УДК 541.64:539.2

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ ДИЗАЙНА ХИМИЧЕСКОЙ СТРУКТУРЫ ВЫСОКОПРОНИЦАЕМЫХ ПОЛИГЕТЕРОАРИЛЕНОВ ДЛЯ МЕМБРАННОГО ГАЗОРАЗДЕЛЕНИЯ

© 2020 г. А. Ю. Алентьев^{1,*}, В. Е. Рыжих¹, Н. А. Белов¹

¹Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук 119991 Москва, Ленинский пр., 29, Россия *e-mail: alentiev@ips.ac.ru Поступила в редакцию 06.04.2020 г. После доработки 04.06.2020 г. Принята к публикации 27.06.2020 г.

Прогресс в мембранном газоразделении невозможен без синтеза новых полимеров с улучшенными газотранспортными и газоразделительными характеристиками. Наиболее перспективными полимерными мембранными материалами с выгодным сочетанием проницаемости и селективности, формирующими верхние границы диаграмм Робсона 2008 и 2015 годов, являются полигетероарилены, к которым принадлежат лестничные полибензодиоксаны – полимеры с внутренней микропористостью, полимиды, полиамиды, полиизатины и другие полимеры. Их особенность – наличие в химической структуре фрагментов, тем или иным образом способствующих формированию разрыхленной упаковки полимерных цепей и возрастанию коэффициентов газопроницаемости. К таким элементам макромолекулярного дизайна относятся группировки с изломами основной цепи или объемистые заместители, увеличивающие барьеры вращения и жесткость макроцепей. Высокие значения газопроницаемости для рассматриваемых полигетероариленов часто сочетаются с повышенной селективностью по многим парам газов (например, O_2-N_2 , CO_2-CH_4), обусловленной в первую очередь высокой селективностью диффузии, что свидетельствует об упорядоченности упаковки цепей и позволяет называть их полимерными молекулярными ситами.

DOI: 10.31857/S2308114720020016

ВВЕДЕНИЕ

Разделение смесей газов является одним из наиболее быстро развивающихся и наукоемких направлений мембранной технологии. Большинство мембранных газоразделительных процессов осуществляется с использованием асимметричных или композиционных мембран с тонким (от нескольких десятков до нескольких сотен нанометров) непористым селективным слоем полимера [1]. В этом случае поток газа через мембрану лимитируется потоком через тонкий селективный слой, который прямо пропорционален перепаду давления и обратно пропорционален толщине мембраны:

$$J = P\Delta p/l,\tag{1}$$

где Δp — перепад давления на мембране, l — толщина мембраны (селективного слоя), P — коэффициент проницаемости газа для материала селективного слоя мембраны. В литературе коэффициент проницаемости обычно приводится во внесистемных единицах Баррер (1 Баррер = = 10^{-10} см³ (н.у.) см/см² с (см рт. ст.)). Величина Pдля полимерных материалов варьируется в пределах трех—восьми порядков в зависимости от природы полимера и газа [1-3]. По механизму транспорта растворение—диффузия при невысоких давлениях величина *P* определяется коэффициентами диффузии *D* и растворимости *S* газа в материале:

$$P = DS \tag{2}$$

Коэффициент растворимости S определяет движущую силу процесса и является термодинамической характеристикой проницаемости, тогда как коэффициент диффузии D – кинетический фактор, определяющий подвижность проникающего компонента в материале мембраны.

Важный фактор, характеризующий эффективность газоразделительного процесса, — селективность разделения газов *i* и *j*:

$$\alpha_{ii} = P_i / P_i \tag{3}$$

С учетом выражения (2) селективность α_{ij} определяется произведением селективности диффузии $\alpha_{ij}^{D} = D_i/D_j$ на селективность растворимости $\alpha_{ij}^{S} = S_i/S_j$. Для разделения смесей неконден-

Пара газов		k, Баррер			п	
11apa 1a50b	1991	2008	2015	1991	2008	2015
O ₂ /N ₂	389224	1 396 000	16700000	-5.800	-5.666	-5.700
CO_2/CH_4	1073700	5369140	22584000	-2.6264	-2.636	-2.401
H_2/N_2	52918	97650	1 100 000	-1.5275	-1.4841	-1.46
H_2/CH_4	18 500	27200	195000	-1.2112	-1.107	-1.10

Таблица 1. Параметры уравнения (4) для "верхней границы" диаграммы Робсона 1991, 2008, 2015 годов

сируемых газов, таких как H₂, He, N₂, O₂, CO₂, CH₄, в качестве материалов селективного слоя используют стеклообразные аморфные полимеры, обладающие высокой селективностью диффузии [2]. Применение термостойких полимеров, в том числе полигетероариленов, для разделения таких смесей позволяет не только обеспечить целостность и работоспособность мембраны при относительно небольших колебаниях температуры процесса, но и расширить температурный диапазон использования мембранного газоразделения.

Промышленное применение мембранного газоразделения начиналось в 70-х годах XX века с таких низкопроницаемых полимеров, как полисульфон и ацетат целлюлозы $[1-5] c P(O_2) \sim 1$ Баррер [6]. Однако в конце 70-х годов в нашей стране была создана газоразделительная мембрана из существенно более проницаемого стеклообразного поливинилтриметилсилана (**ПВТМС**) ($P(O_2) \sim$ ~ 40 Баррер) [6]. Причиной высокой проницаемости данного кремнийсодержащего полимера является снижение плотности упаковки макромолекулярных цепей из-за объемной боковой группы – SiMe₃ [7]. Именно такие элементы дизайна элементарного звена и стали определяющими в мембранном материаловедении в 80-е и 90-е годы. В это время были получены еще более высокопроницаемые полимеры, например, политриметилсилилпропин (ПТМСП) $P(O_2) \sim 4000-$ 10000 Баррер, а на сегодняшний день синтезированы и другие полиацетилены с $P(O_2)$, достигающим 19000 Баррер [6, 7]. Большинство полигетероариленов обладают гораздо более низкими коэффициентами проницаемости газов. Для удобства анализа и рассмотрения данный класс аморфных стеклообразных полимеров можно условно разделить по величине коэффициента проницаемости кислорода на барьерные ($P(O_2) < 0.01$ Баррер), низкопроницаемые $(0.01 < P(O_2) < 1$ Баррер), среднепроницаемые ("обычные") ($1 < P(O_2) <$ < 20 Баррер) и высокопроницаемые ($P(O_2) >$ > 20 Баррер). В настоящем обзоре мы ограничились группой высокопроницаемых полигетероариленов по приведенной выше классификации, синтезированных и исследованных в последнее десятилетие.

ПРИНЦИПЫ АНАЛИЗА

Увеличение проницаемости полимеров, как правило, сопровождается снижением их селективности [2, 3, 5, 8, 9]. В связи с этим потенциальная эффективность материала для разделения газов определяется по положению экспериментально измеряемых величин P и α для полимера на диаграммах проницаемость-селективность (диаграммах Робсона) относительно эмпирической так называемой "верхней границы" [8–11] распределения. "Верхняя граница" на диаграммах Робсона формируется полимерами с наиболее выгодным сочетанием проницаемости и селективности и описывается степенной зависимостью

$$P_i = k \alpha_{ii}^n, \tag{4}$$

где *k* и *n* – постоянные для каждой из рассматриваемых пар газов [8-11]. Ее положение на диаграммах Робсона меняется в зависимости от времени проведения [12], т.е. от массива данных исследованных на данный момент полимеров (табл. 1). Положение "верхней границы" 1991 года на этих диаграммах определяли в основном низкопроницаемые и среднепроницаемые полиимиды, виниловые и метакриловые полимеры, а также высокопроницаемые полиацетилены [8]. Впоследствии были исследованы новые классы полимеров, такие как средне- и высокопроницаемые перфторированные аморфные тефлоны, высокоселективные полипирролоны, а также низко- и среднепроницаемые полиимиды на основе гексафторизопропилидендифталевого диангидрида (6FDA), которые определяли положение "верхней границы" к 2008 г. [9]. Основным элементом дизайна этих полимеров было введение в структуру элементарного звена фторированных групп, разрыхляющих упаковку цепей за счет увеличения объема заместителей и снижения энергии межцепных взаимодействий. В начале XXI века P.M. Budd и N.B. McKeown были синтезированы первые лестничные полибензодиоксаны (РІМ-полимеры с внутренней микропористостью) [13, 14], которые благодаря высокой проницаемости и селективности также вошли в число полимеров, определяющих положение "верхней границы" [9]. Первым полимером с внутренней микропористостью,

Рис. 1. Фрагмент диаграммы Робсона для пары газов кислород-азот. Пояснения в тексте.

наиболее перспективным для газоразделения и наиболее просто синтезируемым был PIM-1 [13, 15]

(Здесь и далее черным цветом показаны атомы углерода, синим — азота, красным — кислорода, серым — водорода. Цветные рисунки можно посмотреть в электронной версии).

