—— ФУНКЦИОНАЛЬНЫЕ ПОЛИМЕРЫ ——

УДК 541.64:547.82

СИНТЕЗ ВЫСОКООСНОВНЫХ АНИОНИТОВ ВЗАИМОДЕЙСТВИЕМ 4-ВИНИЛПИРИДИНА С ЭПОКСИСОДЕРЖАЩИМИ АЛКИЛИРУЮЩИМИ РЕАГЕНТАМИ И ИХ ПРИМЕНЕНИЕ В СОРБЦИИ БЛАГОРОДНЫХ МЕТАЛЛОВ

© 2022 г. Л. А. Павлова^{*a*}, Е. Г. Кононова^{*a*}, Ю. А. Максимова^{*b*}, С. Е. Любимов^{*a*,*}, В. А. Даванков^{*a*}

^а Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук 119991 Москва, ул. Вавилова, 28, Россия

^b Московский государственный университет им. М.В. Ломоносова. Химический факультет 119899 Москва, Ленинские горы 1, стр. 3, Россия *e-mail: lssp452@mail.ru Поступила в редакцию 28.02.2022 г. После доработки 28.03.2022 г.

Принята к публикации 05.04.2022 г.

Описаны способы получения высокоосновных анионитов с пиридиниевыми катионами и кислородсодержащими функциональными группами (–OH, C–O–C). Использована спонтанная полимеризация мономерного 4-винилпиридина при его алкилировании эпихлоргидрином и диглицидиловыми эфирами в сольватирующей образующийся полимер среде. Получены эффективные сорбенты для анализа смесей комплексных солей редких и драгоценных металлов и для извлечения их из многокомпонентных растворов неорганических кислот.

DOI: 10.31857/S2308113922700048

введение

Предложенная ранее [1] принципиально новая идея — синтез ажурных трехмерных полимерных сеток из конформационно жестких фрагментов в большом объеме сольватирующего растворителя — привела к созданию сверхсшитых полистирольных сорбентов [2]. В сфере сорбционных и хроматографических процессов спектр их применения чрезвычайно широк [2, 3], включая детоксикацию крови пациентов [4–6].

Гидрофобность материалов полистирольного типа создает сложность для работы непосредственно в водных средах: сначала сухой сорбент помещают в полярный органический растворитель, который затем замещают водой.

Этот факт послужил стимулом для создания сверхсшитых сеток гидрофильной природы. Относительно близким структурным аналогом стирола из гидрофильных мономеров является 4-винилпиридин (**4-ВП**). Ввести жесткие мостики между цепями поли-4-винилпиридина в среде термодинамически хороших растворителей удалось при взаимодействии 4-ВП с *бис*-галоидалкилами (типа *n*-ксилилендихлорида) [7] с применением реакции Каргина и Кабанова [8, 9]. Последняя представляет собой спонтанную ионную полимеризацию 4-ВП в кватернизованном состоянии.

В соответствии с ионным механизмом растущая полимерная цепь включает в себя только Nалкилированные звенья 4-ВП. Они уже имеют жесткий фрагмент — "распорку" *п*-ксилиленового типа между двумя пиридиниевыми кольцами, принадлежащими разным полимерным цепям.

Полученные полимеры демонстрируют свойства сверхсшитых сеток: обладают высокой степенью набухания, а, следовательно, высокой проницаемостью, не только в водных и полярных органических средах, но и в неполярных растворителях [2]. Такое качество расширяет сферу применения сорбентов и уменьшает колебание объема сорбционного слоя в колонке при смене растворителя в условиях сорбции и десорбции.

Параметры пористой структуры полимера регулируются степенью полярности среды и объемом взятого при синтезе растворителя. Кажущаяся удельная поверхность высушенных полимеров не превышает 100 м²/г, но данная величина не коррелирует с истинной пористостью анионита, используемого в набухшем состоянии. Высокая степень набухания делает эти сетки доступными, в том числе для крупных молекул. Одностадийный синтез позволяет получать гидрофильные полимеры в виде монолитных классических гелей [10] или в виде так называемых наногубок [11]. Последние представляют собой индивидуальные сшитые макромолекулярные клубки, растворимые в воде и в полярных растворителях. Их размер можно регулировать в пределах MM от 6×10^3 до 400×10^3 разбавлением исходной реакционной системы [12]. В капиллярной электрохроматографии наногубки использовались в качестве модификаторов поверхности кварцевых капилляров при разделении заряженных аналитов [12, 13].

