——— ФУНКЦИОНАЛЬНЫЕ ПОЛИМЕРЫ ——

УДК 541.64

СИНТЕЗ АНИОНИТОВ НА ОСНОВЕ 4-ВИНИЛПИРИДИНА И АЛКИЛДИГАЛОГЕНИДОВ И ИХ ПРИМЕНЕНИЕ В СОРБЦИИ ИОНОВ БЛАГОРОДНЫХ МЕТАЛЛОВ И РЕАКЦИИ ПРИСОЕДИНЕНИЯ СО₂ К ЭПОКСИДАМ

© 2022 г. Л. А. Павлова^{*a*}, С. Е. Любимов^{*a*,*}, Е. Г. Кононова^{*a*}, В. А. Даванков^{*a*}, Ю. А. Максимова^{*b*,*c*}

^а Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук 119991 Москва, ул. Вавилова, 28, Россия

^b Московский государственный университет им. М.В. Ломоносова, Химический факультет 119899 Москва, Ленинские горы, Россия ^c Геологический институт Российской академии наук 119017 Москва, Пыжевский пер., 7, Россия *e-mail: lssp452@mail.ru Поступила в редакцию 23.06.2022 г.

> После доработки 02.08.2022 г. Принята к публикации 16.08.2022 г.

Получены высокоосновные аниониты путем спонтанной полимеризации 4-винилпиридина при взаимодействии с алкилдибромидами. Продемонстрирована возможность их успешного применения для извлечения хлорокомплексов благородных металлов из кислых водных растворов, а также в реакции присоединения CO₂ к эпоксидам.

DOI: 10.31857/S2308113922700140

введение

Рациональное природопользование подразумевает эффективное расходование природных ресурсов, заключающееся в экономном извлечении исчерпаемых полезных ископаемых, а также включение неисчерпаемых ресурсов в производство продуктов широкого потребления. К исчерпаемым ресурсам относятся благородные металлы, которые применяют в производстве электронного оборудования, катализаторов, медицинских и ювелирных изделий. Однако, например, стоимость платиновых металлов связана с их широкой рассеянностью в природе, а также низким содержанием данных элементов в породе. В связи с этим большое значение имеет эффективное извлечение данных металлов как из природных руд, так и из промышленных отходов. Извлечение металлов из растворов адсорбционными методами является наиболее приемлемым по технико-экономическим показателям. При этом сорбент должен демонстрировать практически количественную экстракционную способность к извлекаемым благородным металлам, а также высокую селективность. В настоящее время известно значительное количество сорбентов благородных металлов [1-3]. Вместе с тем интерес представляет разработка новых сорбентов с целью увеличения их экстракционной способности, селективности и упрощения получения, а также придания им дополнительных возможностей.

Другим важным направлением рационального природопользования предстает использование достаточно большого доступного объема CO₂ для получения продуктов тонкого химического синтеза. Одним из эффективных и удобных путей задействования диоксида углерода является его включение в органические молекулы с формированием циклических карбонатов [4-6]. Для данного процесса не требуется растворитель, здесь СО₂ выступает как реакционная среда и реагент. Следует также отметить, что органические карбонаты широко применяют в качестве присадок к топливу, электролитов для литий-ионных батарей, полярных растворителей, мономеров для получения поликарбонатов и неизоцианатных полиуретанов.

Цель настоящей работы — синтез анионитов на основе 4-винилпиридина и алкилдигалогенидов с различной длиной цепи, их использование в сорбции комплексных солей благородных металлов, а также в реакции присоединения CO₂ к эпоксидам в качестве гетерогенных катализаторов многократного использования.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В данной работе материалами служили ДМСО, 4-винилпиридин (ВП), дибромметан, 1,2-дибромэтан, 1,3-дибромпропан, 1,4-дибромбутан, 1,8-дибромоктан, окись пропилена, 1,2эпоксибутан, эпихлоргидрин, 2-(бромметил)оксиран, 2-(фторметил)оксиран, 2-(феноксиметил)оксиран – коммерчески доступные соединения фирмы "Sigma-Aldrich". Спектры ЯМР регистрировали на приборе "Bruker Avance 400", ИКспектры полимеров снимали в таблетках с КВг на ИК-фурье-спектрометре "BrukerTensor 37". Концентрацию благородных металлов в растворах определяли на квадрупольном масс-спектрометре с индуктивно-связанной плазмой "Agilent 7500с" ("Agilent Technologies", Япония), как описано в работе [7].