Исследования PIM-1 методами компьютерного моделирования [16] показало, что причина высокой проницаемости и свободного объема заключается в наличии регулярных, практически, прямоугольных, изломов цепи, обусловленных спиро-бис-индановой развязкой в месте соединения двух пятичленных циклов. Жесткая структура основной цепи полимера с изломами способствует формированию неплотной упаковки цепей с большим свободным объемом и площадью внутренней поверхности. Именно этот элемент молекулярной структуры полимерной цепи наряду с традиционным для химии полигетероариленов введением объемистых заместителей [17, 18] и стал определяющим для синтеза новых полигетероариленов. Положение "верхней границы" на диаграмме Робсона после 2015 года определяет именно эта группа полимеров [10, 11].

На рис. 1 видно, как со временем "верхняя граница" смещается в область более высокой проницаемости и селективности полимерного материала, аналогичная зависимость представлена в работе [12].

Для любого полимера экспериментально измеряя величины *Р* и α, можно по уравнению (4) и данным табл. 1 оценить, в какую из областей диаграммы попадает данный полимер и насколько перспективен применяемый элемент дизайна химической структуры его мономерного звена. Так, если полимер находится в области I для "обычных" полимеров, серьезной перспективы для мембранного газоразделения он не представляет (рис. 1). Полимеры, располагающиеся в области 'верхней границы" UB1991, немногочисленны и могут считаться достаточно перспективными. Еще меньшее число перспективных полимеров лежит в области II, и особенно вблизи "верхней границы" UB2008. Наконец, редкие полимеры, принадлежащие к области III, и особенно к области вблизи "верхней границы" UB2015, чрезвычайно перспективны. Уникальных полимеров, принадлежащих к области IV, единицы [10, 11]. В настоящем обзоре рассматриваются элементы дизайна химической структуры, определяющие их положение на диаграммах Робсона для пар газов кислород-азот и углекислый газ-метан.

Согласно работам [8, 9], положение полимера на диаграмме определяется в основном селективностью диффузии α^{D} . В работе [12] были построены диаграммы $D-\alpha^{D}$ (рис. 2) для разных пар газов и было показано, что полимеры, определяющие эмпирические "верхние границы" на диаграмме проницаемость-селективность, как правило, определяют ориентацию облака точек на диаграммах $D-\alpha^{D}$. На рис. 2 приведен пример такой диаграммы для пары газов кислород—азот [12]. В этой же работе были определены верхние границы (limiting lines – LL) на диаграммах для коэффициентов диффузии. Были показаны и так

Рис. 2. Фрагмент диаграммы коэффициент диффузии–селективность диффузии для пары газов кислород–азот [12]. Пояснения в тексте.

называемые "средние линии", или "медианы" распределения (median lines – ML), демонстрирующие значение средней селективности диффузии по отношению к величине коэффициента диффузии всего массива данных для стеклообразных аморфных полимеров. Уравнения для этих "медиан" (ML) как для коэффициентов проницаемости, так и для коэффициентов диффузии, аналогичны по форме уравнению (4) и вытекают из теории свободного объема для полимеров [12, 19].

Уравнения теории флуктуационного свободного объема, разработанной для диффузии в жидкостях, применимы и для неравновесных стеклообразных полимеров [19] с "замороженным" свободным объемом. По современным представлениям структура аморфных стеклообразных полимеров является микрогетерогенной [2, 19, 20], состоящей из микропустот ("дырки"), окруженных более плотноупакованной полимерной матрицей ("стенки"). Средний размер "дырок" можно оценить независимыми зондовыми методами [19-23], а среднюю концентрацию "дырок" N_h в полимере можно принять примерно постоянной [19, 21, 22] $(N_h = (4-6) \times 10^{20}$ "дырок"/см³ [19, 22]). Отсюда следует, что уровень значений *P*, *D* определяется упаковкой полимера в целом, т.е. характерным размером "дырок", а селективность определяется средней толщиной "стенок" [19, 22] и упорядо-ченностью упаковки цепей в "стенках" [24]. Мерой такой упорядоченности может служить величина селективности диффузии α^{D} [24] и ее отклонения от "медианы" распределения [12]. В первом приближении можно считать, что положение точки на диаграмме коэффициент диффузии-селективность диффузии определяет возможную упорядоченность упаковки цепей в полимере. Если точка

принадлежит области "медианы" распределения (ML), упаковка цепей хаотична, как в "обычном" аморфном полимере. Если точка находится в области II, то вероятность возникновения упорядоченности упаковки цепей в "стенках" становится выше. В случае, когда точка принадлежит верхней границе (LL), весьма вероятна высокая упорялоченность упаковки цепей в "стенках". И. наконец, если точка находится в области I, упаковка цепей разупорядочена даже по сравнению с "обычным" аморфным состоянием. В настоящем обзоре проанализирована возможность упорядочения упаковки цепей для высокопроницаемых полигетероариленов, основываясь на положении точек на диаграммах $D-\alpha^D$ для пар газов кислород-азот и углекислый газ-метан.

ЭЛЕМЕНТЫ ДИЗАЙНА ХИМИЧЕСКОЙ СТРУКТУРЫ ВЫСОКОПРОНИЦАЕМЫХ ПОЛИГЕТЕРОАРИЛЕНОВ

Основными элементами дизайна химической структуры термостойких полигетероариленов являются изломы (kink) в сочетании с высокой жесткостью цепи; введение фрагментов, в том числе спирофрагментов, выводящих основную цепь из плоскостной ориентации (in-plane); введение объемистых боковых заместителей.

Жесткие изломы, особенно для полимеров с внутренней микропористостью PIM, как правило, приводят к получению жесткоцепных лестничных, или псевдолестничных полимеров с низкой плотностью упаковки цепей, высокой долей свободного объема и газопроницаемостью [25]. Все эти полимеры являются термостойкими с температурой стеклования выше температуры разложения (>350°С). Для них плотная упаковка макромолекул не реализуется в стеклообразном состоянии, что способствует формированию элементов неравновесного свободного объема (или "дырок") нанометрового размера (микропористости). Так, для PIM-1 по данным метода аннигиляции позитронов диаметр "дырок" составляет 10-12 Å, в то время как для ПТМСП он равен 12-14 Å [26]. Как и для большинства стеклообразных кремнийсодержащих полимеров с высоким свободным объемом [7], такие особенности упаковки цепей являются причиной нестабильности газоразделительных характеристик, связанной с получением пленок из различных растворителей, наличием влаги, временем старения и т.д., что значительно ограничивает их практическое использование. Для этих полимеров, как и для кремнийсодержащих полимеров с высоким свободным объемом [7], также характерно значительное изменение газоразделительных характеристик при набухании в спиртах или при физическом старении [25]. Введение перечисленных выше фрагментов в полиимиды и другие поликонденсационные полимеры также способствует повышению газопроницаемости, но недостатки, связанные с нестабильностью свойств, по-прежнему сохраняются.

К kink-фрагментам зачастую относят и элементы дизайна, не позволяющие основной цепи принять плоскостную ориентацию. Такими элементами дизайна могут служить, например, гексафторизопропилиденовые развязки –C(CF₃)₂-, спирофрагменты и другие группы, препятствующие линейной, или плоскостной ориентации цепей. Эти элементы дизайна объединены единым термином "in-plane" и хорошо изучены для полиимидов [27].

Наконец, объемистые боковые заместители в основной цепи способствуют ограничению внутреннего вращения и повышению жесткости цепи [17, 18]. Такие фрагменты также приводят к снижению плотности упаковки и увеличению газопроницаемости, что опять же подробно изучено для полиимидов [17, 18, 27].

Все перечисленные элементы дизайна рассмотрены далее для высокопроницаемых новых полимеров с внутренней микропористостью, полиимидов, полиамидов и других полигетероариленов. Данные для химически модифицированных полимеров, термоперегруппированных полимеров, сополимеров и смесей полимеров, подробно описанные в более ранних обзорах [25, 27], не анализировались.

