—— ДЕСТРУКЦИЯ ПОЛИМЕРОВ ——

УДК 541.64:547(315+538.141)

ОСОБЕННОСТИ ТЕРМОДЕСТРУКЦИИ НАПОЛНЕННЫХ КОМПОЗИЦИЙ НА ОСНОВЕ БУТАДИЕН-СТИРОЛЬНОГО ТЕРМОЭЛАСТОПЛАСТА

© 2022 г. Л. С. Шибряева^{*a,b,**}, Н. Д. Блинов^{*a*}, Л. Р. Люсова^{*b*}, Ю. А. Наумова^{*b*}

^а Институт биохимической физики им. Н.М. Эмануэля Российской академии наук 119334 Москва, ул. Косыгина, 4, Россия ^b МИРЭА/ИТХТ — Российский технологический университет/ Институт тонких химических технологий имени М.В. Ломоносова 119435 Москва, ул. Малая Пироговская, 1, стр. 5, Россия *e-mail: lyudmila.shibryaeva@yandex.ru Поступила в редакцию 22.10.2021 г. После доработки 12.11.2021 г. Принята к публикации 15.12.2021 г.

Изучены особенности структуры и процесса термодеструкции композиций из бутадиен-стирольного термоэластопласта с биодеградируемым полимером полилактидом и поверхностно-активными веществами: тетраметилендиэтилентетрамином и дистеарилдиметиламмоний хлоридом. С помощью растровой электронной микроскопии установлены особенности морфологии композиций, а методом термогравиметрии и дифференциальной термогравиметрии определены термические и кинетические параметры разложения компонентов композиции. Кинетические параметры термодеструкции рассчитывали с использованием моделей Freeman–Carroll, Friedmen–Ozawa, Coats– Redfern. При рассчете параметров деструкции применяли метод разделения дифференциально-термической кривой на отдельные пики, характеризующие индивидуальные компоненты. Показано, что введение полилактида и поверхностно-активных веществ в бутадиен-стирольный термоэластопласт приводит к изменению кинетики и механизма терморазложения полибутадиенового и полистирольного компонентов. Полилактид увеличивает, а поверхностно-активные вещества уменьшают максимальную скорость потери массы композиции по сравнению с индивидуальным термоэластопластом. Влияние наполнителей на кинетику термодеструкции обусловлено их межмолекулярным взаимодействием с термоэластопластом. Показано, что особенности термодеструкции наполненного бутадиен-стирольного термоэластопласта определяются локализацией полилактида в бутадиен-стирольной матрице вокруг доменов полистирола, а поверхностно-активных веществ — в полилактиде и матрице бутадиен-стирольного термоэластопласта, включая блоки полистирола.

DOI: 10.31857/S2308113922020048

введение

Проблема поиска новых биодеградируемых материалов, стойких к высокотемпературному воздействию и термодеструкции остается актуальной. Это связано прежде всего с появлением новых областей применения полимеров – в медицине, фармакологии, пищевой промышленности [1-12]. В частности, биосовместимые полимеры используют при создании материалов для изготовления медицинских изделий и оборудования. в том числе имплантатов для суставов, кровеносных сосудов, сердечных клапанов, при получении пролонгированных лекарственных форм, раневых покрытий, упаковок, диагностических инструментов и т.д. [4-9, 12]. При получении, переработке и эксплуатации биосовместимых полимеров и композиционных материалов на их основе необходимо решать проблему стабилизации таких полимерных систем [13–16].

Для изделий медицинского назначения также требуется создание материалов, обладающих термостойкостью и антибактериальными свойствами. Технологией создания такого материала является модификация поверхностного слоя полимера, из которого изготовлен медицинский инструментарий. Наиболее подходящим полимером, поверхностный слой которого может быть подвержен модификации с целью обеспечения требуемых свойств, служит бутадиен-стирольный термоэластопласт (ДСТ). Введение в эластомерную основу биоразлагаемых пластиков совместно с поверхностно-активными веществами позволяет достичь высоких антибактериальных свойств [9, 17, 18]. Введение в ДСТ наполнителей различной природы может изменить физико-химические свойства, кинетику и механизм термодеструкции термоэластопласта и изделий из него [19—21]. Использование медицинского оборудования предполагает его высокотемпературную стерилизацию, в связи с чем вопрос характера влияния наполнителей на термостабильность бутадиен-стирольной матрицы очень важен.

Анализ литературы показал существование разных и порой противоречивых сведений о характере влияния наполнителей и модификаторов на термостойкость полимерных композиций [21, 22]. Разный характер влияния наполнителей на терморазложение полимера обусловлен многими причинами. Например, присутствие модификатора может вызвать ингибирование процесса деструкции ДСТ или создать ограничения сегментарной подвижности цепей в матрице, вследствие чего уменьшится скорость разрушения композиции [22, 23].

Основными факторами, определяющими термостабильность композиции, являются ее состав, природа компонентов и структура [13–16, 19–23]. Морфология композиции в значительной степени облегчает создание материалов с заданными свойствами, а также может носить предсказательный характер. В связи с этим задача интерпретации зависимостей состав—структура—термостойкость на примере модифицированного ДСТ актуальна и имеет практическое значение.

Цель настоящей работы — установление особенностей механизма и кинетики термодеструкции композиций из бутадиен-стирольного термоэластопласта, наполненного биодеградируемым полилактидом совместно с поверхностно активными веществами, и выявление факторов, определяющих эти особенности.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали следующие соединения.

Бугадиен-стирольный термоэластопласт ДСТ-30-01 производства Открытого акционерного общества "Воронежсинтезкаучук" по ТУ 38.103.267-99 в виде гранул; содержание связанного стирола в блоксополимере составляет 27—31 мас. %; показатель текучести расплава 1 г/10 мин (при 190°С, 5 кгс); содержание летучих веществ 0.5 мас. %, золы 2.0 мас. %, стабилизатора 0.2—0.5 мас. %; условная прочность при растяжении — не менее 19.6 МПа, относительное удлинение при разрыве — не менее 650%.

Полилактид (ПЛА), L-, D,L-энантиомер Ingeo Biopolymer 4032D в виде гранул, с молекулярной массой 1.7×10^5 , плотностью 1.27 г/см³, показатель текучести расплава 4 г/10 мин (при 185°С, 2.5 кгс), пределом текучести при растяжении 60 МПа, относительным удлинением при разрыве 6%, температурой плавления 170°С, степенью кристалличности 50–60%.

Тетраметилендиэтилентетрамин (ТМДЭТА, теотропин, (1,8,3,6-диэндометилен-1,3,6,8-тетраазациклодекан), циклический третичный амин, синтезируемый конденсацией этилендиамина с формальдегидом, антибактериальный агент с противовирусной активностью — желтовато-белый порошок, легко растворимый в воде, спиртах, хлороформе, $T_{пл} = 195^{\circ}$ С.

Дистеарилдиметиламмония хлорид (ДСДМАХ, талофлок (N,N-диметил-N,N-диоктадециламмония хлорид) – четвертичная соль аммония, белый порошок плотностью 0.84 г/см³, не растворимый в воде, растворимый в спиртах, кетонах, температура разложения 135°С, при хранении стабилен, в том числе в виде спиртовых растворов; катионный ПАВ, антибактериальный агент широкого спектра действия.