Типичные методики получения анионитов

Синтез ВП-дибромэтана (бС₂Вг). К раствору 0.92 г (4.90 ммоля) 1,2-дибромэтана в 1.0 мл ДМСО приливали раствор 1.18 г (11.2 ммоля) ВП в смеси 0.6 мл ДМСО и 0.2 мл воды при комнатной температуре. Гомогенизировали взбалтыванием. Реакционную смесь нагревали в течение 6 ч при температуре 55–60°С, продукт промывали на стеклянном фильтре этиловым спиртом и ацетоном, сушили при 60°С. Выход продукта составил 1.6 г (82% от теоретического) в виде мелкодисперсных частиц. Элементный анализ (бС₂Вг): С – 42.50%, H – 5.09%, N – 5.89%, Br – 41.90%.

Синтез ВП-дихлорпропана (aC₃Cl). К раствору 0.94 г (4.90 ммоля) 1,3-дибромпропана в 1.5 мл ДМСО приливали раствор 1.14 г (10.84 ммоля) ВП в 0.5 мл ДМСО. Гомогенизировали взбалтыванием. После чего через 2 ч образовался твердый продукт без отделения синерезисной жидкости. Реакционную смесь выдерживали в течение 46 ч при комнатной температуре. Полимер промывали на стеклянном фильтре ацетоном, 1 моль/л HCl, водой и ацетоном. Сушили при температуре 60°С. Получили 1.2 г продукта (61% от теоретического выхода) в виде мелкодисперсных частиц. Элементный анализ (aC₃Cl): С – 49.93%, H – 6.08%, N – 6.61%, Cl – 19.73%.

Синтез ВП-дихлороктана (aC₈Cl). К раствору 1.35 г (5.0 ммоля) 1,8-дибромоктана в 1.36 мл ДМСО приливали раствор 1.14 г (10.84 ммоля) ВП в 1.0 мл ДМСО при комнатной температуре. Гомогенизировали взбалтыванием. Реакционную смесь выдерживали в течение 46 ч при комнатной температуре. Образовался твердый продукт в виде геля, который раздробили. Полученный продукт промывали на стеклянном фильтре ацетоном, затем 1 моль/л HCl и водой. Выход продукта составил 1.6 г (82% от теоретического). Элементный анализ (aC₈Cl): C – 55.81%, H – 7.20%, N – 5.40%, Cl – 16.85%.

Массовое набухание полученных анионитов

Навеску 0.4 г полимера помещали в пробирку с пористым дном, заливали растворителем и оставляли для набухания на 12 ч. Затем сливали избыток растворителя, межгранульную жидкость удаляли центрифугированием при 4000 об/мин в течение 15 мин. Сорбент быстро переносили из пробирки в заранее взвешенный стеклянный бюкс и сушили до постоянной массы при температуре 105°С. Массовое набухание W_s (мл/г) рассчитывали как объем растворителя, поглощенного навеской сухого полимера. Для каждого сорбента выполняли три повторных измерения. Расчет массового набухания осуществляли по формуле

$$W_s = \frac{(M_s - M_0)}{M_0 \times P_s},$$

где M_s — масса набухшего полимера (г), M_0 — масса высушенного полимера (г), P_s — плотность растворителя (г/мл).