Самопроизвольное превращение раствора 4-ВП и дигалогенида-сшивателя в монолитный полимер [10] позволяет получать непосредственно в колонке или в кварцевом капилляре монолитные ионообменные хроматографические фазы для анализа органических кислот и неорганических анионов [12–14].

Е.Е. Ергожин с сотрудниками [15–17] изучали аниониты на базе производных пиридина и бифункциональных эпоксисоединений. Отмечают их эффективность при извлечении из кислых сред вольфрама, молибдена и ванадия [15]. На основе 2-ВП, 2-метил-5-ВП и эпихлоргидрина (ЭХГ) были получены аниониты в отсутствие растворителя [17]. Полимеры такого типа отличались высокими эксплуатационными свойствами. Однако из солянокислых и сернокислых растворов солей металлов платиновой группы извлекались только платина и палладий, сорбция комплексов Rh, Ru, Ir, Os оказалась практически нулевой [17].

Стойкость высокоосновных анионитов в агрессивных средах особенно важна при работе с сильно кислыми растворами в гидрометаллургии, при количественном анализе продуктов разложения образцов горных пород, содержащих ионы металлов платиновой группы и громадное количество конкурирующих ионов железа, никеля и т.д. Анализ осложняет неполнота извлечения гидратированных хлоридных комплексов благородных металлов, характеризующихся крупными размерами и пониженным отрицательным зарядом (Ir, Ru, Os, Rh) [17-19]. Электростатического взаимодействия аквахлорокомплексов с положительным зарядом пиридиниевых групп оказывается недостаточно для полноты их извлечения. Тем не менее, полученные ранее сорбенты на основе 4-ВП и *п*-ксилилендихлорида (КДХ) оказались весьма перспективными для анализа комплексов металлов группы платины [18], а также для извлечения благородных металлов (Au, Pt, Pd) из технологических растворов и сточных вод [18, 19].

Цель настоящей работы — синтез высокоосновных анионитов с использованием 4-ВП и алкилирующих бифункциональных эпоксидов, которые дополнительно вносят в структуру сеток гидроксильные группы. Они потенциально способны встраиваться в первичную или вторичную координационную сферу металлокомплекса. Варьирование длины молекулы эпоксида дает возможность изменять гибкость фрагментов сетки и размер пор анионита. Особое внимание обращено на эффективность сорбции солей Ru, Os, Rh и Ir в виде гидроксо- и аквахлорокомплексов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы и методы

Эпихлоргидрин 99%, 4-ВП 95%, ДМСО 99.7% и оксид алюминия для хроматографии – коммерчески доступные соединения ("Acros Organics"). Очистку 4-ВП от примесей проводили согласно методике [11]. Диглицидиловый эфир диэтиленгликоля и диглицидиловый эфир неопентилгликоля (технический), "Aldrich" использовали без дополнительной очистки.

ИК-спектры полимеров снимали в таблетке с КВг на Фурье-ИК-спектрометре "BrukerTensor 37". Степень сорбции благородных металлов оценивали в динамическом режиме. Концентрацию благородных металлов в растворах "введено" и "проскок" определяли на квадрупольном массспектрометре с индуктивно-связанной плазмой "Agilent 7500c" ("Agilent Technologies", Japan) согласно работе [18].

Взаимодействие 4-ВП с эпихлоргидрином

К раствору заданного объема 4-ВП в смеси ДМСО с водой приливали раствор ЭХГ в ДМСО. Исходную реакционную смесь (раствор) гомогенизировали простым перемешиванием и термостатировали при выбранных условиях (температура, время). Образующиеся гели измельчали на металлической сетке с выбранным размером ячеек, промывали в колонках ацетоном или этиловым спиртом, водой, содержащей 0.3 М HCl, а затем водой до нейтральной реакции. Просеивали через сито 315 мкм и отмучивали в воде, (декантацией удаляли самые мелкие частицы, взвешенные в воде). Условия синтеза приведены в табл. 1, а данные элементного анализа сополимеров – в табл. 2.

Измерение весового набухания полимеров проводили в стандартных условиях удалением несвязанной воды центрифугированием из равновесно набухшего полимера с последующим взвешиванием полимера после центрифугирования и высушенного продукта. Результаты приведены в табл. 1.

2022

ПАВЛОВА и др.