Композиции, содержащие ДСТ, ПЛА, ТМДЭТА и ДСДМАХ, изготавливали путем растворения компонентов в хлороформе; пленки получали испарением растворителя.

Растровую электронную микроскопию (РЭМ) материала проводили в Центре коллективного пользования научными приборами на базе Московского государственного технического университета имени Н.Э. Баумана. Для испытания использовали образцы пленок размером 1 × 1 см и толщиной 100 мкм.

Процесс термодеструкции образцов изучали с помощью термогравиметрического анализа на термомикровесах TG 209 F1 Iris ("Netzsch") в динамических условиях нагревания в токе аргона. Для испытания изготавливали образцы пленок в форме диска. Навески образцов составляли 5— 8 мг, анализ изменения массы образца в зависимости от температуры проводили при скорости нагревания 20 град/мин. В случае термического разложения образцы нагревали в токе аргона при скорости потока 100 см⁻³/мин. Также были получены дифференциальные кривые (ДТГА); точность определения температур $\pm 2^{\circ}$ С.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Особенности структуры композиции

Как известно, ПЛА термодинамически несовместим с ДСТ [24], однако в образцах с невысокой концентрацией ПЛА (5–10%), полученных с помощью растворной технологии, проявляется взаимодействие компонентов ДСТ и ПЛА, при этом отмечено влияние ПЛА на структуру бутадиен-стирольного термоэластопласта. Важно отметить, что параметр растворимости ПЛА ($\delta = 20.3 (MДж/м^3)^{1/2}$) ближе к параметру растворимости полистирола, составляющего жесткие бло-

31

Рис. 1. РЭМ-изображения поверхности пленок из ДСТ (а) и композиции ДСТ + 10% ПЛА (б). Цветные рисунки можно посмотреть в электронной версии.

ки ДСТ (δ = 18.2), чем к параметру растворимости эластомерной фазы полибутадиена (δ = 16.9). При испарении растворителя из раствора ДСТ/ПЛА происходит определенное распределение частиц ПЛА в матрице ДСТ. Исходя из значений параметров растворимости, можно предположить, что частицы ПЛА должны находиться в полистирольной фазе ДСТ. Но при испарении растворителя ПС переходит в стеклообразное состояние, поэтому он должен вытеснять частицы ПЛА на периферию растущего домена. Такая картина распределения обнаруживается с помощью электронной микроскопии.

Для изучения структуры исследуемых материалов на основе ДСТ был использован метод растровой электронной микроскопии (РЭМ), где для получения изображения использовались сигналы, образованные вторичными электронами. На рис. 1 представлены РЭМ-изображения поверхности пленок из ДСТ и ДСТ + 10% ПЛА. Светлые области, обладающие большей плотностью, соответствуют доменам ПС, темные – эластомерной фазе ПБ. На рис. 1 видно, что введение ПЛА в ДСТ приводит к изменению в структуре поверхности пленочного образца. На РЭМ-изображении ПЛА представлен в виде светлых колец. Такие выводы были сделаны на основании анализа электронной картины, которая постоянно изменялась, кольца находились в движении. Это связано с тем, что при взаимодействии электронов с ПЛА происходит его разложение мощной эмиссией вторичных электронов, высвечивающих области разложения. Таким образом, кольцеобразные структуры соответствуют ПЛА, который локализуется в эластомерной фазе вокруг более темных областей, соответствующих доменам ПС. Повышение контрастности снимка из-за вторичной эмиссии при разложении ПЛА не позволяет сравнить в данном случае электронную плотность ПС и ПБ. Тем не менее, если бы ПЛА находился в неупорядочном состоянии в эластомерной фазе, наблюдаемая картина не содержала бы кольцеобразных структур. Введение ТМДЭТА или ДСДМАХ от 0.5 до 2.5 мас. % существенно не влияет на характер поверхности на изображениях РЭМ.

Таким образом, данные РЭМ свидетельствуют о локализации ПЛА в массе эластомерного компонента ДСТ вокруг доменов ПС на границе ПБ-ПС.

Формальная кинетика термодеструкции композиций

Для изучения особенностей процесса термодеструкции композиций из ДСТ с наполнителями был использован метод термогравиметрического анализа. Термограммы регистрировали с помощью динамического ТГА в режиме постоянной скорости сканирования в инертной среде (аргон) и дифференциированием кривых ТГА получали ДТГА. На всех кривых ДТГА видны отчетливые пики, характеристика которых представлена ниже (пики пронумерованы в порядке повышения температуры).

Пик 1 (150–175°С) появляется только в случае, если в композиции есть ТМДЭТА. Его наличие может быть связано как с разложением ТМДЭТА на этилендиамин и формальдегид, так и с его сублимацией.

Пик 2 наблюдается в интервале температур 250–380°С в индивидуальном ПЛА и при его на-

личии в составе композиции (рис. 26-2r). Следует отметить, что температура отрыва групп >C=O в ПЛА составляет 270°С, что соответствует пику деструкции чистого ПЛА (кривая 2), поэтому пик 2 в композициях однозначно может быть отнесен к ПЛА.

Наличие пиков 3—6 на всех графиках позволяет сделать вывод об их принадлежности к ДСТ.

Пик 3 (380°С) является самым стабильным, он не смещается и почти не изменяется в разных композициях. Можно предположить, что данный пик связан с выделением стирола-мономера, причем статистически присоединенного к ПБ (который обязательно присутствует в ДСТ), и разложением стирол-бутадиенового статистического сополимера, преобладающего у границ ПСблоков макромолекул ДСТ и содержащего преимущественно структуру 1,2-ПБ.

Пик 4 (420°С) представляет собой левое плечо самого большого пика 5. Учитывая принадлежность пика 5 к структуре *транс*-1,4-ПБ (см. ниже), и то, что температура деструкции *цис*-изомеров ниже, чем *транс*-изомеров, пик 4 следует отнести к структуре *цис*-1,4-ПБ.

Пик 5 (450°С) наиболее интенсивен и потому относится к структуре 1,4-*транс*-ПБ, поскольку именно она является преобладающей в ДСТ.

Пик 6 с максимумом при 520°С соответствует разложению ПС-блоков как самых термостойких. Уширение пика от 550 к 580°С обусловлено большим количеством конкурирующих процессов разложения.

При сравнении данных ТГА/ДТГА, полученных для ДСТ, ПЛА и наполненных образцов можно отметить влияние наполнителей на положение на шкале температур пиков, отвечающих за разложение компонентов, изменение в величинах максимальных температур Т_{макс} и максимальных скоростях потери массы (dP/dT). Прежде всего из данных ТГА следует, что при введении в индивидуальный ДСТ 10% ПЛА температура 5%-ной потери массы, уменьшается с 355.55°С до 298.75°С. При этом температура 5%-ной потери массы индивидуального ПЛА составляет 327.5°С. В то же время введение в композицию ДСТ-ПЛА наполнителей ТМДЭТА и ДСДМАХ мало влияет на величину указанных температур, они равны 289.2 и 297.6°С соответственно.