Получение карбонатов из эпоксидов

В автоклав объемом 10 мл помещали 30 мг катализатора и добавляли 6.0 ммоля соответствующего эпоксида, подавали CO₂ (10 атм) при комнатной температуре и нагревали в термостате. После реакции автоклав охлаждали до температуры 5°С, выпускали CO₂, состав реакционной смеси анализировали при помощи спектроскопии ЯМР [8–10]. В случае рецикла продукт реакции отбирали пипеткой Пастера, субстрат добавляли повторно к катализатору.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На основе 4-винилпиридина и терминальных алкилендибромидов синтезирован ряд анионитов (табл. 1) с целью определения зависимости сорбционных и каталитических свойств полимеров от длины алкиленовой цепочки, являющейся сшивающим мостиком. В качестве алкилирующих (сшивающих) агентов был использован дибромметан, 1,2-дибромэтан, 1,3-дибромпропан, 1,4-дибромбутан и 1,8-дибромоктан (схема 1).

Известно, что взаимодействие ВП с галоидалкилами в полярной среде протекает легко даже при умеренных значениях температуры. Одновременно с алкилированием азота пиридинового кольца происходит специфическая спонтанная

Nº 6

2022

где C_n – длина алькильной цепи, X – анион.

Схема 1.

полимеризация винилпиридиниевого фрагмента [11]. Продуктами являются линейные полимеры, состоящие только из *N*-алкилированных пиридиниевых звеньев в случае моногалоидалкил-замещенных алкилирующих агентов [12], и сшитые трехмерные полимеры при использовании бисгалоидалкилов [13]. По мере протекания реакции полимерная цепочка приобретает высокий положительный заряд, что требует применения растворителей (или их смесей), обладающих высокой диэлектрической проницаемостью, способствующей сольватации и, как следствие, "сохранения" растущего полимера в растворе.

Проведение реакции ВП с алкилдибромидами в среде ДМСО преимущественно приводило к быстрому выпадению образующихся анионитов. Добавка воды с точки зрения термодинамики улучшает качество растворителя для ионного полимера — высокозаряженного анионита, что позволяет дольше удерживать его в растворе, облегчая прохождение полимеризации, и сшивки цепей. Тенденция повышения числа сшивающих

Обозна- чение	Сшивающий агент, ммоль	ВП, ммоль	ДМСО + H ₂ O, _{мл}	Вода, об. %	Фактор разбавления*, мл/г	<i>T</i> , °C/ <i>t</i> , ч	Выход продукта**, г/%
aC ₈ Cl	$C_8H_{16}Br_2, 5.0$	10.84	2.3	0	1.0	20/46	1.6/82
бC ₈ Br	$C_8H_{16}Br_2$, 2.57	5.60	1.0 + 0.1	9	1.0	60/8	1.2/100
aC ₄ Cl	$C_4H_8Br_2$, 5.0	10.84	2.0	0	1.0	20/46	1.8/87
бC ₄ Br	$C_4H_8Br_2$, 2.50	5.60	0.8 + 0.2	20	1.0	50/6	1.0/100
aC ₃ Cl	$C_{3}H_{6}Br_{2}$, 4.90	10.84	1.96	0	1.0	20/46	1.2/61
бC ₃ Br	$C_{3}H_{6}Br_{2}, 5.94$	12.65	3.0 + 0.7	20	1.5	50/6	2.0/82
бC ₂ Br	$C_2H_4Br_2$, 4.90	11.2	1.6 + 0.2	11	1.0	50/6	1.6/82
aC_1Br	$CH_{2}Br_{2}, 5.0$	10.84	1.82	0	1.0	20/46	1.5/100
						+60/6	
$\delta C_1 Br$	$CH_2Br_2, 2.53$	5.60	1.0 + 0.2	17	1.3	60/6	1.0/90

Таблица 1. Условия синтеза сополимеров ВП с дибромалканами

Примечание. Здесь и в табл. 2-4 а, б - способ получения.

*Отношение объема растворителя к суммарной массе реагентов.