ПОЛИМЕРЫ С ВНУТРЕННЕЙ МИКРОПОРИСТОСТЬЮ

Лестничные полимеры с внутренней микропористостью с элементами дизайна на основе изломов жесткой цепи были синтезированы как со спиро-*бис*-индановой развязкой в основной цепи, так с другими вариантами изломов [25]. Ниже приведена химическая структура полимеров с внутренней микропористостью.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия С том 62 № 2 2020

PIM-EA-TB

PIM-Trip-TB

TPIM-1

PIM-BTrip-TB

PIM-TMB-Trip

PIM-TMB-SBI

PIM-HPB-2

251

Среди полимеров со спиро-бис-индановой развязкой в основной цепи подробно были исследованы газоразделительные свойства PIM-1 [14, 28-311 и PIM-7 [14]. Однако, например. для PIM-1 величина газопроницаемости существенно зависит как от способа синтеза, так и от последующей обработки [25, 28, 30, 31], что приводит к значительному разбросу результатов. В табл. 2 представлены данные только для образцов PIM-1, не обработанных спиртами. Анализ селективности диффузии показывает, что для пары кислородазот диффузионные характеристики демонстрируют вероятную упорядоченность упаковки цепей, а для газов с молекулами большего диаметра (СО₂/СН₄) такой упорядоченности не наблюдается (табл. 2). Возможно, это связано со специфическим распределением элементов упаковки, характерным для молекулярных сит. Введение в структуру основной цепи кардогруппировки для Cardo-PIM-1 [32] вызывает резкое снижение проницаемости, хотя по положению на соответствующих диаграммах (табл. 2) этот полимер схож с PIM-1. Повышение жесткости основной цепи путем введения спиро-бис-флуоренового фрагмента для SBF-PIM [33] наоборот, способствует повышению проницаемости и селективности и переводит данный полимер в область III на диаграммах Робсона (табл. 2). При этом наблюдается увеличение селективности диффузии для рассматриваемых пар газов (область LL на рис. 2). По-видимому, в таком случае можно говорить о существенном росте упорядоченности упаковки цепей.

Схожими прямоугольными жесткими изломами обладают фрагменты цепи на основе этаноантрацена ЕА

основания Трегера ТВ

и триптицена

Введение фрагментов ЕА и ТВ в основную цепь позволило получить высокопроницаемые полимеры PIM-EA-TB и PIM-SBI-TB [34], названные авторами органическими молекулярными ситами. На диаграммах Робсона РІМ-ЕА-ТВ попадает в область III выше или вблизи верхней границы 2008 года. По селективности диффузии для О₂/N₂ этот полимер демонстрирует высокую упорядоченность упаковки, а для газов с молекулами большего диаметра (СО₂/СН₄) низкую (табл. 2), что, действительно дает основание причислить его к органическим молекулярным ситам. В то же время для PIM-SBI-TB наблюдается как снижение газоразделительных параметров на диаграммах Робсона, так и снижение упорядоченности упаковки по селективности диффузии (табл. 2).

Комбинация оснований Трегера с триптиценовыми PIM-Trip-TB [35] и бензотриптиценовыми PIM-BTrip-TB [36] развязками позволила синтезировать близкие про свойствам полимеры, также попадающими в область III и на верхнюю границу 2008 на диаграммах Робсона (табл. 2). Именно эта группа полимеров послужила основанием для построения новых верхних границ [10, 11] 2015 года. Поведение указанных полимеров по селективности диффузии (табл. 2), особенно для PIM-BTrip-TB (область III) позволяет причислить их к упорядоченным полимерным молекулярным ситам. Однако сочетание объемистой адамантановой группы с основанием Трегера ТВ-Аd-Ме [36], по-видимому, увеличивает гибкость цепи, поэтому снижает упорядоченность упаковки и селективность диффузии и соответственно все газоразделительные характеристики (табл. 2).

Введение триптиценовых фрагментов в PIM-подобные структуры позволило синтезировать высокопроницаемые и высокоселективные лестничные полимеры TPIM-1 и TPIM-2, также названные полимерными молекулярными ситами [30, 38]. Упорядоченность упаковки

Таблица 2. Газој	разделител	іьные харак	теристики	и положе	сние на ди	аграммах	Робсона 1	и <i>D</i> -α ^{<i>D</i>} дл	водэминоп в	с внутренней	і микрог	гористост	6ł0
	P, Bi	appep	0	×	$D \times 10^8$, cm ² /c	σ	q	Область на Робс	диаграмме она*	Обла диаграм	ість на ме <i>D</i> —α ^D *	Лите-
Полимер	02	CO_2	O_2/N_2	CO ₂ /CH ₄	\mathbf{O}_2	CO_2	O_2/N_2	CO ₂ /CH ₄	O_2/N_2	CO ₂ /CH ₄	O_2/N_2	CO ₂ /CH ₄	parypa
PIM-1	370-1600	2300-11500	2.6-4.0	9-18	81-270	26-120	2.8-3.7	3.0–3.8	II – UB2008	UB2008 – IV	Π	I – ML	[14, 28–31]
PIM-7	190	1100	4.5	6.8	62	21	3.9	4.1	UB2008	UB2008	II	ML	[14]
Cardo-PIM-1	59	430	4.5	20	23	8	3.8	4	II	UB2008	II	Ι	[32]
SBF-PIM	2640	13900	3.4	13	420	180	3.3	4.3	III	III	LL	ΓΓ	[33]
PIM-EA-TB	2150	7140	4.1	10	320	87	3.2	2.4	III	UB2008	LL	Ι	[34]
PIM-SBI-TB	720	2900	3.1	6.4	201	74	2.7	2.4	II	UB1991	II	Ι	[34]
PIM-Trip-TB	2720	6700	4.3	11	460	110	3.4	2.3	UB2015	UB2008	LL	Ι	[35]
PIM-BTrip-TB	3290	13 200	3.6	9.2	350	66	5.0	3.5	III	UB2008	III	ML	[36]
TB-Ad-Me	40.2	201	3.6	11	27	10	3.0	3.8	Ι	Ι	ML	Ι	[37]
TPIM-1	370-200	1550	46.8	31-32	270–610	24	3.6-6.6	8.4	III-UB2015	III	III-III	II	[30, 38]
TPIM-2	100-510	390-430	4.4-5.6	21–24	25-35	11	4.8-5.1	6	UB2008	Π	Π	Π	[30, 38]
PIM-TMB-Trip	7470	33 300	3.4	9.7	I	Ι	Ι	Ι	III	III	Ι	Ι	[30, 39]
PIM-TMB-SBI	3200	17500	3.0	8.3	I	I	I	I	UB2008	UB2008	I	I	[30, 39]
PIM-HPB-2	217	1730	3.3	14	940	46	2.7	3.3	UB1991	Π	II	ML	[40]
 * Здесь и далее со чениям на диагра 	кращения д ммах, прим	цля обозначе: еры которых	ния област с приведені	и располо я ы в тексте.	сения экспе	рименталь	ных данны	іх на диагра	ммах Робсона	и на диаграмм	$a \ge D - \alpha^D$	COOTBETCTB	уют обозна-

252

АЛЕНТЬЕВ и др.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия С том 62 № 2

в этих полимерах подтверждается высокой селективностью диффузии (табл. 2). На диаграмме Робсона для O_2/N_2 ТРІМ-1 с изопропильным заместителем определяет верхнюю границу 2015 года, а его изомер ТРІМ-2 с *н*-пропильным заместителем находится на верхней границе 2008 года (табл. 2). Схожими свойствами [30, 39] обладают и аналоги РІМ-1 с тетраметилгексильными заместителями в бензотриптиценовом РІМ-ТМВ-Тгіри кардовом РІМ-ТМВ-SBI фрагментах. По уровню газопроницаемости указанные полимеры существенно превосходят ТРІМ (табл. 2).

Еще одним элементом дизайна с жесткими изломами для PIM-подобных структур стало введение замещенных гексафенилбензольных фрагментов [40]. Однако полимеры серии PIM-HPB по газоразделительным характеристикам и селективности диффузии (табл. 2) существенно уступают триптиценовым полимерам.

Для подавляющего количества полимеров с внутренней микропористостью характерно увеличение проницаемости при обработке спиртами, поэтому часто газотранспортные и газоразделительные параметры приводят только для обработанных спиртами пленок [30, 34, 35, 39]. Особое внимание обращают на процессы физического старения, сопровождающиеся снижением проницаемости и увеличением селективности. В связи с этим в табл. 2 показаны только характерные значения газотранспортных параметров для данных полимеров без учета предыстории и способов обработки пленок. Дополнительные сведения можно найти в обзоре [25] и в оригинальных работах.