На кривых ДТГА видно, что смешение ДСТ с ПЛА (рис. 2а, 2б) приводит к следующим изменениям. Пик 2, характеризующий распад индивидуального ПЛА, для смеси ДСТ–ПЛА смещается в сторону более низкой температуры (рис. 2а кривая 2' и рис. 26–2г). Его максимальная температура разложения $T_{\text{макс}}$ понижается с 355 до 290°С. Аналогичным образом во всех композициях ДСТ/ПЛА с ПАВ пик 2 ПЛА проявляется при более низкой температуре (табл. 1), 294.1 и 339.3°С для композиций ДСТ–ПЛА–ТМДЭТА и ДСТ– ПЛА–ДСДМАХ соответственно. Смещение пика 2 в низкотемпературную область указывает на ускорение начала термодеструкции полимера, по всей видимости, за счет распада компонента ПЛА. С введением ПЛА в ДСТ увеличивается интенсивность пика 5, относящегося к распаду 1,4-*mpaнс*-ПБ в ДСТ, что свидетельствует о росте максимальной скорости процесса. Также наблюдается тенденция к смещению от 525 до 510°С $T_{\text{макс}}$ пика 6, характеризующего реакции распада ПС-блоков в ДСТ.

С одной стороны, смещение пика 2 деструкции ПЛА и пика 6 ДСТ в низкотемпературную область, указывающее на ускорение деструкции может быть обусловлено взаимодействием ПЛА с блоками ПС. С другой стороны, смещение пика 2 и рост интенсивности пика 5. т.е. максимальной скорости распада, указывает на инициирование процесса деструкции ПБ продуктами распада ПЛА. Учитывая термодинамическую несовместимость ПЛА и ПС, низкотемпературное смещение пика 2, а также рост интенсивности пика 5, относящегося к связям *транс*-1,4-ПБ, примыкающим к границам ПС-блоков, можно предположить распределение частиц ПЛА в менее жесткой эластомерной фазе, а именно, в среде статистического бутадиен-стирольного сополимера у границ ПС-блоков. Такая локализация ПЛА создает благоприятные условия для инициирования распада эластомера. Этот факт подтверждают данные РЭМ, согласно которым ПЛА распределяется в ДСТ преимущественно у блоков ПС.

Введении ТМДЭТА в ДСТ приводит к появлению на кривой ДТГА (рис. 2в) пика 1, очевидно, относящегося к фазовому переходу ТМДЭТА. Появление этого пика соответствует уменьшению пиков 3–6. Интенсивность пика 3, отвечающего максимальной скорости разложения структур 1,2-ПБ в макромолекулах ДСТ, понижается с величины, характерной для чистого ДСТ, равной 0.27, до 0.18 град⁻¹ в композициях ДСТ–ПЛА, ДСТ–ПЛА–ТМДЭТА (табл. 1). В то же время она увеличивается в композиции ДСТ–ПЛА–ДСДМАХ (табл. 1) до 0.32 град⁻¹.

Максимальная скорость распада 1,4-*транс*-ПБ в ДСТ (пик 5) равна 2.8 град⁻¹ в индивидуальном ДСТ, увеличиваясь до 3.0 в композиции ДСТ/ПЛА, но уменьшается до 2.8 и 2.0 град⁻¹ в композициях ДСТ–ПЛА–ТМДЭТА и ДСТ– ПЛА–ДСДМАХ соответственно (табл. 1).

Это, по-видимому, свидетельствует о замедлении терморазложения ДСТ, проявлении стабилизирующего действия ТМДЭТА на распад связей ПБ в ДСТ. Изменения пика 2 при этом практически не заметно. Однако при добавлении ДСДМАХ (рис. 2г) происходит смещение указанного пика в сторону высоких температур, благо-

Рис. 2. Кривые ТГА (штриховые линии) и ДТГА (сплошные): а – ДСТ(*1*', пик 2) и ПЛА (*2*', пики 3–6); б – ДСТ + 10% ПЛА; в – ДСТ + 10% ПЛА + 2.5% ТМДЭТА; г – ДСТ + 10% ПЛА + 2.5% ДСДМАХ.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б том 64 № 1 2022

Образец	Пик	Температурный интервал пика, $T_{ m K} - T_{ m H},^{\circ}{ m C}$	Максимальная температура пика, <i>Т_{макс}</i> °С	Величина потери массы (степень превращения, соответствующая <i>T</i> _{макс}), <i>dP/dT</i>
ПЛА	2	280-425	355	100
ДСТ	3	300-421	391	10
	4	421-435	429	32
	5	435-465	450	95
	6	465-550	525	14
ДСТ + 10% ПЛА	2	229-321	290	7
	3	321-413	387	7.5
	4	413-434	429	32
	5	434-471	452	100
	6	471-560	510	15
ДСТ + 10% ПЛА + 2.5% ТМДЭТА	1	145-180	165	2
	2	203-327	294	4.8
	3	327-405	382	5
	4	411-437	429	25
	5	437-474	450	93
	6	475-580	509	15
ДСТ + 10% ПЛА + 2.5% ДСДМАХ	2	235-400	340	10
	3	367-405	385	10
	4	408-432	426	17
	5	432-472	450	68
	6	472-580	515	7

Таблица 1. Термофизические параметры деструкции наполненных композиций ДСТ, полученные из кривых ТГА и ДТГА

даря чему его интенсивность возрастает. Несмотря на то, что пик 3 почти не смещается по температуре, его интенсивность также увеличивается. При этом в системе наблюдается тенденция к уменьшению максимальной скорости распада блоков ПС (пик 6). Значение dP/dT = 0.39 в чистом ДСТ уменьшается до 0.27 град $^{-1}$ в системе с ЛСЛМАХ. Ланные изменения можно объяснить тем, что ДСДМАХ стабилизирует ПЛА, причем при повышении температуры стабилизирующее действие понижается, тем самым вызывая интенсивное начало разложения полимера: левое плечо 4 большого пика 5 стало малозаметным, а интенсивность пика 5 значительно уменьшилась. Понижение интенсивности этого пика, свидетельствующее о замедлении разложения эластомерного компонента ДСТ и может быть связано со стабилизирующим действием ДСДМАХ на ПБблоки. Предположительно, ДСДМАХ стабилизирует ПС (пик 6 становится ниже), причем ДСДМАХ, находясь и внутри блоков ПС, меняет характер деструкции и увеличивает количество реакций разложения, что проявляется в уширении пика 6 (рис. 2г). Итак, можно считать, что ДСДМАХ стабилизирует ПЛА, увеличивает температуру его разложения и стабилизирует ДСТ, понижая скорость деструкции, распределяясь как в ПБ-, так и в ПС-блоках.

Механизмы термодеструкции композиций

Анализ терморазложения композиций исходит из положения, что процесс может быть представлен следующей схемой:

$$A_{TB} \rightarrow B_{TB} \rightarrow C_{AETYY}$$

В качестве параметров, характеризующих механизм процесса, использовали энергию активации E_a , предэкспоненциальный фактор A и показатель порядка реакции n.

Для расчета указанных параметров были применены кинетические модели [25–33], в основе которых лежит температурная зависимость скорости процесса k(T) и конверсионной составляющей $f(\alpha)$.