**Рассчитан, исходя из полного расходования дигалогенида.

Обознанение	Массовое набухание, мл/г				
Обозначение	вода	ацетон			
aC ₈ Cl	1.65	0.70			
бC ₈ Br	1.02	0.36			
aC ₄ Cl	2.40	0.93			
бC ₄ Br	1.40	0.76			
aC ₃ Cl	3.52	2.40			
бC ₃ Br	2.82	1.96			

Таблица 2. Массовое набухание полученных анионитов

мостиков между цепями поли-ВП при введении в реакционную систему воды (до 20 об. %) наглядно прослеживается на производных пропана, бутана и октана. Соответственно падает их массовое набухание в воде и органических растворителях (табл. 2).

Конечные продукты ($\mathbf{6C}_3\mathbf{Br}$ и $\mathbf{6C}_4\mathbf{Br}$) представляют собой гели в виде единого блока в отличие от мелкодисперсных осадков ($\mathbf{aC}_3\mathbf{Cl}$ и $\mathbf{aC}_4\mathbf{Cl}$), выпадающих из безводной реакционной среды. Для получения в виде геля наиболее гидрофобного производного октана ($\mathbf{aC}_8\mathbf{Cl}$) ДМСО как растворителя является вполне удовлетворительным. Однако степень сшивки его ниже, чем у производных, полученных в системе ДМСО–вода ($\mathbf{6C}_8\mathbf{Br}$). Степень сшивки можно сравнивать в ряду близких аналогов по доле ВП-фрагментов,

Рис. 1. Фрагменты ИК-спектров немодифицированного (а) и модифицированного *N*-метилпиперидиноном анионита $6C_3Br$ (б).

определенной по данным элементного анализа (N, %).

Взаимодействие дибромметана с ВП способствует образованию линейного растворимого *N*бромметил-поли-4-винилпиридиния в среде безводного ДМСО и с добавками воды. Вероятно, это связано с пространственной сложностью сшивки коротким метиленовым мостиком, а также невыгодностью формирования промежуточного *N*-метиленпиридиниевого дикатиона, содержащего два близко расположенных положительных заряда.

ИК-спектры полимеров с *N*-алкилированным ВП аналогичны и имеют полосы, характерные для связей С–H, С=N, С=С и скелетных колебаний пиридинового кольца при ~3041, 2950, 1640, 1570, 1510, 1470 см⁻¹, а также полосы деформационных колебаний *n*-замещенного пиридинового кольца при ~850 см⁻¹.

Использование 1,2-дибромэтана только в среле ДМСО-вода позволило иметь сшитую нерастворимую структуру (бС₂Вг). Получение сшитой высокомолекулярной структуры с остаточными "подвешенными" бромэтиленовыми фрагментами, не участвующими в сшивке цепей ВП, было косвенно подтверждено путем кватернизации *N*-метилпиперидинона этими бромэтильными группами (в 0.8 мл ДМСО при температуре 80°С в течение 4 ч, соотношение 0.3 мл *N*-метилпиперидинона: 0.26 г бС₂Вг). В ИК-спектре полученного производного прослеживается характерная карбонильная полоса C=O при 1715 см⁻¹. Однако ее интенсивность оказалась весьма низкой. несмотря на высокую экстинкцию группы С=О, что свидетельствует о малом содержании остаточных бромалкильных групп в полимере (рис. 1).

Оценка эффективности сорбции хлорокомплексов Ru, Rh, Pd, Os, Ir, Pt, Au на синтезированных полимерах проведена с применением модельных растворов. Для их приготовления был использован стандартный многокомпонентный раствор благородных металлов для масс-спектрометрии. Первичная оценка сорбционной способности полимеров проводилась в статических условиях из 5 мл раствора с концентрацией металла 25 мкг/л в 0.2 моль/л HCl за 3 ч. Объем равновесно набухшего сорбента составил 150 мкл. Практически количественная степень извлечения из разбавленных солянокислых растворов соединений золота, платины, палладия и осмия в виде хлорокомплексов наблюдалась на всех полимерах (табл. 3). Ir, Ru и Rh находятся в исследуемых растворах в виде смесей акватированных хлорокомплексов. Комплексы Ir и Ru извлекаются умеренно, хуже других извлекаются комплексы Rh.