РІМ-ПОЛИИМИДЫ

Одним из недостатков полимеров с внутренней микропористостью наряду с нестабильностью газотранспортных характеристик является невысокая механическая прочность пленок. Следовательно, вполне естественным было использование элементов дизайна основной цепи с жесткими изломами для синтеза новых полиимидов, обладающих хорошими пленкообразующими свойствами. Эта группа полимеров по аналогии была названа PIM-полиимидами. При синтезе новых диангидридов и диаминов были использованы такие элементы дизайна основной цепи, как спиро-бис-индановые и спиробис-флуореновые фрагменты, этаноантраценовые, триптиценовые и бензотриптиценовые развязки, фрагменты оснований Трегера. Новые диангидриды и диамины с элементами жестких изломов представлены ниже.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия С том 62 № 2 2020

Диамины:

 H_2N

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия С 2020 том 62 Nº 2

BTPDA

PBTPDA

и диамины

0

0

Ő

4APF

EATPF

Первой исследованной группой высокопроницаемых PIM-полиимидов ($P(O_2) = 64-550$ Баррер) были ПИ на основе спиро-бис-инданового диангилрила SBI-1 и лиаминов. DMN. NDA. TFDB. 4APF, DM4APF, TeMPD [41, 42]. Для ПИ такая высокая проницаемость весьма необычна [6]. На диаграммах Робсона эти полимеры находились вблизи верхней границы 1991 года [42], и только некоторые из них (DMN, NDA) на диаграмме СО₂/СН₄ достигали области II, приближаясь к верхней границе 2008 года. Селективность диффузии для данных ПИ невелика (табл. 3). Тем не менее, для ПИ с диамином DMN селективность диффузии достигает области II для пары газов O₂/N₂, как и для PIM-1. Близость газоразделительных и диффузионных характеристик этого ПИ с РІМ-1 (табл. 2) указывает на схожесть упорядоченности упаковки цепей в полимерах.

ПИ на основе спиро-*бис*-инданового диангидрида SBI-2 и диаминов DMN и TeMPD также являются высокопроницаемыми ($P(O_2) = 640-$ 710 Баррер) [43]. На диаграммах Робсона они попадают в область II (табл. 3), а по своим диффузионным характеристикам аналогичны PIM-1 (табл. 2).

ПИ на основе диамина DMN и диангидридов SBF и бициклооктенового pseudo-TB также показывают очень высокие значения газопроницаемости. Так для SBF-DMN $P(O_2)$: 850—1190 Баррер [44], а для pseudo-TB-DMN $P(O_2) = 320-850$ Баррер [45]. Оба полимера на диаграммах Робсона находятся на верхних границах 2008 года.

ПИ на основе этаноантраценового диангидрида ЕА и диамина DMN [46] характеризуется еще большей газопроницаемостью, для $P(O_2)$ достигает рекордных среди ПИ значений — около 1400 Баррер. На диаграмме Робсона для O_2/N_2 этот полимер формирует верхнюю границу 2015 года, а на диаграмме Робсона для CO_2/CH_4 достигает области III (табл. 3). По своим диффузионным характеристикам этот ПИ также аналогичен PIM-1 (табл. 2).

По диффузионным характеристикам (табл. 3) наиболее упорядоченной упаковкой обладают высокопроницаемые ПИ на основе триптиценового диангидрида KAUST [30, 47-49] и диаминов TeMPD, TMBZ [30, 47], 4APF, [48] DMN [30], mPDA и mPDA(OH)₂ [49]. Вне зависимости от диаминана диаграммах *D*- α^{D} для пар газов кислород-азот и углекислый газ-метан они формируют верхнюю границу LL (табл. 3), а в случае КАUST-ТеМРD выходят за ее пределы в область III. При этом на диаграммах Робсона данные ПИ находятся вблизи верхних границ 2008 года, а в случае KAUST-TeMPD и KAUST-TMBZ в области III, хотя по уровню проницаемости уступают EA-DMN. Приведенные факты дают основание причислить эти ПИ к полимерным упорядоченным молекулярным ситам, существенно более упорядоченным, чем большинство полимеров с внутренней микропористостью.

Введение элементов с жесткими изломами одновременно в диангидридные и диаминные фрагменты также приводит к получению высокопроницаемых ПИ, однако синергетического эффекта не наблюдается. Так, уже при исследовании ПИ на основе диангидрида SBI-2 и диамина SBI [43] оказалось, что в отличие от ПИ с диаминами DMN и TeMPD этот ПИ оказывается и менее проницаемым ($P(O_2) = 210$ Баррер), и менее селективным: на диаграммах Робсона он располагается на верхней границе 1991 года (табл. 3).

Сочетание диангидрида SBI-1 с диамином SBF и с SBF-Br также привело к получению высокопроницаемых ПИ ($P(O_2) = 110-240$ Баррер) [50],

Nº 2

стеристики и положение на диаграммах Робсона и <i>D</i> –α. ^D для PIM-полиимидов на основе диангидридов с жесткими	
блица 3. Газоразделительные характеристики и положение н	ломами цепи

ГОП	Тимии	$P, \mathbf{b}_{\mathcal{E}}$	tppep		x	$D \times 10^8$,	cm ² /c	δ	D ,	Област диаграмме	ь на Робсона	Облас диаграмл	сть на ме $D-\alpha^D$	t i
диангид- рид	диамин	O ₂	CO ₂	O_2/N_2	CO ₂ /CH ₄	02	CO ₂	O ₂ /N ₂	CO ₂ /CH ₄	O ₂ /N ₂	CO ₂ /CH ₄	O ₂ /N ₂	CO ₂ /CH ₄	parypa
SBI-1	TeMPD	150	1100	3.2	14	56	17	2.8	2.4	I(91)	UB1991	ML	Ι	[41, 42]
SBI-1	4APF	85	520	3.7	19	32	12	3.2	4	I(91)	UB1991	ML	ML	[41, 42]
SBI-1	DMN	545	3700	3.4	14	130	45	3.2	3.2	Π	UB2008	II	ML	[41, 42]
SBI-2	TeMPD	640	3200	3.1	9.8	160	64	2.9	2.9	II	II	II	ML	[43]
SBI-2	DMN	710	4100	3.1	12	190	86	3.0	3.4	II	II	II	ML	[43]
EA	DMN	1380	2350-2390	3.7	23–25	270	95	3.2	3.4	III -UB2015	III	II	ML	[46]
KAUST	TeMPD	630-830	7140	4.8-5.9	10	160-230	46-72	4.3-5.1	4.8-7.5	III	UB2008	LL-III	II-LL	[30, 47]
KAUST	TMBZ	490–580	2100	4.4-5.0	21	140 - 180	49	4.5-4.8	6.2	III	UB2008	TL	Π	[30, 47]
KAUST	4APF	370	1540	3.1	20	I	61	I	7.3	UB1991	UB2008	I	ΓΓ	[48]
KAUST	DMN	860	I	3.6		180	I	3.4	I	UB2008	I	II	I	[30]
KAUST	mPDA	65	350	4.5	6.3	19	7.0	5.0	32	II	II	II	ML	[49]
KAUST	mPDA(OH) ₂	32	215	5.5	8.7	8.2	3.8	5.9	46	Π	UB2008	II	Π	[49]
SBI-2	SBI	210	1500	3.2	12	I	I	I	I	UB1991	UB1991	I	I	[43]
SBI-1	SBF	110	610	3.9	15	Ι	20	Ι	4.1	UB1991	UB1991	Ι	ML	[50]
SBI-1	SBF-Br2	240	1340	3.5	13	I	30	I	3.3	UB1991	UB1991	I	Ι	[50]
SBI-2	TB	1130	5140	3.0	8.7	210	67	3.1	2.5	Π	II	II	Ι	[51]
SBF	TB	940	4470	3.6	12	190	58	3.4	3.3	UB2008	II	II	ML	[51]
SBI-1	TB1	190	895	5.4	20	94	14	4.6	2.6	III	II	TL	Ι	[52]
SBI-1	TB2	240	1210	4.9	19	110	23	4.2	3.1	UB2008	II	ΓΓ	Ι	[52]

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия С том 62 № 2 2020

которые оказываются на верхней границе 1991 года на диаграммах Робсона (табл. 3). По селективности диффузии эти полимеры не демонстрируют упорядоченности (табл. 3).

Более эффективным оказалось сочетание диангидридов с жесткими изломами с диаминными фрагментами основания Трегера. Так, ПИ на основе диангидрида SBI-2 и диамина ТВ обладает весьма высокой проницаемостью для ПИ ($P(O_2) =$ = 1130 Баррер) [51] и на диаграммах Робсона находится в области II выше верхней границы 1991 года (табл. 3). По селективности диффузии на соответствующей диаграмме для O₂/N₂ данный ПИ попадает в область II. Более селективным, но менее проницаемым ($P(O_2) = 940$ Баррер) [51] является ПИ на основе диангидрида SBF и диамина TB. На диаграмме Робсона для О₂/N₂ он находится на верхней границе 2008 года, а по селективности диффузии также попадает в область II (табл. 3). Менее проницаемыми ($P(O_2) = 190-240$ Баррер) [52], но и существенно более селективными оказались ПИ на основе диангидрида SBI-1 и изомерных диаминов ТВ1 и ТВ2. Эти полимеры на диаграмме Робсона для O2/N2 уже размещаются выше верхней границы 2008 года (табл. 3), а по селективности диффузии на соответствующей диаграмме формируют верхнюю границу LL (табл. 3). В то же время для пары газов СО₂/СН₄ они оказываются менее селективны, что в целом характерно для полимеров с внутренней микропористостью.