Скорость превращения полимера может быть представлена в виде произведения этих функций:

$$v = d\alpha/dt = k(T)f(\alpha)$$

где α — конверсия или степень изменения полимера в ходе реакции.

Для метода TГА величина α определяется уравнением

$$\alpha = \frac{m_{\tau} - m_0}{m_{\infty} - m_0},$$

в котором m_0 — начальное значение массы образца выбранного для анализа диапазона данных, m_{∞} — конечное значение массы образца выбранного диапазона данных, m_{τ} — масса образца в момент времени τ или равная отношению веса полимера, который улетучился к исходному весу, v — скорость изменения конверсии α или состава полимера за единицу времени *t*.

Разработанные на сегодняшний день методы получения кинетических параметров включают в себя анализ либо одной термограммы, полученной в условиях постоянной скорости изменения температуры образца β , либо нескольких термограмм с различными постоянными скоростями нагревания. В настоящей работе был применен неизотермический режим термодеструкции при одной постоянной скорости нагревания образца. Для расчета параметров термодеструкции изученных композиций такой подход был выбран с целью минимизирования ошибки эксперимента, обусловленной неоднородностью распределения компонентов, подверженных термовоздействию в условиях разных скоростей нагревания.

При проведении эксперимента в неизотермических условиях при постоянной скорости нагревания образца $\beta = dT/dt$ скорость изменения конверсии может быть представлена соотношением

$$d\alpha/dt = \beta d\alpha/dT = k(T)f(\alpha), \qquad (1)$$

где k(T) — температурная зависимость скорости потери массы, описывается уравнением Аррениуса

$$k(T) = A \exp\left(-\frac{E}{RT}\right)$$
(2)

Здесь *Е* – эффективная энергия активации, *А* – предэкспоненциальный фактор, *R* – универсальная газовая постоянная.

Конверсионно-зависимую функцию $f(\alpha)$ для потери массы, можно представить в виде

$$f(\alpha) = (1 - \alpha)^n, \tag{3}$$

соотношение (1 — α) может быть заменено на W – весовую фракцию остающуюся в ходе изменения веса на термограмме ТГА

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б

$$v = \frac{dW}{dt} = AW^{n} \exp\left(-\frac{E}{RT}\right)$$
(4)

или в дифференциальном виде

$$\ln v = \ln \left(-\frac{dW}{dt} \right) = \ln A + n \ln W - \frac{E}{RT}$$
(5)

В работе были использованы различные модельные методы, направленные на получение линеаризованных графиков зависимостей данных от обратных температур, для обеспечения быстрой визуальной оценки порядка реакции, ее энергии активации и предэкспоненты.

Метод Freeman–Carroll. В дифференциальной форме уравнение (5) выглядит следующим образом:

$$\Delta \ln\left(-\frac{dW}{dt}\right) = n\Delta \ln W - \left(\frac{E}{R}\right)\Delta\left(\frac{1}{T}\right)$$
(6)

Или в преобразованном виде:

$$\left(\frac{\Delta \ln\left(\frac{dw}{dt}\right)}{\Delta\left(\frac{1}{T}\right)}\right) = n \left(\frac{\Delta \ln W}{\Delta\left(\frac{1}{T}\right)}\right) - \left(\frac{E}{R}\right)$$
(7)

ИЛИ

$$\left(\frac{\Delta \ln\left(\frac{dW}{dt}\right)}{\Delta \ln W}\right) = n + E \left(-\frac{\Delta\left(\frac{1}{T}\right)}{R\Delta \ln W}\right)$$
(8)

Отсюда вытекают две графические зависимости:

$$\left[\Delta \ln \left(\frac{dW}{dt} \right) / \Delta \left(\frac{1}{T} \right) \right] = f\left[\Delta \ln W / \Delta \left(\frac{1}{T} \right) \right]$$
(9)

$$\left[\Delta \ln \left(\frac{dW}{dt} \right) / \Delta \ln W \right] = f\left[-\Delta \left(\frac{1}{T} \right) / R \Delta \ln W \right]$$
(10)

Зависимости в координатах (9) и (10) представляют собой прямую линию. В первом случае ее наклон равен порядку химической реакции, а отсечение ординаты при нулевом значении на оси абсцисс величине параметра ($-E_a/R$). В случае зависимости (10) наклон прямой линии равен E_a , а отсечение – величине *n*.

Метод Friedman—Ozawa. Этот метод используют в случае кинетической зависимости *n*-го порядка. Термокинетическая модель для одной постоянной скорости нагревания может быть представлена следующим уравнением:

$$\left(\ln\frac{dW}{dt} - n\ln W\right) = E\left(-\frac{1}{RT}\right) + \ln A \tag{11}$$

(12)

При $n \sim 1 \ln \left(\frac{dW/dt}{W}\right) = E\left(-\frac{1}{RT}\right) + \ln A$ получаем соотношение

 $\ln\left[-\left(\frac{dW}{dt}\right)/W\right] = f\left(-\frac{1}{RT}\right)$

Для постоянной *E*_a в определенном температурном интервале, данная зависимость имеет ли-

том 64 № 1 2022

нейный характер, наклон которой соответствует E. Отсечение на оси ординат при нулевом значении оси абсцисс составляет $\ln A$.

Появление перегибов на указанной линейной зависимости может быть связано с переходом псевдопервого порядка реакции на другой или изменением величины энергии активации в связи со сменой механизма процесса.

Метод Coats-Redfern. В данном методе используется уравнение

$$\lg\left[-\frac{\ln W}{T^2}\right] = \lg\left(\frac{AR}{\beta E}\right)\left[1 - \left(\frac{2RT}{E}\right)\right] - \frac{E}{2.303RT}$$

В работе значения *E*_a определяли из наклонов прямых на графиках зависимостей в координатах:

$$\lg[-\ln W/T^{2})] = f(1/RT)$$
(13)

Известно, что трудности термического анализа возникают в тех случаях, когда различные процессы, связанные с выделением или поглощением энергии, протекают одновременно и накладываются друг на друга. Так, эндотермический эффект деструкции полимерных цепей может накладываться на эндотермический эффект сублимации или испарения продуктов деструкции [34].

Одновременное протекание таких процессов может приводить к возникновению сингулярностей на термограммах.

При исследовании механизма термодеструкции композитов ДСТ, наполненных ПЛА, ТМДЭТА и ДСДМАХ учитывали, что брутто-процесс термоокислительной деструкции как ДСТ, так и композиции складывается из нескольких независимых эндотермических реакций. При этом распределение температуры в пределах образца единообразно, время потери тепла линейно зависит от температуры в разных фракциях полимерного вещества, т.е. в реактантах 1, 2, 3 ... *j*. Тогда пользуясь моделями, предложенными в работах [35, 36], брутто-процесс деструкции можно представить следующей схемой:

$$d [RH_1]/dt = f_1(\theta_1, C_1, t_1)$$
$$d [RH_2]/dt = f_2(\theta_2, C_2, t_2)$$
$$\dots$$
$$d [RH_j]/dt = f_j(\theta_j, C_j, t_j)$$

Здесь в композиции ДСТ с наполнителями, [RH] — суммарная концентрация реакционноспособных активных центров, участвующих в процессе деструкции; [RH₁]—[RH₆] — концентрация активных связей компонентов материала, включая ПЛА, отдельные компоненты, составляющие ДСТ, ТМДЭТА, ДСДМАХ; θ_{1-6} — кинетические параметры реакций распада связей; t время распада. Композиция наполненного ДСТ – система гетерогенная, кинетические уравнения включают параметры энергии активации и предэкспоненты, не являющиеся постоянными величинами [37]. В системах существует обмен свободной валентностью между различными активными центрами, осуществляется межмолекулярная передача кинетических цепей окисления и деструкции. Высокомолекулярная природа и особенности структуры создают ограничение для перераспределения энергии между активными центрами и реакционноспособными функциональными группами. В результате возникает распределение реакционных центров по кинетическим параметрам.