Сополимер	4-ВП, г/ммоль	ЭХГ, г/ммоль	ДМСО+H ₂ O, _{мл}	Вода, об. %	ФР, мл/г	Условия: <i>Т</i> /время, °С/ч	Набухание в воде/этаноле, мл/г
Al	2.4/22.8	1.0/10.8	5.0*	0	1.45	50/5 + 85/1.5	2.75/2.3
A2	0.99/9.42	0.41/4.43	1.4	28.6	1	22-24/72	0.95/0.80
A3	0.99/9.42	0.53/5.73	1.5	33.3	1	55/4.5	2.05/1.95
A4	1.19/11.3	0.47/5.1	3.0	33.3	2.0	50-55/6	3.45/3.50
A5	1.19/11.3	0.47/5.1	6.0	33.3	4.0	50-55/3	6.04/6.10
A6	0.36/3.4	0.12/1.28	1.4**	21.4	3.0	60-65/3	5.20/5.10

Таблица 1. Условия синтеза сополимеров 4-ВП с ЭХГ (А) (весовое набухание гелей в воде и этаноле в мл/г)

Примечание. ФР – отношение объема растворителя к суммарной массе реагентов.

* Растворитель ДМСО без добавок воды.

** Растворитель 1-бутил-3-метилимидазолий тетрафторборат.

Взаимодействие 4-ВП с диглицидиловыми эфирами диэтиленгликоля и неопентилгликоля

К раствору заданного объема 4-ВП в смеси ДМСО с водой приливали раствор соответствующего диглицидилового эфира в ДМСО, смесь гомогенизировали, выдерживали при выбранных условиях (температура, время – см. табл. 3). Обрабатывали продукты так же, как и сополимеры 4-ВП–ЭХГ. Условия синтеза сополимеров 4-ВП с диглицидиловыми эфирами (ДГЭ) приведены в табл. 3, а данные элементного анализа – в табл. 4.

Процент извлечения комплексов благородных металлов из разбавленных солянокислых растворов (табл. 5) полученными сорбентами определяли методом масс-спектрометрии с индуктивно-связанной плазмой [23].

Условия сорбции: скорость прокачивания раствора 2 мл/мин, кислотность 0.2 М HCl, объем пробы 5 мл, полезный объем колонки с сорбентом 150 мкл. Концентрация каждого металла 25 мкг/л.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В работе предложен технологически простой метод получения высокопроницаемых густо сшитых поли-4-винилпиридиниевых анионообменных сорбентов с дополнительными гидроксильными группами, которые способны увеличить гидрофильность материала и изменить его сродство к трудно извлекаемым из кислых растворов комплексным солям Ir, Ru, Os, Rh [15, 17-19]. Синтез полимеров основан на самопроизвольной полимеризации двойных связей 4-ВП после алкилирования его третичного азота. Если для алкилирования применяется бифункциональный реагент, то простое смешение мономеров приводит к образованию трехмерной сетки – геля. В работе исследованы эпихлоргидрин и диэпоксиды. Реакция пиридина и его производных с эпихлоргидрином и другими эпоксисоединениями приводит к получению целого ряда различных продуктов в зависимости от условий: соотношения реагентов, свойств растворителя, наличия основных или кислотных катализаторов, температуры и т.п. [17].

В протонодонорных растворителях ЭХГ сначала алкилирует атом азота своей хлорметильной группой по реакции Меншуткина. Затем, при раскрытии эпоксидного кольца с участием молекулы воды алкилируется атом азота другой молекулы пиридина, причем в образовании ковалентной связи участвует углерод $-CH_2$ -группы ЭХГ. Раскрытие оксиранового цикла катализируется кислотами и основаниями [17]. Отмечено, что ЭХГ легко полимеризуется в полярных средах при повышенных температурах [16], хотя присутствие избытка третичного амина подавляет полимеризацию [17].

В соответствии с принципом получения высокопроницаемых густо сшитых сеток [1] синтез необходимо вести в условиях максимальной сольватации растущих полимерных цепей. Высокополярный ДМСО является хорошим растворителем для четвертичных аммонийных солей и обеспечивает получение сверхсшитых сеток при реакции 4-ВП с бифункциональным сшивателем КДХ [10].