Как и для обычных ПИ, эффекты введения элементов с жесткими изломами только в диаминные фрагменты существенно меньше, чем при введении таких элементов в диангидридные фрагменты основной цепи.

Так, только для диамина ТВ и диангидрида РМDА наблюдается высокая проницаемость на уровне диангидридов с жесткими изломами (*P*(O₂) = 1080 Баррер) [51]. При этом ПИ РМДА-ТВ на диаграммах Робсона находится на верхней границе 2008 года и, аналогично ПИ на основе диангидридов SBI-2 и SBF, формирует верхнюю границу LL на соответствующей диаграмме по селективности диффузии О2/N2 (табл. 4), являясь менее селективным для пары газов СО₂/СН₄. Уже для полиимида 6FDA-ТВ и проницаемость, и селективность значительно снижаются [51], что отражается и на положениях этого ПИ на соответствующих диаграммах (табл. 4). Для изомерных диаминов TB1 и TB2 и диангидрида 6FDA [53] проницаемость уменьшается более чем в 6 раз по сравнению с аналогами на основе диангидрида SBI-1 (табл. 3, 4). И, хотя по положению на диаграммах Робсона эти полимеры еще располагаются вблизи верхних границ, по селективности диффузии они резко уступают своим аналогам (табл. 4). Для ПИ на основе тех же диаминов и диангидрида ODPA [53] проницаемость и селективность снижаются настолько, что указанные полимеры перестают быть высокопроницаемыми и на диаграммах Робсона располагаются ниже верхней границы 1991 года [53].

Для ПИ на основе диангидрида 6FDA и диаминов TB3 ($T_g = 425^{\circ}$ C) [54] и TB4 ($T_g = 395^{\circ}$ C) [55] наблюдается уже невысокая проницаемость (табл. 4). На диаграммах Робсона они находятся вблизи верхней границы 1991 года, хотя по диффузионным характеристикам падают в область II на соответствующей диаграмме для O_2/N_2 (табл. 4). В то же время полиимиды BTDA-TB3 ($T_g = 438^{\circ}$ C) [54], BTDA-TB4 ($T_g = 419^{\circ}$ C) и ODPA-TB4 ($T_g = 428^{\circ}$ C) [55], как и в предыдущем случае, перестают быть высокопроницаемыми и селективными [54, 55].

Для ПИ на основе диангидридов 6FDA и PMDA и диамина SBF также наблюдается резкое снижение проницаемости, селективности и диффузионных характеристик по сравнению с аналогом на основе диангидрида SBI-1 [50] (табл. 3, 4). Для тех же диангидридов и диамина SBF-Br различия не столь велики, но тенденция сохраняется (табл. 4). При этом различия в свойствах ПИ на основе диангидридов 6FDA и PMDA практически не наблюдаются в отличие от ПИ на основе диамина ТВ [51]. Схожие зависимости характерны и для ПИ на основе диангидридов 6FDA и PMDA и диамина SBI-OH [56, 57] (табл. 4). ПИ на основе диангидридов BPDA и BPADA и диамина SBI-OH [57] оказываются среднепроницаемыми и на диаграммах Робсона находятся ниже верхней границы 1991 года.

Как и в случае ПИ на основе триптиценовых диангидридов, ПИ на основе триптиценового Trip [58, 59] и бензотриптиценового BTrip [59] диаминов и диангидрида 6FDA демонстрируют высокую селективность диффузии (табл. 4), однако в то же время и гораздо более низкую проницаемость по сравнению с ПИ на основе диангидрида KAUST (табл. 3). И только ПИ на основе диангидрида 6FDA и сложного диамина с пентиптиценовым фрагментом TeMPD-PPDAn-TeMPD ($T_g >$ > 400°С), который можно рассматривать как регулярный сополиимид диамина TeMPD с диангидридами 6FDA и PPDAn, за счет высокой проницаемости СО2 [60] оказывается на верхней границе 2008 года диаграммы Робсона для пары газов CO₂/CH₄ и располагается в области II на соответствующей диаграмме для селективности диффузии (табл. 4).

ПОЛИГЕТЕРОАРИЛЕНЫ С РАЗВОРОТАМИ ОСНОВНОЙ ЦЕПИ

Схожим по влиянию на свойства полимеров являются элементы дизайна "in-plane", или объемистые заместители в боковых цепях. За счет

Nº 2

еристики и положение на диаграммах Робсона и <i>D</i> -ос ^D для PIM-полиимидов на основе диаминов с жесткими из-	
Таблица 4. Газоразделительные характеристики и положение на	ломами цепи

Поли	Димиі	<i>P</i> , Б(appep		×	$D \times 10^8$, cm ² /c	8	Q	Облак диаграмм	сть на е Робсона	Обла [,] диаграм	сть на ме $D-\alpha^D$	Лите-
дианги- дрид	диамин	02	CO ₂	O ₂ /N ₂	CO ₂ /CH ₄	02	CO ₂	O ₂ /N ₂	CO ₂ /CH ₄	O ₂ /N ₂	CO ₂ /CH ₄	O ₂ /N ₂	CO ₂ /CH ₄	ратура
PMDA	TB	1080	4460	3.7	11	195	41	4.0	2.7	UB2008	II	ΓΓ	Ι	[51]
6FDA	TB	410	1700	3.1	14	100	26	2.9	3.0	UB1991	II	Π	Ι	[51]
6FDA	TB1	28	155	4.3	47	Ι	3.4	I	4.2	UB1991	II	Ι	Ι	[53]
6FDA	TB2	47	285	3.9	36	I	5.3	I	4.8	I(91)	II	Ι	ML	[53]
6FDA	TB3	120	460	3.8	17	38	13	3.6	4.1	UB1991	UB1991	Π	ML	[54]
6FDA	TB4	42	220	4.4	33	18	6.1	4.1	6.4	UB1991	Π	Π	ML	[55]
6FDA	SBF	35	180	4.5	28	I	7.2	I	6.0	UB1991	UB1991	Ι	ML	[50]
PMDA	SBF	36	200	4.2	22	I	6.0	I	5.1	UB1991	UB1991	I	ML	[50]
6FDA	SBF-Br	110	580	4.0	23	Ι	17	I	5.3	UB1991	Π	Ι	ML	[50]
PMDA	SBF-Br	120	069	3.8	19	I	17	I	5.0	UB1991	Π	I	ML	[50]
6FDA	SBI-OH	22—45	100-260	4.2	24–29	11	6.3-8.0	3.0	4.9–7.9	I-UB1991	UB1991-II	ML	ML-II	[56, 57]
PMDA	SBI-OH	31-40	200-240	4.0-4.4	17—26	I	6.6	I	4.9	I-UB1991	UB1991	I	ML	[56, 57]
6FDA	Trip	25–39	120-190	4.8-5.4	30–38	15-23	8.2–13	3.8-4.2	8.7-11	UB1991	II	II	II	[58, 59]
6FDA	BTrip	43	210	4.8	30	24	14	3.8	8.9	UB1991	II	II	II	[59]
6FDA	TeMPD- PPDAn- TeMPD	I	810	I	27	I	35	I	4.7	I	UB2008	I	Π	[09]

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия С том 62 № 2 2020

АЛЕНТЬЕВ и др.

ограничений внутреннего вращения эти элементы дизайна препятствуют линейной, или плоскостной ориентации цепей, что приводит к снижению плотности упаковки и увеличению газопроницаемости. Как правило, в таких полимерах протяженные линейные или плоские фрагменты чередуются с резкими поворотами цепи. Эти элементы дизайна наиболее хорошо изучены для полиимидов [17, 18, 27] и в настоящем обзоре объединены единым термином "с разворотами основной цепи".

Одним из примеров такого рода полимеров являются полипирролоны и полипирролонимиды [61-63] которые формируют верхнюю границу диаграммы Робсона 2008 года [6, 9] или находятся на верхней границе 1991 года [6, 63]. При этом их высокая селективность определяется селективностью диффузии и объясняется особенностями упаковки, что дает право авторам называть их "псевдомолекулярными ситами" [63]. ПИ на основе диангидрида DPPTD [64] обладают схожей с полипирролонами протяженной плоской структурой. Соответственно ПИ с диангидридом DPPTD и диаминами с разворотами основной цепи, такими как 6F, IMM, TMPD ("in-plane") характеризуются относительно высокой проницаемостью (табл. 5). И хотя на диаграммах Робсона эти полимеры находятся вблизи верхней границы 1991 года, упорядоченность упаковки (селективность диффузии) оказывается весьма высокой (область II), особенно, для диамина ТМРD. Схожей с диамином ТМРD структурой обладает диамин DETDA. ПИ на основе этого диамина и диангидрида 6FDA демонстрирует высокую проницаемость [65]. На диаграммах Робсона ланный полимер находится вблизи верхних границ 1991 года. ПИ на основе смеси изомерных ди-

аминов DETDA и диангидридов 6FDA и BPDA также являются высокопроницаемыми [66]. На диаграммах Робсона они располагаются также вблизи верхних границ 1991 года, но по селективности диффузии не проявляют упорядоченности упаковки. ПИ на основе этого диамина, но с более гибкими диангидридами BTDA, BPADA и ODPA не являются высокопроницаемыми и селективными [66]. Такое же поведение демонстрируют и ПИ на основе диамина ТВАРВ [67]. В то же время ПИ на основе PMDA и диаминов TMPD и TMID оказываются высокопроницаемыми (табл. 5), особенно ПИ РМДА – ТМІД [68]. При этом по селективности диффузии для О₂/N₂ оба ПИ проявляют достаточно высокую упорядоченность упаковки (табл. 5).