Для выявления особенностей механизма термодеструкции изучаемых композиций на основе ДСТ и установления изменений в процессе, к которым приводит введение наполнителей, были проанализированы кривые температурных зависимостей, полученных с помощью различных моделей для каждого из пиков 1-6, относящихся к разным компонентам (фракциям) в ДСТ и композициям ДСТ с наполнителями. Эти пики выделены из кривых ДТГА. Задачу определения температурного интервала, вводимого в уравнение теплового баланса, решали методом Тихонова [38], считая что каждый пик описывается Гауссовой формой. На рис. 3 представлен образец разделения пиков на примере ДСТ и ДСТ с ПЛА. Для выделенных пиков, были получены кинетические параметры: величины α , \vec{E}_{ai} и A_i , характеризующие каждую фракцию композиции, которая участвует в реакции соответственно своей локальной структуре, описывает процесс разрушения связей, отличающихся своей термостабильностью, его механизм и вносят соответствующий вклад в брутто-процесс. Соответственно количество фракций и их параметры различаются в зависимости от природы наполнителя и структуры образца. С целью установления порядка реакции для каждого из пиков на кривой ДТГА исследуемых образцов применяли кривые полулогарифмических зависимостей, полученных с помощью модели Freeman–Carroll в кординатах (9) и (10). Примеры зависимостей в координатах $[(\Delta \ln(dW/dt))/(\Delta \ln W)] = f[-\Delta(1/T)/R(\Delta \ln W)]$ для образца ПЛА (пик 2), в координатах $[\Delta \ln(dW/dt)/\Delta(1/T)] - f [\Delta \ln W/\Delta(1/T)]$ для ДСТ (пик 3) и для смеси состава ДСТ + 10% ПЛА (пик 5) представлены на рис. 4.

Значения величин n и E_a , полученные из указанных соотношений для каждой фракции, приведены в табл. 2. Как видно, величины n всех изученных образцов близки к единице. Для определения эффективной энергии активации и предэкспоненты была использована модель Friedman—Оzawa применительно к неизотермическому режиму с одной скоростью нагревания образца

Рис. 3. Область кривой ДТГА для ДСТ и ДСТ + 10% ПЛА, на которой представлено выделение отдельных пиков 2–6. Пояснения в тексте.

в соответствии с уравнением (11). Для более точного определения параметров деструкции также была привлечена модель Coats-Redfern с использованием соотношения (13). Для каждого из пиков 1-6 всех изученных образцов были получены линеаризованные кривые с применением трех моделей. Из них определены кинетические параметры деструкции Е_а и А. Указанные параметры, полученные по разным моделям, удовлетворительно совпадают (табл. 2). Анализ этих данных показал существование перегибов на линеаризованных кривых, связанных с температурными интервалами не только характерными для разных пиков, но и внутри одного пика, что свидетельствует об изменении параметров процесса разрушения полимеров.

В качестве примера на рис. 5 представлены кривые в координатах модели Friedman–Оzawa для ПЛА и композиций ДСТ + 10% ПЛА, ДСТ + 10% ПЛА + 2.5% ДСДМАХ в интервале температур, характерных для пиков 2 и 3. Этот рисунок отчетливо демонстрирует существование различий между наклонами кривых, следовательно, между величинами E_a , в температурных областях, принадлежащих разным пикам, а также одному и тому же пику 2 как у индивидуального ПЛА, так и у композиций. Таким образом, введение наполнителей в ДСТ приводит к изменению механизма деструкции его компонентов.

Кроме того, на рис. 5 показано как изменяется механизм распада полимера как при переходе от температурной области одного пика к другому, например от второго к третьему у системы ДСТ— ПЛА–ДСДМАХ, так и внутри одного пика 2 у ДСТ–ПЛА. Из анализа данных табл. 2 следует, что при n = 1.2 величины E_a разложения цепей ПЛА, определенные методами Freeman–Carroll, Friedman–Ozawa и Coats–Redfern составляет 138 ± 10, 144 ± 10 и 154 ± 10 кДж/моль соответственно (табл. 2), при этом значение предэкспоненты *A* равно 10^{10–11}. В дальнейшем обсуждаемые в работе данные будут относиться к величинам, определенным из соотношений Friedman–Ozawa.

Указанная величина энергии активации отвечает процессу отрыва связей >C=0 [39–41]. При деструкции ПЛА протекает гидролиз, цепи разрушаются по связи C(O)–O и сшиваются в результате отрыва протона от группы с $E_a = 105 \pm 10 \text{ кДж/моль}$ [42–45].

На линеаризованной зависимости Friedman-Оzawa для пиков 2 и 3 у образцов ДСТ и композиции ДСТ-ПЛА (рис. 5) обнаруживаются перегибы, свидетельствующие о двустадийности процесса распада компонента ПЛА в матрице ДСТ. По-видимому, на начальной стадии деструкции разрываются слабые связи С(О)-О фазы ПЛА. Такие связи могут возникать в результате межмолекулярных взаимодействий ПЛА с цепями полибутадиена, содержащего преимущественно структуру 1,2-ПБ, у границ ПС-блоков макромолекул ДСТ. Следует отметить, что взаимному проникновению ПЛА и 1,2-ПБ способствует рыхлая структура каучуковой фазы в ДСТ. При более глубокой стадии процесса рост *E*_a обусловлен деструкцией молекул ПЛА, взаимодействующих с ПБ. Это взаимодействие приводит к возникнове-

2022

Рис. 4. Полулогарифмические температурные зависимости скоростей превращения полимеров в ходе деструкции, представленные моделями Freeman– Carroll в координатах $\Delta \ln(dW/dt)/\Delta(1/T) - f\Delta \ln W/\Delta(1/T)$ для образца ДСТ в области температур пика 3 (а), а также в координатах $[(\Delta \ln(dW/dt)/(\Delta \ln W)] - f[-\Delta(1/T)/R(\Delta \ln W)]$ для ПЛА в области температур пика 2 (б) и композиции ДСТ + 10% ПЛА в области 425–468°C пика 5 (в).

нию стерических препятствий, снижению сегментарной подвижности ПЛА и торможению распада его функциональных связей. При этом начинают распадаться более прочные углерод-углеродные связи ПБ, на что указывают изменения как величин эффективных энергий активации, так и предэкспонент (табл. 2). Потеря массы композиции составляет 4.25 и 9.75% при 285 и 325°С соответственно, в то время как потеря массы ДСТ при тех же температурах ниже и равна 1.25 и 2.5%. Таким образом, введение ПЛА в ДСТ не только ускоряет его деструкцию, но и изменяет механизм процесса.