Таблица 2. Данные элементного анализа сополимеров 4-ВП с ЭХГ (А)

Сополимер	С %	Н %	N %	Cl %
A1	54.51	6.60	6.74	16.33
A2	55.56	6.92	7.25	16.57
A3	53.05	6.86	6.80	15.37
A4	53.26	6.79	6.99	14.42
A5	53.54	6.75	6.94	14.55
A6	57.54	6.11	7.79	12.64

Сополимер	4-ВП, г/ммоль	ДГЭ, г/ммоль	ДМСО+H ₂ O, мл	Вода, об. %	Условия: <i>Т</i> /время, °С/ч	Фактор разбавления, мл/г	Набухание в воде/ацетоне, мл/г
Б	0.5/4.71	0.46/2.1	0.95	47.4	20-22/72	1.0	1.3/0.8
B 1	0.5/4.71	0.45/2.1	1.80	27.8	55-60/4	1.9	4.0/3.2
B2	0.5/4.71	0.44/2.0	1.20	16.7	55-60/9	1.3	5.0/3.8

Таблица 3. Условия синтеза сополимеров 4-ВП с диглицидиловым эфиром диэтиленгликоля (Б) и с диглицидиловым эфиром неопентилгликоля (В)

Однако в случае замены *п*-ксилилендихлорида на ЭХГ в осушенном растворителе быстрая первая стадия процесса приводит к выпадению линейного N-алкилированного эпихлоргидрином поли-4-ВП в виде легкорастворимого в водной среде аморфного осалка. Система становится гетерогенной. Отсутствие воды препятствует взаимодействию эпоксидного кольца ЭХГ со второй молекулой мономера 4-ВП, что исключает образование трехмерной сетки. Тем не менее, в условиях высокого разбавления крайне гигроскопичным ДМСО при значительном повышении температуры сшитый полимерный продукт A1 все же образуется (табл. 1). Однако в этом случае доля 4-ВП в конечном продукте несколько снижается (что демонстрирует уменьшение содержания азота), отражая тот факт, что повышение температуры способствует олигомеризации ЭХГ (образец А1, табл. 6).

Гомогенность реакционной системы и гелеобразование в мягких условиях обеспечивается введением в реакционную среду воды, необходимой и для раскрытия эпоксидного кольца. Увеличение доли воды позволяет без дополнительного нагревания получать трехмерные сетки типа 4-ВП-ЭХГ (табл. 1, образец А2) и 4-ВП-ДГЭ (табл. 3, образец Б).

В опытах с разным мольным соотношением 4-ВП : ЭХГ, различным разведением и содержанием воды получены однородные сшитые продукты А1-А6 (табл. 1). Время гелеобразования при одинаковом термическом режиме увеличивалось пропорционально фактору разбавления системы – через 30 мин, через 1 ч и через 1.5 ч (табл. 1, образцы АЗ, А4 и А5 соответственно). В ионной жидкости с добавлением воды (табл. 1, образец Аб) процесс образования геля протекал

Таблица 4. Данные элементного анализа сополимеров БиВ

Сополимер	С %	Н %	N %	Cl %
Б	55.76	7.26	5.62	14.76
B 1	57.82	7.01	5.12	11.71
B2	56.65	7.17	4.99	10.87

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б

быстрее, чем в ДМСО, и доля 4-ВП оказалась выше, чем в аналогах (табл. 6, образец А6).

Соотношение фрагментов 4-ВП и ЭХГ в полученных сополимерах с определенной точностью может быть рассчитано из элементного состава продуктов. Фрагментный состав полимеров зависит от условий синтеза, способствующих олигомеризации ЭХГ, среди которых определяющими факторами являются полярность среды и температура реакции [16]. В общем и целом при повышенной температуре синтеза количество включенных в сетку звеньев ЭХГ оказывается несколько большим, чем количество звеньев 4-ВП. Лишь сополимеры А2 и А6 (табл. 6) по своему составу приближаются к идеализированной структуре типа I и равновероятной структуре II (схема 1). В них мостиками между двумя цепями ПВП, вероятно, являются димеры ЭХГ. Ни избыток 4-ВП по отношению к ЭХГ в пределах 1.64-2.20 моля на моль ЭХГ, ни увеличение разбавления исходной реакционной смеси не повышают долю звеньев 4-ВП. В остальных продуктах ВП-ЭХГ (табл. 6, образцы А1, А3-А5) логично предположить либо наличие более длинных мостиков между цепями ВП, либо появление подвешенных к этим цепям олигомеров ЭХГ (тип III на схеме 1). Расчет фрагментного состава показывает, что степень сшивки этих гелей примерно на 15% ниже идеальной 100%. Благодаря достаточно длинным мостикам между цепями 4-ВП и наличию дефектных звеньев сополимеры А1, А4, А5, А6 сильно набухают как в воде (табл. 1), так и в растворах неорганических кислот. Весовое набухание практически линейно возрастает пропорционально фактору разбавления исходной реакционной системы. Лишь продукт А2, полученный без нагревания, оказывается более плотным (1 мл/г). Немаловажно, что сополимеры ВП-ЭХГ (А) набухают в полярных органических растворителях (этиловый спирт) примерно так же, как и в воде (табл. 1). Ниже приведена предполагаемая схема взаимодействия 4-ВП с ЭХГ.