2022

№ 6

Металл	Степень извлечения из раствора, %							
	бC ₂ Br	aC ₃ Cl	бC ₃ Br	aC ₄ Cl	бC ₄ Br	aC ₈ Cl	бС ₈ Br	
Ru	60	67	58	60	45	65	52	
Rh	22	28	29	24	24	39	26	
Pd	86	93	98	93	94	99	97	
Os	78	98	95	96	95	98	99	
Ir	50	57	72	50	62	69	50	
Pt	88	97	95	97	93	99	96	
Au	92	100	98	100	100	100	97	

Таблица 3. Процент извлечения хлорокомплексов благородных металлов на поли-ВП сорбентах из стандартного раствора

Сорбционные свойства существенно зависят от способа получения сорбента (т.е. условий формирования полимерной сетки). Наиболее рыхлые сетки (с меньшим числом сшивок-мостиков по данным элементного анализа), полученные в ДМСО в отсутствие воды (aC_3Cl , aC_4Cl и aC_8Cl), лучше других извлекают соли рутения. Скорее всего, не участвующие в сшивке алкилбромидные группы, которых в "рыхлых" структурах больше, участвуют в координационном взаимодействии с металлами путем перекрывания с электронными оболочками галогенов; также стоит иметь ввиду π-взаимодействия пиридиновых колец с металлами. Следует отметить, что полимерные сетки, полученные на основе 1,8-дибромоктана, наиболее перспективны.

Сорбция из стандартного раствора в равновесных условиях (20 ч) показывает полное извлечение комплексных ионов палладия, осмия, платины и золота на полимерах на основе ВП и 1,8-дибромоктана (a C_8C1 и б C_8Br). Сродство этих сорбентов по отношению к аквахлорокомплексам рутения и иридия практически одинаково (извлечение 60–70%). Извлечение комплексов

Схема 2.

родия не превышает 40%. По кинетическим параметрам наиболее перспективны структуры а C_8 Cl.

Сшитые полимеры $6C_2Br$, $6C_3Br$, $6C_4Br$, $6C_8Br$ были также протестированы в реакции присоединения CO_2 (10 атм) к окиси пропилена (схема 2, **1a**) при 105°C за относительно короткий промежуток времени (3 ч) с использованием 30 мг катализатора.

Найдено, что каталитическая активность возрастает при уменьшении длины сшивающего реагента, что может быть обусловлено увеличением количества ионов брома, участвующих в каталитическом процессе, в единице массы полимера, исходя из механизма данного процесса [5]. С учетом известного активирующего эффекта иодид иона на данную реакцию [6] наиболее активные бромиды б C_2 Br и б C_3 Br были переведены в иодиды путем ионного обмена (схема 1) пропусканием избытка раствора иодида калия через слой полимера в динамическом режиме. Данный прием действительно позволил увеличить активность катализаторов (табл. 4, опыты 5 и 6). Повышение температуры до 130°С дало возможность получить количественную конверсию на полимере **6С₂I**, причем в данных условиях катализатор обеспечивает 100%-ную конверсию на протяжении шести каталитических циклов, на седьмом цикле конверсия составляет 90%, на восьмом – 81%. Катализатор б C_3I позволяет получить количественную конверсию за 5 ч, на седьмом-четырналиатом цикле наблюдается конверсия 94–96%. на пятнадцатом цикле – 84%. Причем конверсия уменьшается за счет механических потерь при рециклизации (удаление микрочастиц данных анионитов при отборе субстрата, что можно видеть в результате их седиментации в ЯМР-ампулах анализируемых растворов в CDCl₃ спустя несколько