ПИ на основе диамина TMPD и диангидридов TPDA, BTPDA и PBTPDA с разворотом основной цепи "in-plane" и объемистыми заместителями [69] также принадлежат к высокопроницаемым ПИ, однако на диаграммах Робсона не достигают верхней границы 1991 г. и не проявляют по селективности диффузии признаков упорядоченности упаковки (табл. 5).

Схожие явления по селективности диффузии наблюдаются для высокопроницаемых ПИ на основе диангидридов ОDPA, BPDA и 6FDA с диамином BAN-3 с объемистыми заместителями и разворотом основной цепи [70]. Наиболее селективным среди них на диаграмме Робсона оказывается ПИ на основе диангидрида BPDA (табл. 5).

Интересным примером новых полигетероариленов с разворотом основной цепи являются полиизатины с различными заместителями серии POXINAR [71].

ПА 3tBu6F

Эти полимеры имеют температуру стеклования выше температуры разложения ($T_g > 500^{\circ}$ С) и на диаграммах Робсона они также располагаются вблизи или на верхней границе 1991 года [71]. Однако единственным высокопроницаемым среди полимеров POXINAR является полимер, содержащий длинный линейный фрагмент с двумя флуореновыми группами (табл. 6).

В то же время ПИ с разворотом основной цепи на основе спиро-флуоренового диамина ВАРF и диангидрида 6FDA ($T_g = 383^{\circ}$ C) [72] также принадлежит к высокопроницаемым ПИ ($P(O_2) = 31$ Баррер). На диаграмме Робсона для O_2/N_2 он лежит вблизи верхней границы 1991 года.

Аналогичными элементами дизайна для получения полиимидов, полиамидов, полиэфиров с разворотами основной цепи в результате наличия асимметричных центров и объемистых боковых групп активно пользуются S. Banerjeec сотрудниками [18, 74]. Множество полимеров, синтезированных в этой группе за последние 10 лет, обладают высокой селективностью по паре газов O_2/N_2 и располагаются на диаграмме Робсона выше верхней границы 2008 года [18, 74]. Так, например, ПИ на основе диамина EATPF и диангидридов 6FDA, BPADA, ODPA, BTDA и PMDA близки

к высокопроницаемым ($P(O_2) = 8.5-17$ Баррер) [77]. Селективность O_2/N_2 для них достигает 15– 20, и на диаграмме Робсона по паре газов O_2/N_2 они располагаются в области IV выше верхней границы 2015 года. Отметим, что наиболее селективный ПИ на основе диангидрида РМDA ($\alpha(O_2/N_2) = 20$) лежит в области верхней границы LL на диаграмме по селективности диффузии O_2/N_2 . В то же время на диаграммах Робсона по паре газов CO_2/CH_4 эти ПИ располагаются в области II, или на верхней границе 2008 г., а по селективности диффузии CO_2/CH_4 попадают в область I.

ПИ на основе диамина, содержащего спиробис-индановую группировку SPBDA, и диангидридов BPADA, 6FDA и ODPA также близки к высокопроницаемым ($P(O_2) = 9.9-36$ Баррер) [73]. Селективность O_2/N_2 для них оказывается ниже, чем у ПИ на основе диамина EATPF: 9.7–12, и на диаграмме Робсона по паре газов O_2/N_2 они преимущественно располагаются в области верхней границы 2015 года. Наиболее проницаемым и селективным из данной группы ПИ является SPBDA-6FDA, находящийся в области IV выше верхней границы 2015 года диаграммы O_2/N_2 и представленный в табл. 5.

азворотами	
иаминов с р	
на основе д	
[ВОДИМИИДОВ]	
оп вид ^п о-с	
Робсона и І	
иаграммах	
жение на д	
тики и полс	
характерис	
елительные	
5. Газоразде	цепи
Таблица	новной г

-- - OC --

α^D Литера-	H ₄	[64]	[64]	[64]	[65]	[99]	[99]	[67]	[68]	[68]	[69]	[69]	[69]	[70]	[70]	[70]	[73]	[74]	[75]	[75]	[75]	[75]	[20]	
асть на име <i>D</i>	CO ₂ /C	ML	ML	II	I	I	I	ML	ML	ML	ML	Ι	Ι	Ι	I	Ι	Ι	Ι	Π	Π	II	II	Ι	
Обл диагра	O ₂ /N ₂	Π	II	II	I	ML	ML	ML	II	II	ML	ML	ML	ML	ML	Ι	II	II	ML	II	ML	ML	I	
сть на рамме сона	CO ₂ /CH ₄	I(91)	I(91)	II	I(91)	UB1991	I(91)	Ι	II	II	Ι	Ι	Ι	Ι	Ι	UB1991	UB1991	UB1991	UB2008	II	UB2008	II	II	;
Обла диатј Роб	O ₂ /N ₂	I(91)	I(91)	II	I(91)	I(91)	I(91)	Ι	UB1991	Π	Ι	I(91)	Ι	Ι	Π	Ι	IV	Π	III	UB2008	UB2008	UB2008	UB2008	
q	CO ₂ /CH ₄	5.2	4.5	5.5	I	3.4	3.3	4.7	4.4	3.8	5.6	3.5	3.7	3.4	3.6	2.6	1.6	2.2	6.5	6.9	7.0	7.0	Ι	
0	O ₂ /N ₂	3.6	3.5	3.5	I	2.8	3.2	2.8	3.8	3.3	3.1	2.6	2.8	4.8	4.1	1.5	4.6	4.2	3.3	3.6	3.4	3.1	Ι	
i, cm ² /c	CO ₂	10	14	37	I	12	4.6	11	9.2	21	5	15	8.6	0.85	1.5	2.7	6.3	3.3	20	17	16	15	Ι	
$D \times 10^{8}$	02	18	29	53	I	36	14	19	23	51	11	30	16	2.8	3.7	1.7	23	14	22	21	16	16	Ι	
, ,	CO ₂ /CH ₄	20	16	15	19	20	19	18	24	16	20	12	18	16	15	15	44	36	51	45	51	49	48	0
0	0 ₂ /N ₂	4.0	3.9	3.8	3.5	3.4	3.9	4.0	4.0	4.0	4.5	3.7	4.0	3.4	5.0	1.9	11	6.0	7.1	6.1	6.3	6.4	7.2	t
bpep	CO ₂	260	390	1600	350	450	200	140	530	1190	140	465	210	230	390	845	53	71	175	110	97	94	76	
P, Ba	02	44	75	280	76	82	28	23	89	230	27	110	35	47	81	100	36	25	64	57	40	34	27	5
$T_{g^*} \circ \mathrm{C}$		525	490	560	368	400	>450	329	565	525	414	367	420	I	I	I	269	315	261	235	251	258	230	
Тими	диамин	4APF	IMM	TMPD	DETDA	DETDA	DETDA	TBAPB	TMPD	TMID	TMPD	TMPD	TMPD	BAN-3	BAN-3	BAN-3	SPBDA	BIDA	PPADA	PPADA	PPADA	PPADA	TPA	
Поли	диан- гидрид	DPPTD	DPPTD	DPPTD	6FDA	6FDA	BPDA	PMDA	PMDA	PMDA	TDPA	BTPDA	PBTPDA	ODPA	BPDA	6FDA	6FDA	6FDA	6FDA	BPADA	ODPA	BTDA	BPDA	

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия С том 62 № 2 2020

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ ДИЗАЙНА ХИМИЧЕСКОЙ СТРУКТУРЫ