ИК-спектры полученных полимеров не противоречат предполагаемому строению (рис. 1). В ИК-спектрах сополимеров, содержащих N-алкилированный поли-4-ВП, четко прослеживается характерная группа полос C=N, C=C, C-H-свя-

ПАВЛОВА и др.

Металл	Значения S, %							
	4-ВП-КДХ	A3	A4	A5	A6	Б	B1*	B2*
Ru	54 ± 7	66 ± 5	62 ± 5	58 ± 3	43 ± 7	50 ± 3	12 ± 6	26 ± 10
Rh	26 ± 2	33 ± 5	31 ± 4	23 ± 2	7 ± 4	13 ± 4	0 ± 1	4 ± 2
Pd	100 ± 1	99 ± 1	99 ± 1	100 ± 1	99 ± 1	100 ± 1	96 ± 1	98 ± 1
Os	98 ± 2	100 ± 1	99 ± 1	99 ± 2				
Ir	80 ± 1	91 ± 2	90 ± 2	78 ± 2	52 ± 7	70 ± 4	6 ± 1	22 ± 10
Pt	100 ± 1	99 ± 1	100 ± 1	100 ± 1	98 ± 2	99 ± 1	94 ± 1	100 ± 1
Au	100 ± 1	99 ± 1	99 ± 1	97 ± 5	99 ± 2	99 ± 1	95 ± 1	100 ± 1

Таблица 5. Процент извлечения благородных металлов *S* в виде комплексных солей на поли-4-винилпиридиниевых сорбентах из стандартного раствора

* В статистических условиях.

Таблица 6. Исходное соотношение мономеров и соотношение фрагментов ВП и ЭХГ в сополимерах А по данным элементного анализа

	ΒΠ : ЭΧΓ,		4-ВП : ЭХГ в			
Сополимер	моль/моль	ВП, моль	ЭХГ, моль	Cl, атомов	полимере, моль/моль	
A1	2.1:1	0.482	0.578	0.460	8.4:10	
A2	2.1:1	0.518	0.507	0.469	10:10	
A3	1.64:1	0.486	0.587	0.434	8.3:10	
A4	2.2:1	0.499	0.580	0.407	8.6:10	
A5	2.2:1	0.495	0.585	0.410	8.5:10	
A6	2.65:1	0.556	0.506	0.357	11:10	

Таблица 7. Исходное соотношение мономеров и соотношение фрагментов ВП и ДГЭ в сополимерах Б и В по данным элементного анализа

	ВП : ДГЭ,		4-ВП : ДГЭ в			
Сополимер	моль/моль	ВП, моль ДГЭ, моль		Cl, атомов	полимере, моль/моль	
Б	2.2:1	0.400	0.20	0.416	20:10	
B1	2.2:1	0.366	0.23	0.330	16:10	
B2	2.3:1	0.356	0.24	0.307	15:10	

зей и скелетных колебаний пиридинового кольца: ~1640, ~1570, ~1510, ~1467 см⁻¹, а также полосы деформационных колебаний *пара*-замещенного пиридинового кольца ~840 см⁻¹. Они воспроизводятся по положению и даже по относительной интенсивности. В ИК-спектре сополимера АЗ (рис. 1, спектр *a*) проявляются характерные полосы поглощения групп ОН, что свидетельствует о гидролизе эпокси-группы в звеньях типа III до соответствующего гликоля. Отсутствует полоса в области 1260–1250 см⁻¹, характерная для симметричных валентных колебаний эпоксидного цикла (1269 см⁻¹ для ЭХГ). Несколько уширенные полосы около 1100 см⁻¹ можно отнести к фрагментам димеров ЭХГ [21].

Реакция 4-ВП с диглицидиловыми эфирами имеет свою специфику. При взаимодействии 4-ВП с диглицидиловым эфиром диэтиленгликоля (ДГЭ-ДЭГ) в мягких условиях получен полимер Б (табл. 3), в котором две молекулы 4-ВП связаны с одной молекулой ДГЭ-ДЭГ, как и показывает расчет соотношения фрагментов из данных элементного анализа (табл. 7).