Изменение в механизме деструкции ДСТ можно установить при сравнении процесса разрушения цепей в структуре 1,2-ПБ, характеризующегося пиком 3 в интервале температур 325-420°С. В реакции деструкции 1,2-ПБ, при которой расщепляются слабые связи С-С в цепи с образованием смеси олигомеров, энергия активации составляет 125-140 кДж/моль [45]. В настоящем эксперименте разрушение от 6.5 до 70% ПБ цепей в чистом ДСТ протекает с $E_{\rm a} = 112 \pm 10$ кДж/моль (табл. 2). Введение ПЛА в ДСТ приводит к двустадийному деструкционному процессу в температурных интервалах 325-370 и 375-395°С с величинами E_{a1} и E_{a2} равными 102 ± 10 и 317 ± 10 кДж/моль соответственно (табл. 2). При этом степень превращения ПБ в данных температурных интервалах изменяется в пределах 3.5-53 и 53-94.

Если термодеструкция протекает через промежуточные радикалы с передачей кинетической цепи, ее энергия активации составляет от ~92 до 120 кДж/моль [45]. По-видимому, некоторое снижение энергии активации разрушения макромолекул 1.2-ПБ (до E_{a1}) в интервале 285–370°С инициировано распадом слабых связей ПЛА. Увеличение E_{a2} может быть обусловлено распадом связей С–С главных цепей 1,2-ПБ и образованием олигомеров разной длины. Этот процесс может сопровождаться передачей цепи как путем внутримолекулярной реакции переноса радикалов ПБ, так с участием радикалов ПЛА и, возможно, связей ПС, локализованных на стыке между ПБ- и ПС-блоками.

В системе ДСТ/ПЛА с ТМДЭТА в интервале температур, характерных для пика 2 (235–320°С), на полулогарифмической зависимости Friedman–Ozawa проявляется один участок с $E_a = 126 \pm \pm 10$ кДж/моль, соответствующий степени преврашения ПЛА 3.4–90% (табл. 2). По видимому, в данной системе эффективная энергия активации термодеструкции ПЛА имеет значение промежуточное между теми, которые характеризуют разрушение слабых связей С(О)–О и более прочных связей С–С для композиции ДСТ–ПЛА. В температурном интервале пика 3 термодеструкция системы ДСТ–ПЛА–ТМДЭТА двустадийна,

деструкции ДСТ и композици	
и, предэкспоненты процесса терм	
ии, эффективной энергии активациі	моделей
блица 2. Значения показателя порядка реакци	и его основе, полученные с применением трех

 высо	Обиззен	$\Pi_{\rm HV}$	Yp	авнение]	Freeman-Carrol	1	Yp	авнение]	Friedman–Ozava	_	Уравн	ение Coats	s-Redfern
око	Ооразец	пик	ΔT , °C	$\Delta \alpha, \%$	$E_{\rm a}$, қДж/моль	и	$\Delta T, ^{\circ}C$	Δα, %	$E_{\rm a},$ қДж/моль	A, c^{-1}	$\Delta T, ^{\circ}C$	Δα, %	$E_{ m a},$ қДж/моль
Е мо	[A	2	262-400	2—91	138 ± 10	1.2	262-400	2-91	144 ± 10	10^{10-11}	262-400	2-91	154 ± 10
Э ЛЕІ	L	Э	325-420	6.5-70	116 ± 10	1.5	325-420	6.5-70	112 ± 10	10^{6-7}	325-450	6.5-70	92 ± 10
КУЈ		4	422439	8-96	668 ± 50	1.5	422-439	8—96	690 ± 50	I	422-439	8-96	660 ± 50
ляі		5	443—464	8-99	764 ± 50	1.2	443-464	8.6 - 99	830 ± 50	Ι	443-464	8.6 - 99	650 ± 50
PHI		9	470—495	2 - 24	593 ± 50	4.0	470-495	2-24	425 ± 10	Ι	470-495	2 - 24	670 ± 50
ЫЕ			495544	24–99	300 ± 50	0.9	495544	24–99	290 ± 10	10^{17-19}	495544	24–99	340 ± 50
р СО	$T + 10\%\Pi$ ЛА	2	230–285	2—47	90 ± 10	0.9	230–285	0.5-47	94 ± 10	10^{6}	230-285	2—47	109 ± 10
ЕД			285-315	47–95	162 ± 10	1.5	285-315	47—95	162 ± 10	10^{12-13}	285-315	47–95	160 ± 10
ИН		3	330–365	4-45	102 ± 10	1.0	325-370	3.5-52	102 ± 10	10^{6-7}	325-370	3.5-52	140 ± 10
EHI			365-400	4592	307 ± 10	0.9	375-395	52-93	317 ± 50	10^{23}	370-395	52-93	217 ± 50
ИЯ.		4	405-420	7—40	210 ± 10	1.0	405-420	7–39	214 ± 50	10^{16}	405-420	7—40	205 ± 50
Ce			420-425	40–99	610 ± 50	2.9	420-430	39–99	882 ± 50	Ι	420-430	40–99	760 ± 50
рия		5	425-450	1 - 35	252 ± 50	0.75	430-445	2 - 31	208 ± 50	10^{16}	430-445	2 - 30	228 ± 50
гБ									722 ± 50				
			450-460	35-91	760 ± 50	2.0	445-460	31-91	286 ± 10	Ι	445470	30–98	740 ± 50
гом		9	485-500	10 - 50	317 ± 50	1.25	485-525	10 - 80	117 ± 10	10^{20-21}	485-525	10 - 80	320 ± 50
64			510-550	50-99	152 ± 50	0.7	525-550	8099	162 ± 10	10^{8-9}	525-550	80–99	120 ± 10
дС	Т +1 0% ПЛА +	1	150-175	3–90	190 ± 50	3—90	150-175	3-90	196 ± 50	10^{22}	150-175	3—90	212 ± 5
1 2.5	% ТМДЭТА	2	235-320	3-95	126 ± 10	1.0	235-320	3-91	126 ± 10	10^{10-11}	235-315	3—91	126.5 ± 10
		3	325-370	1-53	107 ± 10	1.0	325-370	1 - 53	115 ± 10	10^7	325-365	1 - 50	149 ± 10
202			370–395	53-94	314 ± 10	1.2	370–395	53-93	250 ± 10	10^{17-18}	365-395	5094	260 ± 10
2		4	410-430	7.8–74	610 ± 50	1.0	410-430	1 - 99	610 ± 50	Ι	405-435	0.4 - 99	590 ± 30
		5	430-455	1 - 78	860 ± 50	0.9	430-455	1 - 80	850 ± 50	I	430-455	1 - 78	830 ± 50
			455-470	78–99	550 ± 50	1.0	455-470	80-99	520 ± 50	I	455-470	78–99	372 ± 50
		9	480–510	5-53	300 ± 50	1.25	480-510	5-53	306 ± 10	10^{11-12}	470-500	3–38	345 ± 10
			510-545	53-86	180 ± 10	0.7	510-545	53-86	190 ± 10	10^{10}	500-525	38-76	184 ± 10
			545-580	86–99	92 ± 10	0.4	545-580	86-99	106 ± 10	10^{6}	525-585	76–99	103.5 ± 10
ДС	$T + 10\% \Pi MA + 10\%$	2	235-300	0.4 - 97	57 ± 10	1.0	235-300	8.6–99	46 ± 10	10^{1-2}	235-305	3—97	64 ± 10
2.59	% ДСДМАХ	Э	305-370	8.6–97	121 ± 10	1.0	305-370	8.6–97	117 ± 10	10^8	305-370	8.6–97	92 ± 10
		4	360-410	8.6 - 94	154 ± 10	0.9	360-410	5 - 94	163 ± 10	10^{11}	365-415	8.6–99	214 ± 10
		5	415445	8.6–97	312 ± 50	1.2	410-455	8.6–97	468 ± 10	I	410-445	8.9–97	560 ± 10
		9	480–560	594	154 ± 10	0.96	480-560	5-94	186 ± 10	10^{11}	480–560	5—94	189 ± 10