Полимер	T °C	<i>Р</i> , Ба	ррер	(x	D× см	10 ⁸ , ² /c	α	D	Облас диагр Роб	сть на рамме сона	Облас диагр <i>D</i> –	сть на амме α ^D	Лите-
полимер	<i>Ig</i> , C	O_2	CO_2	O_2/N_2	CO ₂ /CH ₄	O_2	CO_2	O_2/N_2	CO ₂ /CH ₄	O ₂ /N ₂	CO ₂ /CH ₄	O_2/N_2	CO ₂ /CH ₄	ратура
POXINAR 2bF	>500	49	280	4.4	21	_	_	_	_	I(91)	UB1991	_	_	[71]
ПА 6F3tBu	284	44	170	7.3	24	42	33	2.6	3.7	III	I(91)	ML	ML	[78]
ПА 12F2tBu	276	40	160	7.7	31	30	21	2.9	3.5	III	UB1991	ML	Ι	[78]
ПА 6F2tBu	275	20	80	7.4	27	15	9.3	2.6	2.6	UB2008	Ι	ML	Ι	[78]
ПА 4tBu	263	20	86	8.1	30	9.8	7.8	3.3	2.9	III	I(91)	ML	Ι	[79]
ПА 3tBu6F	271	29	120	9.7	37	14	11	3.9	3.4	UB2015	II	II	Ι	[79]

Таблица 6. Газоразделительные характеристики и положение на диаграммах Робсона и *D*– α^D для полигетероариленов с разворотами основной цепи

ПИ на основе диамина с поперечным плоским фрагментом бензоизоиндолдиона в основной цепи BIDA и диангидридов BPADA, 6FDA и BTDA($P(O_2) = 7.0-25$ Баррер) также характеризуются высокой селективностью по паре газов O_2/N_2 (6.0-8.4) [74], поэтому на соответствующей диаграмме Робсона они располагаются в области II. A по селективности диффузии наиболее упорядоченным оказывается ПИ BPADA-BIDA (вблизи верхней границы LL), а наиболее проницаемый 6FDA-BIDA (табл. 5) находится также в области II.

Анализ корреляций транспортных характеристик указанных ПИ со свободным объемом [18, 80] показывает, что их высокая селективность определяется в основном высокой общей селективностью диффузии.

ПИ на основе диамина с асимметричным четвертичным атомом углерода, замещенным фосфорсодержащей группой РРАДА [75], и диангдидридов 6FDA, BPADA, ODPA и BTDA оказываются высокопроницаемыми и высокоселективными. На обеих диаграммах Робсона они располагаются в области верхней границы 2008 года и также проявляют признаки упорядоченности по селективности диффузии. ПИ на основе трифениламина с объемным боковым заместителем [76] и диангидридов BPDA, 6FDA и ODPA также принадлежат к группе высокопроницаемых и высокоселективных ПИ (табл. 5).

Схожие элементы дизайна использованы и для получения высокопроницаемых полиамидов ($P(O_2) = 11-44$ Баррер) [78, 79]. Все они располагаются на диаграмме Робсона по паре газов O_2/N_2 в области верхней границы 2008 года и в области III, достигая и верхней границы 2015 года (табл. 6). В то же время по селективности CO_2/CH_4 они оказываются существенно ниже и

не выходят за пределы верхней границы 1991 года для соответствующей диаграммы Робсона. По селективности диффузии рассматриваемые полиамиды не проявляют существенной упорядоченности упаковки (табл. 6).

ЗАКЛЮЧЕНИЕ

Таким образом, как введение объемистых боковых фрагментов, приводящее к разворотам основной цепи ввиду заторможенности внутреннего вращения, так и введение фрагментов, выводящих основную цепь из плоскостной ориентации ("in-plane"), также приводящее к разворотам основной цепи, по своему влиянию на упаковку цепей оказываются близки эффекту жестких изломов (kink), используемых для дизайна полимеров с внутренней микропористостью и РІМ-полиимидов. Эти элементы дизайна в разной степени способствуют созданию низкоплотной упаковки, и соответственно высокой проницаемости полимеров. При этом как жесткие изломы, так и регулярные развороты основной цепи приводят к формированию упорядоченной упаковки цепей. Чем выше эта упорядоченность, тем выше селективность диффузии и тем выше в конечном итоге селективность материала. Вследствие таких особенностей упаковки цепей рассмотренные в обзоре высокопроницаемые полигетероарилены формируют верхние границы на диаграммах Робсона и могут быть охарактеризованы как полимерные молекулярные сита, определяющие современный уровень сочетания проницаемости и селективности полимерных материалов.

Работа выполнена при финансовой поддержке Российского научного фонда (проект 19-19-00614).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Baker R.W., Low B.T.* // Macromolecules. 2014. V. 47. № 20. P. 6999.
- Materials Science of Membranes for Gas and Vapor Separation / Ed. byYu. Yampolskii, I. Pinnau, B. Freeman. Chichester: Wiley, 2006.
- 3. Yampolskii Y. // Macromolecules. 2012. V. 45. P. 3298.
- 4. Baker R.W. // Ind. Eng. Chem. Res. 2002. V. 41. P. 1393.
- Ismail A.F., Khulbe K.C., Matsuura T. // Gas Separation Membranes. Polymeric and Inorganic. Heidelberg, New York; Dordrecht; London: Springer Int. Publ. Switzerland, 2015.
- База данных "Газоразделительные параметры стеклообразных полимеров". Информрегистр РФ, 1998.
- Membrane Materials Science for Gas and Vapor Separation / Ed. by *Y. Yampolskii, E. Finkelshtein*. Chichester: Wiley, 2017.
- 8. Robeson L. // J. Membr. Sci. 1991. V. 62. № 2. P. 165.
- 9. Robeson L. // J. Membr. Sci. 2008. V. 320. № 1–2. P. 390.
- Swaidan R., Ghanem B., Pinnau I. // ACS Macro Lett. 2015. V. 4. P. 947.
- Comesana-Gandara B., Chen J., Bezzu C.G., Carta M., Rose I., Ferrari M.-C., Esposito E., Fuoco A., Jansen J.C., McKeown N.B. // Energy Environ. Sci. 2019. V. 12. P. 2733.
- Alentiev A., Yampolskii Yu. // Eng. Chem. Res. 2013. V. 52. № 26. P. 8864.
- Budd P.M., Ghanem B.S., Makhseed S., McKeown N.B., Msayib K.J., Tattershall C.E. // Chem. Commun. 2004. № 2. P. 230.
- Budd P.M., Msayib K.J., Tattershall C.E., Ghanem B.S., Reynolds K.J., McKeown N.B., Fritsch D. // J. Membr. Sci. 2005. V. 251. № 1–2. P. 263.
- Ponomarev I.I., Blagodatskikh I.V., Muranov A.V., Volkova Y.A., Razorenov D.Y., Ponomarev I.I., Skupov K.M. // Mendeleev Commun. 2016. V. 4. P. 362.
- 16. Heuchel M., Fritsch D., Budd P.M., McKeown N.B., Hofmann D. // J. Membr. Sci. 2008. V. 318. P. 84.
- Ronova I.A., Alentiev A.Yu., Bruma M. // Polym. Revs. 2018. V. 58. № 2. P. 376.
- Ghosh B.D., Banerjee S., Alentiev A., Ronova I., Yampolskii Yu. // Imidic Polymers and Green Polymer Chemistry: New Technology and Developments in Process and Products / Ed. by A. Haghi. Apple Acad. Press, 2020.
- Наноматериалы: свойства и перспективные приложения / Под ред. А. Ярославцева. М.: Научный мир, 2014.
- 20. Ямпольский Ю. // Успехи химии. 2007. Т. 76. № 1. С. 66.
- 21. Dlubek G., Pionteck J., Rätzke K., Kruse J., Faupel F. // Macromolecules. 2008. V. 41. № 16. P. 6125.
- 22. Alentiev A., Yampolskii Yu. // J. Membr. Sci. 2002. V. 206. P. 291.
- 23. *Ryzhikh V.E., Alent'ev A.Y., Yampol'skii Y.P.* // Polymer ScienceA. 2013. V. 55. № 4. P. 244.
- Alentiev A. Yu., Belov N.A., Chirkov S.V., Yampolskii Yu.P. // J. Membr. Sci. 2018. V. 547. P. 99.