Наличие в реакционной системе большой доли воды при данном температурном режиме не приводит к гидролизу оксирановых циклов диглицидилового эфира. В связи с этим подвешен-

278

Схема 1.

Рис. 1. ИК-спектры сополимеров. *a* – полимер А3: v(OH) 3444 см⁻¹, v(C–H) 2924 см⁻¹, v(C–N) 1639 см⁻¹, v (C–O) эфир 1095 см⁻¹, δ (CH) 4-BП 843 см⁻¹; *b* – полимер Б: v(OH) 3428 см⁻¹, v(C–H) 2935 см⁻¹, v(C–N) 1639 см⁻¹, v(C–O) эфир 1108 см⁻¹, δ (CH) 4-BП 832 см⁻¹; *b* – полимер B1: v(OH) 3235 см⁻¹, v(C–H) 2923 см⁻¹, v(C–N) 1639 см⁻¹, v эпокси 1254 см⁻¹, v(C–O) эфир 1103 см⁻¹, δ (CH) 4-BП 839 см⁻¹.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б том 64 № 4 2022

ных к полимерным цепям 4-ВП по одной функции молекул ДГЭ-ДЭГ в таких сетках нет (схема 2). В ИК-спектре исчезает полоса, соответствующая симметричным валентным колебаниям эпоксидного цикла при 1255 см⁻¹, которая присутствует в исходном ДГЭ-ДЭГ. Условия оказались оптимальными для достижения полной конверсии и 100% сшивки сетки. Полимер Б очень прочен механически. Набухание его в воде сопоставимо с А2, но значительно меньше, чем аналогичных производных неопентилгликоля (табл. 3, В1 и В2).

Для сохранения гомогенности системы взаимодействие 4-ВП с более гидрофобным диглицидиловым эфиром неопетилгликоля (ДГЭ-НП) осуществляли в среде ДМСО-вода с уменьшенной долей воды при температуре порядка 60°С (табл. 3). Несмотря на вариации условий (ФР, состав ДМСО-вода, длительность нагревания) конечные продукты в виде гелей по составу очень близки (табл. 6, образцы В1 и В2). Оба продукта содержат меньшее количество фрагментов 4-ВП, чем остатков диглицидилового эфира, и набухают в воде значительно сильнее, чем сополимер Б (табл. 3).

По всей вероятности, продукты В1 и В2 сохраняют до 25% фрагментов с одной непрореагировавшей эпокси-группой диглицидилового эфира неопентилгликоля, которые "подвешены" к поли-4-ВП цепи лишь по одной функции (схема 3, тип V). Соотношение содержания фрагментов типа IV к типу V, рассчитанное по данным элементного анализа, равно (4–5): 1 (табл. 6).

В ИК-спектрах обоих сополимеров 4-ВП с диглицидиловым эфиром неопентилгликоля В1 и В2 есть полосы 1254 см⁻¹, характерные для симметричных валентных колебаний эпокси-цикла (1253 см⁻¹ в исходном диглицидиловом эфире неопентилгликоля). Интенсивность их невелика из-за низкого содержания эпоксидного фрагмента в конечном полимере.

ИК-спектры производных неопентилгликоля имеют полосы в области 2800–3060 см⁻¹, относящиеся к колебаниям связей С–Н, значительно большей интенсивности, чем в полимерах с диглицидиловым эфиром диэтиленгликоля и в сополимерах ВП с ЭХГ (А).

Новые соединения на базе 4-ВП и эпокси-соединений с дополнительными лигандами в виде групп ОН были испытаны как сорбенты для извлечения комплексов благородных металлов из разбавленных кислых сред.

При анализе образцов горных пород для сравнения и калибровки пользуются стандартными растворами целевых элементов. Стандартный раствор элементов группы платины наряду с хлорокомплексами содержит крупные гидроксо- и аквахлорокомплексы с относительно низким зарядом и даже суммарно нейтральные: рутения $[Ru_2O_2(H_2O)_2Cl_6]^{2-}$, $[Ru_2O(H_2O)_2Cl_8]^{2-}$, родия $[Rh(H_2O)Cl_5]^{2-}$, $[Rh(H_2O)_2Cl_4]^{-}$, $[Rh(H_2O)Cl_5]^{2-}$, $[Rh(H_2O)_2Cl_4]^{-}$, $[Ir(H_2O)Cl_5]^{2-}$, $[Ir(OH)_2Cl_4]^{2-}$, $[Ir(OH)_2Cl_4]^{2-}$ [22].