ОСОБЕННОСТИ ТЕРМОДЕСТРУКЦИИ НАПОЛНЕННЫХ КОМПОЗИЦИЙ

39

Рис. 5. Полулогарифмические температурные зависимости скоростей превращения полимеров в ходе деструкции, представленные моделью Friedman–Ozawa: *1* – интервал температур (230–400°С), характерный для пика 2 ПЛА; *2* – композиция ДСТ + 10% ПЛА; *3* – суммарная зависимость для пиков 2 и 3 композиции ДСТ + 10% ПЛА + 2.5% ДСДМАХ.

аналогично ДСТ–ПЛА. Но в отличие от последней на втором температурном интервале 370–395°С у системы с ТМДЭТА величины энергии активации и предэкспоненты существенно падают (табл. 2), что свидетельствует об увеличении скорости разрушения связей 1,2-ПБ.

Особенности разрушения системы ДСТ– ПЛА–ТМДЭТА могут быть связаны с влиянием ТМДЭТА на межмолекулярные взаимодействия фазы ПЛА с 1,2-ПБ в ДСТ, приводящие к преобладанию процесса отрыва концевых групп в ПЛА.

Добавление ДСДМАХ в смесь ДСТ/ПЛА приводит к более однородному разрушению цепей в интервале $360-415^{\circ}$ С. Процесс протекает с энергией активации 163 ± 10 кДж/моль и $A = 10^{11}$, в конце этого интервала (к 415° С) степень превращения цепей ПБ достигает 99%, а потеря массы образца 32.5%.

Важно отметить, что в температурном интервале ~440-460°С, характеризуемом пиками 4 и 5 обнаруживаются аномально высокие значения энергий активации. Например, у индивидуального ДСТ в указанной области температур для пиков 4 и 5 величина E_a составляет 690 ± 50 и 830 ± ± 50 кДж/моль. Согласно литературным данным [45], такие значения E_a обусловлены активным распадом цепей в блоках ПБ, имеющих структуру *цис*-1,4-ПБ и *транс*-1,4-ПБ с образованием летучих продуктов. Как следует из рис. 2 и табл. 1, наибольшая скорость разрушения полимера и основная часть общей потери массы образцов приходится именно на эти температурные области. Высокие значения E_a могут быть результатом наложения эндотермы распада связей С-С с образованием летучих продуктов на эндотерму их испарения. Данный эффект характерен для структур 1,4-*цис* и 1,4-*транс* ПБ и проявляется в интервале 443–464°C [45].

Введение ПЛА в ДСТ резко увеличивает скорость распада и энергию активации процесса разрушения данных структур. В то же время введение ТМДЭТА и ДСДМАХ значительно их уменьшает. Стадии распада в области пиков 4, 5 протекают с меньшей максимальной скоростью (табл. 1) и имеют меньшие значения E_a (табл. 2). Увеличение указанных параметров в образцах ДСТ–ПЛА и уменьшение в системах с ТМДЭТА и ДСДМАХ, очевидно обусловлены инициирующим действием на распад 1.4-ПБ в случае первого из этих ПАВ и тормозящим действием – второго.

Необходимо отметить особенность разрушения ПС-блоков в ДСТ в индивидуальном полимере и в его композициях. У образца исходного ДСТ (пик 6), ПС-блоки имеют плотную упаковку. Если термическое разрушение гомо-ПС идет в одну стадию, а основным продуктом является стирол, то в блоках ПС в структуре ДСТ их деструкция протекает с расщеплением цепи на более короткие фрагменты с образованием мономеров и смеси олигомеров разной длины и строения. В связи с этим наблюдаются две стадии разрушения ПС цепей причем на второй стадии величины E_a и A значительно понижаются (табл. 2). Уменьшение кинетических параметров разрушения ПС-блоков в системе ДСТ–ПЛА вызывает распад макромолекул ПЛА с образованием макрорадикалов, которые локализованы в фазе ПБ на границе с ПС-блоками и инициируют разрыв связей в этих блоках.

Введение ТМДЭТА в систему ДСТ-ПЛА увеличивает гетерогенность структуры ПС-блоков, о чем свидетельствует уширение пика 6 и уменьшение энергии активации их деструкции (табл. 2). Можно выделить три стадии, предположительно различающиеся механизмом процесса. Эти стадии (по Friedman–Ozawa) в пределах температурных интервалов 480-510, 510-545, 545-580°С соответствуют степеням превращения ПС-цепей 5-53, 53-86, 86-99% и характеризуются величинами $E_a = 306 \pm 10, 190 \pm 10, 106 \pm 10$ кДж/моль (табл. 2). Более высокие значения величины энергии активации в этом ряду, по-видимому, свидетельствуют о деструкции связей С-С в блоках ПС, цепи которых характеризуются высокой плотностью и низкой сегментарной подвижностью. Низкие величины E_a , возможно, связаны с деструкцией, протекающей с участием радикалов.

Введение ДСДМАХ в систему ДСТ–ПЛА приводит к гомогенезации процесса деструкции блоков ПС (пик 6) и в результате – к существенному снижению значений кинетических параметров. В указанной системе деструкция блоков ПС протекает в интервале температур 480–560°С до степени превращения звеньев 94% по одному механизму с $E_a = 186 \pm 10$ кДж/моль (табл. 2). Данная величина энергии активации может указывать на гомолитический разрыв связей С–С в блочных структурах ПС. При этом локализованный в них ДСДМАХ тормозит процесс, выполняя роль ингибитора деструкции.

Таким образом, из полученных данных следует, что биодеградируемый полимер ПЛА и поверхностно активные добавки, введенные в ДСТ, оказывают различное влияние на кинетику и механизм термодеструкции компонентов ДСТ вследствие различий в природе наполнителей и в их локализации.

Разложение композиций, содержащих ПЛА, увеличивает, а композиций, содержащих ПАВ, снижает потерю массы ДСТ в результате уменьшения выхода газообразных продуктов из зоны деструкции полимерной матрицы. Основным фактором, определяющим характер изменения кинетики термодеструкции, можно назвать наличие межмолекулярных взаимодействий добавок ПЛА и ПАВ с эластомерной и термопластичной компонентами в полимерной матрице из ДСТ. Характер этого взаимодействия обусловлен локализацией полилактида в бутадиеновых блоках бутадиен-стирольной матрицы вокруг доменов полистирола, а поверхностно-активных веществ в полилактиде и матрице бутадиен-стирольного термоэластопласта, включая блоки ПС. Жесткость блоков ПС препятствует проникновению в них ПЛА.