- 25. Low Z.-X., Budd P.M., McKeown N.B., Patterson D.A. // Chem. Revs. 2018. V. 118. № 12. P. 5871.
- Шантарович В.П., Бекешев В.Г., Кевдина И.Б., Ямпольский Ю.П., Бермешев М.В., Белов Н.А. // Химия высоких энергий. Т. 52. № 4. С. 253.
- Sanaeepur H., Amooghin A.E., Bandehali S., Moghadassi A., Matuura T., Van der Bruggen B. // Progr. Polym. Sci. 2019. V. 91. P. 80.
- Budd P.M., McKeown N.B., Ghanem B.S., Msayib K.J., Fritsch D., Starannikova L., Belov N., Sanfirova O., Yampolskii Y.P., Shantarovich V. // J. Membr. Sci. 2008. V. 325. № 4. P. 851.
- 29. *Staiger C.L., Pas S.J., Hill A.J., Cornelius C.J.* // Chem. Mater. 2015. V. 20. № 8. P. 2606.
- 30. Swaidan R., Ghanem B., Litwiller E., Pinnau I. // Macromolecules. 2015. V. 48. № 18. P. 553.
- Ponomarev I.I., Razorenov D.Y., Blagodatskikh I.V., Muranov A.V., Starannikova L.E., Alent'ev A.Yu., Nikiforov R.Yu., Yampol'skii Y.P. // Polymer Science B. 2019. V. 61. № 5. P. 605.
- Ghanem B.S., McKeown N.B., Budd P.M., Fritsch D. // Macromolecules. 2008. V. 41. P. 1640.
- Bezzu C.G., Carta M., Tonkins A., Jansen J.C., Bernardo P., Bazzarelli F., McKeown N.B. // Adv. Mater. 2012. V. 24. P. 5930.
- Carta M., Malpass-Evans R., Croad M., Rogan Y., Jansen J.C., Bernardo P., Bazzarelli F., McKeown N.B. // Science. 2013. V. 339. P. 303.
- Carta M., Croad M., Malpass-Evans R., Jansen J.C., Bernardo P., Clarizia G., Friess K., Lanč M., McKeown N.B. // Adv. Mater. 2014. V. 26. P. 3526.
- Rose I., Carta M., Malpass-Evans R., Ferrari M.C., Bernardo P., Clarizia G., Jansen J.C., McKeown N.B. // ACS Macro Lett. 2015. V. 4. P. 912.
- Carta M., Croad M., Jansen J.C., Bernardo P., Clarizia G., McKeown N.B. // Polym. Chem. 2014. V. 5. P. 5255.
- 38. *Ghanem B.S., Swaidan R., Ma X., Litwiller E., Pinnau I. //* Adv. Mater. 2014. V. 26. № 39. P. 6696.
- Rose I., Bezzu C.G., Carta M., Comesaña-Gándara B., Lasseuguette E., Ferrari M.C., Bernardo P., Clarizia G., Fuoco A., Jansen J.C., Hart K.E., Liyana-Arachchi T.P., Colina C.M., McKeown N.B. // Nat. Mater. 2017. V. 16. P. 932.
- Short R., Carta M., Bezzu C.G., Fritsch D., Kariuki B.M., McKeown N.B. // Chem. Commun. 2011. V. 47. P. 6822.
- 41. Ghanem B.S., McKeown N.B., Budd P.M., Selbie J.D., Fritsch D. // Adv. Mater. 2008. V. 20. P. 2766.
- Ghanem B.S., McKeown N.B., Budd P.M., Al-Harbi N.M., Fritsch D., Heinrich K., Starannikova L., Tokarev A., Yampolskii Y. // Macromolecules. 2009. V. 42. P. 7881.
- 43. Rogan Y., Starannikova L., Ryzhikh V., Yampolskii Y., Bernardo P., Bazzarelli F., Jansen J.C., McKeown N.B. // Polym. Chem. 2013. V. 4. P. 3813.
- 44. Ma X., Ghanem B., Salines O., Litwiller E., Pinnau I. // ACS Macro Lett. 2015. V. 4. P. 231.
- 45. *Ma X., Abdulhamid M.A., Pinnau I. //* Macromolecules. 2017. V. 50. № 15. P. 5850.
- 46. Rogan Y., Malpass-Evans R., Carta M., Lee M., Jansen J.C., Bernardo P., Clarizia G., Tocci E., Friess K., Lanč M.,

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия С

McKeown N.B. // J. Mater. Chem. A. 2014. V. 2. P. 4874.

- 47. *Ghanem B.S., Swaidan R., Litwiller E., Pinnau I.* // Adv. Mater. 2014. V. 26. P. 3688.
- Swaidan R., Ghanem B., Al-Saeedi M., Litwiller E., Pinnau I. // Macromolecules. 2014. V. 47. P. 7453.
- Alaslai N., Ghanem B., Alghunaimi F., Pinnau I. // Polymer. 2016. V. 91. P. 128.
- Ma X., Salinas O., Litwiller E., Pinnau I. // Macromolecules. 2013. V. 46. P. 9618.
- Lee M., Bezzu C.G., Carta M., Bernardo P., Clarizia G., Jansen J.C., McKeown N.B. // Macromolecules. 2016. V. 49. P. 4147.
- Wang Z., Wang D., Jin J. // Macromolecules. 2014. V. 47. P. 7477.
- Wang Z., Wang D., Zhang F., Jin J. // ACS Macro Lett. 2014. V. 3. P. 597.
- Zhuang Y., Seong J.G., Do Y.S., Jo H.J., Cui Z., Lee J., Lee Y.M., Guiver M.D. // Macromolecules. 2014. V. 47. P. 3254.
- Zhuang Y., Seong J.G., Do Y.S., Lee W.H., Lee M.J., Guiver M.D., Lee Y.M. // J. Membr. Sci. 2016. V. 504. P. 55.
- Ma X., Swaidan R., Belmabkhout Y., Zhu Y., Litwiller E., Jouiad M., Pinnau I., Han Y. // Macromolecules. 2012. V. 45. P. 3841.
- 57. Li S., Jo H.J., Han S.H., Park C.H., Kim S., Budd P.M., Lee Y.M. // J. Membr. Sci. 2013. V. 434. P. 137.
- Cho Y.J., Park H.B. // Macromol. Rapid Commun. 2011. V. 32. P. 579.
- Alghunaimi F., Ghanem B., Alaslai N., Swaidan R., Litwiller E., Pinnau I. // J. Membr. Sci. 2015. V. 490. P. 321.
- Shamsabadi A.A., Seidi F., Nozari M., Soroush M. // ChemSusChem. 2018. V. 11. P. 472.
- 61. Zimmerman C.M., Koros W.J. // Polymer. 1999. V. 40. № 20. P. 5655.
- *Zimmerman C.M., Koros W.J.* // J. Polym. Sci., Polym. Phys. Ed. 1999. V. 37. № 12. P. 1235.
- Burns R.L., Koros W.J. // Macromolecules. 2003. V. 36. № 7. P. 2374.

- 64. Santiago-García J.L., Álvarez C., Sánchez F., José G. // J. Membr. Sci. 2015. V. 476. P. 442.
- 65. Fu S., Sanders E.S., Kulkarni S.S., Koros W.J. // J. Membr. Sci. 2015. V. 487. P. 60.
- 66. Кузнецов А.А., Цегельская А.Ю., Орлова А.М., Белов Н.А., Чирков С.В., Никифоров Р.Ю., Алентьев А.Ю. // Мембраны и мембранные технологии. 2019. Т. 9. № 5. С. 369.
- 67. *Calle M., Lozano A.E., de Abajo J., José G., Álvarez C. //* J. Membr. Sci. 2010. V. 365. № 1–2. P. 145.
- Álvarez C., Lozano A.E., José G. // J. Membr. Sci. 2016.
 V. 501. P. 191.
- 69. Calle M., García C., Lozano A.E., Jose G., de Abajo J., Álvarez C. // J. Membr. Sci. 2013. V. 434. P. 121.
- 70. Li T., Liu J., Zhao S., Chen Z., Huang H., Guo R., Chen Y. // J. Membr. Sci. 2019. V. 585. P. 282.
- Mancilla E.C., Hernández-Martínez H., Zolotukhin M.G., Ruiz-Treviño F.A., González-Díaz M.O., Cardenas J., Scherf U. // Ind. Eng. Chem. Res. 2019. V. 58. № 33. P. 15280.
- 72. *Lee B.M., Kim D.J., Nam S.Y.* // J. Nanosci. Nanotech. 2015. V. 15. № 3. P. 2351.
- 73. Membrane Materials for Gas and Vapor Separation. Synthesis and Application of Silicon-containing Polymers / Ed. by *Yu. Yampolskii, E. Finkelshtein*. Chichester: Wiley, 2017.
- 74. Sen S.K., Banerjee S. // RSC Adv. 2012. V. 2, № 15. P. 6274.
- 75. Chatterjee R., Bisoi S., Kumar A.G., Padmanabhan V., Banerjee S. // ACS Omega. 2018. V. 3. P. 13510.
- Dutta A., Bisoi A., Mukherjee R., Chatterjee R., Das R.K., Banerjee S. // J. Appl. Polym. Sci. 2018. V. 135. P. 46658.
- 77. Ghosh S., Banerjee S. // J. Membr. Sci. 2016. V. 479. № 1. P. 172.
- Bandyopadhyay P., Bera D., Ghosh S., Banerjee S. // J. Membr. Sci. 2013. V. 447. P. 413.
- 79. Bera D., Padmanabhan V., Banerjee S. // Macromolecules. 2015. V. 48. № 13. P. 4541.
- 80. *Ronova I., Alentiev A., Bruma M.* // Int. J. Eng. Res. Applications. 2018. V. 8. № 12. P. 42.