На сополимерах ряда А на основе 4-ВП-ЭХГ степень извлечения такого рода комплексов металлов выше (табл. 5), чем на исследованных ранее более гидрофобных сверхсшитых сополимерах 4-ВП-КДХ [18]. Сорбция комплексов осмия оказалась количественной, сорбция комплексов иридия также выше и достигает 90%. Комплексы рутения суммарно извлекаются на 60-70%. Хуже всего удерживаются аквахлорокомплексы родия, вероятно, из-за содержания в их смеси нейтральных комплексов, для которых электростатическое взаимодействие с пиридиниевыми фрагментами анионита отсутствует. В то же время сорбция всех этих элементов в виде неакватированных хлорокомплексов, в том числе $[RuCl_6]^{2-}$, [RhCl₆]³⁻, количественная как было показано ранее на сорбентах, содержащих 4-ВП [18].

По всей вероятности, эффективность связывания аквахлорокомплексов зависит от числа и пространственного расположения в сорбенте полярных групп при условии доступности этих лигандов для крупных гидратированных комплексов сорбата. На примере близких структурных аналогов – серии сополимеров 4-ВП-ЭХГ (А) показано, что степень набухания, как и плотность заряда анионита, не являются определяющими факторами эффективности сорбции аквахлорокомплексов металлов. Величина сорбции такого рода комплексов Os, Ru, Rh, Ir в расчете на 1 г набухшего полимера незначительно падает с увеличением степени набухания сорбентов. Сополимер Аб, полученный в ионной жидкости, также относится к высоконабухающим. По величине набухания в воде он располагается между А4 и А5, а по фрагментному составу близок к А2, в нем наибольшее содержание фрагментов 4-ВП и меньше звеньев типа II. На нем удерживание ро-

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия Б том 64

дия и иридия значительно ниже. Следовательно, увеличение доли фрагментов ЭХГ в сополимерах с 4-ВП (типа А) предпочтительнее для удерживания комплексов металлов с низким зарядом.

Сополимер 4-ВП с диглицидиловым эфиром диэтиленгликоля (Б) с гибкими гидрофильными мостиками между 4-ВП цепями уступает аналогам (А) по сорбции Ru, Ir и особенно Rh (табл. 5). Набухание его в воде несколько ниже, чем набухание лучшего по сорбционной активности сополимера А3. Сополимеры 4-ВП с более гидрофобным диглицидиловым эфиром неопентилгликоля (В), количественно извлекая комплексы Au, Pt, Os, Pd, проявили низкую активность при сорбции комплексов Ru, Ir и Rh. Набухание таких полимерных сеток в воде относительно высокое, но это не влияет на их сорбционную активность.

Очевидно, что большое количество заряженных 4-ВП звеньев не является определяющим фактором для сорбции анионов из сильно разбавленных растворов. Проницаемость, т.е. доступность активных сайтов для указанных комплексов металлов, достаточна в сополимере А3. Более высокое набухание сорбентов в воде не оправдано.

Сополимеры 4-ВП с ЭХГ (А) по сорбционной способности значительно превосходят сополимеры 4-ВП с диглицидиловыми эфирами (Б), особенно производные гидрофобного диглицидилового эфира неопентилгликоля (В). Сорбенты типа А являются на сегодняшний день одними из наиболее удачных в решении многих аналитических и сорбционных задач в случае слабокислых растворов благородных металлов, в которых последние присутствуют в виде гидратированных комплексов с низким отрицательным или суммарно нулевым зарядом.

ЗАКЛЮЧЕНИЕ

Получены два типа сорбентов 4-ВП-ЭХГ (А) и 4-ВП-ДГЭ (Б, В) в среде, максимально сольватирующей растущие цепи полимера. Сорбенты серии 4-ВП-ЭХГ (А) оказались более эффективными для извлечения "проблемных" комплексов благородных металлов, чем испытанные ранее на основе 4-ВП и КДХ [18]. Все металлы группы платины в виде хлоридных комплексов извлекаются полимером АЗ количественно. Сравнение сорбции солей металлов Ir, Ru, Os, Rh на разных типах исследуемых анионитов дает основание предполагать сушественную роль взаимодействия гидрофильных фрагментов каркаса и групп ОН полимера с аквахлорокомплексами этих металлов. Полученные результаты показывают перспективность дальнейшего поиска эффективных сорбентов модификацией сополимеров 4-ВП–ЭХГ для работы с растворами сложных комплексных солей металлов.