Опыт, №	Катализатор	Эпоксид	<i>T</i> , °C	<i>t</i> , ч	Конверсия, %
1	бC ₂ Br	1a	105	3	41
2	бC ₃ Br	1a	105	3	35
3	бC ₄ Br	1a	105	3	32
4	бС ₈ Вr	1a	105	3	27
5	бС ₂ І	1a	105	3	83
6	бС ₃ І	1a	105	3	58
7	бС ₂ І	1a	130	3	100
8	бС ₃ І	1a	130	3	86
9	бС ₃ І	1a	130	5	100
10	бС ₂ І	16	130	5	72
11	бС ₃ І	16	130	5	100
12	бС ₂ І	1в	130	3	100
13	бС ₃ І	1в	130	3	100
14	бС ₂ І	1r	130	3	100
15	бС ₃ І	1r	130	3	100
16	бС ₂ І	1д	130	3	100
17	бС ₃ І	1д	130	3	100
18	бС ₂ І	1e	130	3	100
19	бС ₃ І	1e	130	3	100

Таблица 4. Присоединение CO₂ к эпоксидам 1а-1е

часов). Катализаторы $6C_2I$ и $6C_3I$ также показали разницу в активности в случае 1,2-эпоксибутана (схема 2, **16**), содержащего более электронодонорную этильную группу по сравнению с эпоксидом 1а. Так, анионит $6C_2I$ позволяет добиться количественной конверсии данного эпоксида за 5 ч, полимер $6C_3I$ менее активен. Эпоксиды **1в–1е**, содержащие акцепторные заместители, превращаются на обоих катализаторах в соответствующие карбонаты за 3 ч количественно.

ЗАКЛЮЧЕНИЕ

Получен ряд анионитов на основе 4-винилпиридина и алифатических алкилдибромидов. Аниониты использованы в качестве сорбентов для комплексных ионов благородных металлов. Была продемонстрирована высокая сорбция хлорокомплексов Pd, Pt, Os и Au, между тем аквахлорокомплексы Ir, Ru и Rh сорбируются хуже. Применение анионитов в качестве катализаторов присоединения CO₂ к эпоксидам позволяет их использовать в пятнадцати каталитических циклах с высокой конверсией.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований РФФИ (код проекта 20-03-00354А).

Авторы выражают благодарность Центру исследования строения молекул Института элементоорганических соединений им. А.Н. Несмеянова РАН Министерства науки и высшего образования Российской Федерации за проведение ИКспектрального анализа.

СПИСОК ЛИТЕРАТУРЫ

- 1. Miroshnichenko A.A. // Proc. Eng. 2016. V. 152. P. 8.
- Ehrlicha H.V., Buslaeva T.M., Maryutina T.A. // Russ. J. Inorg. Chem. 2017. V. 62. № 14. P. 1797.

том 64 № 6 2022

- 3. *Petrov G., Zotova I., Nikitina T., Fokina S. //* Metals. 2021. V. 11. P. 569.
- Dabral S., Schaub T. // Adv. Synth. Catal. 2019. V. 361. P. 223.
- Calabrese C., Giacalone F., Aprile C. // Catalysts. 2019. V. 9. P. 325.
- Guo L., Lamb K.J., North M. // Green Chem. 2021. V. 23. V. 77.
- Maksimova Y.A., Dubenskiy A.S., Davankov V.A., Pavlova L.A., Shigapov I.V., Seregina I.F., Bolshov M.A. // Monatsh. Chem., Chem. Month. 2020. V. 151. P. 1291.
- 8. *Zhou H., Wang G.-X., Zhang W.-Z., Lu X.-B.* // ACS Catal. 2015. V. 5. P. 6773.

- 9. Carvalho P.A., Comerford J.W., Lamb K.J., North M., Reiss P.S. // Adv. Synth. Catal. 2019. V. 361. P. 345.
- 10. Chang H., Li Q., Cui X., Wang H., Qiao C., Bu Z., Lin T. // Mol. Catal. 2018. V. 449. P. 25.
- 11. Каргин В.А., Кабанов В.А., Алиев К.В., Разводовский Е.Ф. // Докл. АН СССР. 1965. Т. 160. № 3. С. 604.
- 12. *Кабанов В.А., Алиев К.В., Каргин В.А.* // Высокомолек. соед. А. 1968. Т. 10. № 7. С. 1618.
- Павлова Л.А., Павлов М.В., Даванков В.А. // Докл. РАН. 2006. Т. 406. № 2. С. 200.