Авторы статьи выражают благодарность А.А. Ильину за его помощь в экспериментальной работе и в обсуждении результатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Полимерные пленки / Под ред. Е.М. Абдель-Бари. СПб.: Профессия, 2005.
- Gomzyak V.I., Sedush N.G., Puchkov A.A., Polyakov D.K., Chvalun S.N. // Polymer Science B. 2021. V. 63. № 3. P. 257.
- Krasavtsev V., Maslova G., Noudga L., Petrova V., Ezhova E., Krivosheina L. // Adv. Chitin Science, Montreal, Canada. 2003. V. 7. P. 269.
- Лекишвили М.В., Панасюк А.Ф. // Вестн. РАМН. 2008. № 9. С. 33.
- Misra S., Ansari T., Valappil S. // Biomaterials. 2010. № 31. P. 2806.
- Artsis M.I., Bonartsev A.P., Iordanskii A.L., Bonartseva G.A., Zaikov G.E. // Molec. Cryst. Liq. Cryst. 2012. V. 555. P. 232.
- Paşcu E.I., Stokes J., McGuinness G.B. // Mater. Sci. Eng. A. 2013. № 33. P. 4905.
- Shumilova A.A., Nikolaevaa E.D. // J. Siberian Federal Univ. Biology. 2016. V. 1. № 9. P. 53.
- Sombatmankhong K., Suwantong O., Waleetorncheepsawat S., Supaphol P. //J. Polym. Sci., Polym. Phys. 2006. V. 44. № 19. P. 2923.
- Shibryaeva L.S., Makarov O.V., Andryukhin M.I., Lyusova L.R., Il'in A.A. // Polymer Science D. 2015. T. 8. № 1. P. 75.
- Borovkova N.V., Evseev A.K., Makarov M.S., Goroncharovskaya Ir.V., Vinogradova O.N., Nikolaeva E.D., Goncharov D.B. // J. Siberian Federal Univ. Biology. 2016. V. 9. № 1. P. 43.
- Volova T.G., Vinogradova O.N., Zhila N.O., Kiselev E.G., Peterson I.V., Vasil'ev A.D., Sukovatyi A.G., Shishatskaya E.I. // Polymer Science A. 2017. V. 59. № 1. P. 98.
- 13. *Жуковский В.А.* // Научный электронный журнал "NNOVA". 2016. № 2 (3). С. 1.
- 14. *Grassie N., Scott G.* Polymer Degradation and Stabilisation Cambridge: Cambridge Univ. Press, 1985.
- 15. *Каминский В.А., Кузнецов А.А. //* Теорет. основы хим. технологии. 2012. Т. 46. № 4. С. 453.
- Крутько Э.Т., Прокопчук Н.Р., Глоба А.И. Технология биоразлагаемых полимерных материалов Уч. метод. пособие. Минск: Белорусский гос. технол. ун-т, 2014.
- 17. Shibryaeva L.S., Krasheninnikov V.G., Gorshenev V.N. // Polymer Science A. 2019. V. 61. № 2. P. 162.
- Люсова Л.Р., Ильин А.А., Ковалева А.Н., Шибряева Л.С., Карпова С.Г., Макаров О.В., Тарасюк В.Т., Грачёва А.Ю.

Состав эластичного антибактериального материала. Пат. 2629603. Россия // Б.И. 2017. № 25. С. 7.

- Shibryaeva L.S., Makarov O.V., Andryukhin M.I., Lyusova L.R., Il'in A.A. // Polymer Science D. 2015. V. 8. № 1. P. 75.
- Фойет И. Стабилизация синтетических полимеров против действия света и тепла. Пер. с нем. Л.: Химия, 1972.
- 21. Термоэластопласты / Под ред. В.В. Моисеева. М.: Химия, 1985..
- 22. Мурзаканова М.М., Залова Т.В., Борукаев Т.А., Микитаев А.К. // Пласт. массы. 2010. № 8. С. 3.
- Polymer Composite Materials: Structure, Properties, Technology / Ed. By A.A. Berlin. CPb: Professiya, 2014.
- Shibryaeva L.S., Reshmin Yu.A., Kuksenko E.S., Shatalova O.V., Krivandin A.V., Gorbunova I.Yu., Kerber M.L. // Polymer Science A. 2007. V. 49. № 1. P. 12.
- 25. *Кулезнев В.Н.* Смеси и сплавы полимеров. СПб.: Научные основы и технологии, 2013.
- 26. Прокопчук И.Р. // Пласт. массы. 1983. № 10. С. 24.
- Menczel J.D., Prime R.B. Thermal Analysis of Polymers, Fundamentals and Applications. New York: Wiley, 2009.
- Chan J.H., Balke S.T. // Polym. Degrad. Stab. 1997. V. 57. № 1. P. 135.
- 29. *Flammersheim H.-J., Opfermann J.R.* // Macromol. Mat. Eng. 2001. V. 286. № 3. P. 143.
- 30. *Herman M.F.* Encyclopedia of Polymer Science and Technology. New York: Wiley., 2005. V. 2.
- Starink M.J. // Thermochim. Acta. 2003. V. 404. № 1. P. 163.

- 32. *Ozawa T.J.* // J. Thermal Analysis. 1986. V. 31. № 3. P. 547.
- Ozawa T.J. // Thermochim Acta. 2000. V. 355. № 1–2. P. 35.
- 34. Ozawa T.J. // J. Therm. Anal. Calorim. 2005. V. 82. № 3. P. 687.
- 35. *Ginzburg B.M.* // Polymer Science A. 2012. V. 54. № 3. P. 248.
- Moukhina E. // J. Therm. Anal Calorim. 2012. V. 109. № 3. P. 1203.
- Moukhina E. 39 North American Thermal Analysis Society (NATAS) Conference. Des Moines Lowa, 2011. V. 1.
- *Пен В.Р.* // Химия растительного сырья. 2004. № 2. С. 101.
- Сумин М.И. Методы регуляции А.Н. Тихонова для решения оперативных уравнений первого рода. Уч.-методич. пособие. Нижний Новгород: Нижегородский гос. ун-т, 2016.
- Kratkiy spravochnik phizico-khimicheckih velichin/ Ed. by K.P. Mishchenko, A.A. Ravdel'. Leningrad: Khimiya, 1974.
- 41. Arshady R. // J. Controlled Release. 1991. V. 17. P. 1.
- 42. Juni K., Nakano M., Kubota M. // J. Controlled Release. 1986. V. 4. P. 25.
- 43. Uhrich K.E., Cannizzaro S.M., Langer R.S., Shakesheff K.M. // Chem. Rew. 1999. V. 99. P. 3181.
- 44. *Gunatillake P.A., Adhikari R. //* Eur. Cells Materials. 2003. V. 5. P. 1.
- 45. Справочник химика. Л.; М.: Госхимиздат, 1951– 1952.