№ 4

2022

Авторы благодарят Центр исследования строения молекул ИНЭОС РАН Министерства науки и высшего образования Российской Федерации за проведение ИК-спектрального анализа.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 20-03-00354А).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Tsyurupa M.P., Davankov V.A.* // React. Funct. Polym. 2002. V. 53. № 2–3. P. 193.
- Davankov V.A., Tsyurupa M.P. // Comprehensive Analyt. Chem. / Ed. by D. Barcelo. 2011. V. 56. P. 648.
- Цюрупа М.П., Блинникова З.К., Павлова Л.А., Пастухов А.В., Даванков В.А. // Лаб. Про. 2020. Вып. 11. № 1. С. 86.
- 4. Davankov V.A., Tsyurupa M.P., Pavlova L.A. // Immunopathogenesis of Sepsis and Use of the Hemosorption for Treatment of Cancer Patients with Sepsis / Ed. by *N.Yu. Anisimova*. New York: NOVA Publ., 2014. Ch. 4. P. 57.
- Anisimova N.Yu., Dolzhikova Yu.I., Davankov V.A., Pastukhov A.V., Miljaeva S.I., Senatov F.S., Kiselevsky M.V. // Nanotechnol. Russia. 2012. V. 7. № 5–6. P. 318.
- 6. Магомедов М.А., Ким Т.Г., Масолитин С.В., Яралян А.В., Калинин Е.Ю., Писарев В.М. // General Reanimatol. 2020. Т. 16. № 6. С. 31.
- 7. Павлова Л.А., Павлов М.В., Даванков В.А. // Докл. РАН. 2006. Т. 406. № 2. С. 200.
- Кабанов В.А., Алиев К.В., Каргин В.А. // Высокомолек. соед. А. 1968. Т. 10. № 7. С. 1618.
- 9. *Кабанов В.А.* // Успехи химии. 1967. Т. 36. № 2. С. 217.
- 10. Павлова Л.А., Даванков В.А., Толмачева А.С. // Сорбционные хроматографич. проц. 2010. Т. 10. № 2. С. 165.

- Pavlova L.A., Davankov V.A., Timofeeva G.I., Il'in M.M. (Jr.), Blagodatskikh I.V., Sinitsyna O.V., Matveev V.V., Chalykh A.E. // Polymer Science A. 2013. V. 55. № 10. P. 603.
- 12. *Маерле К.В.* Дис. ... канд. хим. наук. М.: ИФХЭ РАН, 2009.
- Поликарпова Д.А., Макеева Д.В., Карцова Л.А., Даванков В.А., Павлова Л.А. // Аналитика и контроль. 2019. Т. 23. № 3. С. 343.
- Маерле К.В., Павлова Л.А., Даванков В.А. // Сорбционные хроматографич. проц. 2009. Т. 9. № 4. С. 469.
- Иманбеков К.И., Ергожин Е.Е. // Журн. прикл. химии. 2006. Т. 79. № 8. С. 1311.
- Ергожин Е.Е., Рафиков С.Р., Иманбеков К.И., Менлигазиев Е.Ж. // Высокомолек. соед. А. 1984. Т. 26. № 5. С. 989.
- Ергожин Е.Е., Иманбеков К.И. Квантово-химические аспекты синтеза амино- и пиридинсодержащих ионитов на основе эпоксидных соединений. Алматы: Министерство образования и науки Республики Казахстан, 2007. С. 238.
- Maksimova Y.A., Dubenskiy A.S., Davankov V.A., Pavlova L.A., Shigapov I.V., Seregina I.F., Bolshov M.A. // Monatsh. Chem. – Chemical Monthly. 2020. V. 151. P. 1291.
- Dubenskiy A.S., Seregina I.F., Blinnikova Z.K., Tsyurupa M.P., Pavlova L.A., Davankov V.A., Bolshov M.A. // Talanta. 2016. V. 153. P. 240.
- Павлова Л.А., Даванков В.А., Лепендина О.Л. // Сорбционные хроматографич. проц. 2014. Т. 14. № 1. С. 75.
- 21. Nakanishi K. Infrared Absorption Spectroscopy. San Francisco: Holden-Day, 1962.
- Аналитическая химия металлов платиновой группы. Сб. обзорных статей / Под ред. Ю.А. Золотова, Г.М. Варшал, В.М. Иванова. М.: Едиториал УРСС, 2003.