. 293. P. 2799.
- 30. Nunes S.P., Behzad A.R., Peinemann K.V. // J. Mater. Res. 2013. V. 28. № 19. P. 2661.
- Rangou S., Buhr K., Filiz V., Clodt J.I., Lademann B., Hahn J., Jung A., Abetz V. // J. Membr. Sci. 2014. V. 451. P. 266.
- Jung A., Rangou S., Abetz C., Filiz V., Abetz V. // Macromol. Mater. Eng. 2012. V. 297. № 8. P. 790.
- Peinemann K.-V., Abetz V., Simon P.F.W. // Nat. Mater. 2007. V. 6. № 12. P. 992.
- 34. Chen S.-C., Kuo S.-W., Chang F.-C. // Langmuir. 2011. V. 27. № 16. P. 10197.
- 35. Madhavan P., Peinemann K.-V., Nunes S.P. // ACS Appl. Mater. Interfaces 2013. № 6. V. 5. P. 7152.
- Chernikova E.V., Terpugova P.S., Garina E.S., Golubev V.B. // Polymer Science A. 2007. V. 49. № 2. P. 108.
- Saunders A.E., Sigman Jr. M.B., Korgel B.A. // J. Phys. Chem. B. 2004. V. 108. № 1. P. 193.
- Dou X., Wang X., Qian S., Liu N., Yuan X. // Nanoscale. 2020. V. 12. № 38. P. 19855.

- Yudin I.K., Nikolaenko G.L., Kosov V.I., Agayan V.A., Anisimov M.A., Sengers J.V. // Int. J. Thermophys. 1997. V. 18. № 5. P. 1237.
- 40. Эскин В.Е. Рассеяние света растворами полимеров и свойства макромолекул. Л.: Наука, 1986.
- 41. *Glatter O., Kratky O.* Small Angle X-ray Scattering. London: Acad. Press, 1982.
- 42. *Huang T.C., Toraya H., Blanton T.N., Wu Y.* // J. Appl. Cryst. 1993. V. 26. № 2. P. 180.
- Sorensen C.M., Wang G.M. // Phys. Rev. E. 1999. V. 60. № 6. P. 7143.
- 44. *Sharp P., Bloomfield V.A.* // Biopolymers. 1968. V. 6. No 8. P. 1201.
- 45. *Leibler L.* // Macromolecules. 1980. V. 13. № 6. P. 1602.
- 46. *Gill F.E., Murray W., Wright M.H.* Practical Optimization. London: Acad. Press, 1981.
- 47. Dennis J.E., Gay D.M., Welsh R.E. // ACM Trans. Math. Softw. 1981. V. 7. № 3. P. 348.
- 48. Svergun D.I. // J. Appl. Crystallogr. 1992. V. 25. № 4. P. 495.
- 49. Zhang L., Wang Q., Lei P., Wang X., Wang C., Cai L. // J. Polym. Sci., Polym. Chem. 2007. V. 45. № 13. P. 2617.
- Zamfir M., Patrikios C.S., Montagne F., Abetz C., Abetz V., Oss-Ronen L., Talmon Y. // J. Polym. Sci., Polym. Chem. 2012. V. 50. № 8. P. 16.
- Nieswandt K., Georgopanos P., Abetz V. // Polym. Chem. 2021. V. 12. № 15. P. 2210.
- Chernikova E.V., Sivtsov E.V. // Polymer Science B. 2017. V. 59. № 2. P. 117.
- 53. Ree B.J., Lee L., Satoh Y., Kwon K., Isono T., Satoh T., Ree M. // Polymers. 2018. V. 10. № 12. P. 1347.
- 54. *Shibayama M., Karino T., Okabe S.* // Polymer. 2006. V. 47. № 18. P. 6446.