УДК 541.64:533.15:546.264=31

ПОЛИМЕРНЫЕ МАТЕРИАЛЫ ДЛЯ МЕМБРАННОГО РАЗДЕЛЕНИЯ СМЕСЕЙ ГАЗОВ, СОДЕРЖАЩИХ СО₂

© 2021 г. А. Ю. Алентьев^{а,*}, В. Е. Рыжих^а, Н. А. Белов^а

^а Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук 119991 Москва, Ленинский пр., 29, Россия *e-mail: alentiev@ips.ac.ru

Поступила в редакцию 15.03.2021 г. После доработки 13.04.2021 г. Принята к публикации 17.05.2021 г.

В последние десятилетия необходимость выделения диоксида углерода из промышленных газовых потоков, его хранения и утилизации обоснована, как правило, экологическими проблемами. Однако выделение СО₂ из промышленных смесей газов является самостоятельной важной проблемой химической технологии. Обзор посвящен рассмотрению и анализу полимерных материалов для мембранного разделения смесей, содержащих СО₂, которые представляют интерес для очистки природного и биогаза, дымовых газов и очистки водорода из продуктов конверсии метана и водяного газа. В этой связи актуальными для мембранного разделения являются пары газов CO₂/CH₄, CO₂/N₂ и CO₂/H₂. Перспективные полимерные материалы должны обладать выгодным сочетанием проницаемости СО₂ и селективности по интересующей паре газов, т.е. должны располагаться вблизи верхней границы диаграммы Робсона или превосходить ее. Для разделения первых двух пар газов хорошие газоразделительные параметры имеют жесткоцепные высокопроницаемые стеклообразные полимеры различных классов (полимеры с внутренней микропористостью, полиимиды, полинорборнены, полибензоксазолы и т.д.). Для разделения пары CO₂/N₂ наиболее выгодные свойства показывают полимеры, имеющие функциональные группы, способные к специфическим взаимодействиям с диоксидом углерода (алифатические простые полиэфиры и полиамиды с их олигомерными фрагментами, полинорборнены с группами Si-O-C, Si-O-Si, полимеры с ионогенными группами и т.д.). Для очистки водорода от диоксида углерода при высоких температурах перспективны термостойкие барьерные полимеры на основе полибензимидазолов.

DOI: 10.31857/S2308114721020011

В многочисленных работах и обзорах последних 20 лет [1-5] необходимость выделения СО₂ из промышленных газовых потоков обосновывается экологической проблемой глобального потепления вследствие увеличения концентрации СО₂ как парникового газа в атмосфере. И хотя, несомненно, есть свидетельства роста среднегодовой температуры на планете, рост концентрации СО₂ в атмосфере может быть как следствием, так и причиной климатических изменений. Тем не менее, вне всякой связи с экологической проблематикой выделение СО2 из промышленных смесей газов, содержащих CO₂, является важнейшей проблемой химической технологии. Диоксил углерода используется не только в пищевой промышленности, но и в химической для производства соды и других карбонатов, в металлургии; также он применяется в качестве сверхкритического растворителя [6], мономера для синтетических полимеров [7], "сухого льда", пропеллента и т.д. [8].

Основные промышленные источники СО₂ – дымовые газы и газовые потоки, получаемые в процессах обогащения природного газа или биогаза (табл. 1). При современных тенденциях перехода на водородную энергетику основным источником водорода является синтез-газ из природного газа, или из угля. Монооксид углерода по реакции водяного газа также переводят в смесь водорода и СО₂, поэтому получаемый из синтезгаза водород обязательно содержит значительное количество СО₂ (табл. 1). Традиционный способ выделения диоксида углерода из промышленных газовых потоков – абсорбционный (аминная очистка) [1, 5], сопровождающийся дополнительным этапом регенерации абсорбента. Применение абсорбшионных методов с использованием мембранных контакторов менее энергозатратно [9-12], однако также включает этап регенерации абсорбента. Реже применяют столь же энергоемкие криогенный или адсорбционный методы. В связи с этим переход на безреагентные и энер-

Разделяемая смесь	Пара газов	Содержание основных компонентов	СО ₂ в пермеате или ретентате	Мембраны, применяемые в промышленности
Природный газ	CO ₂ /CH ₄	CO ₂ : 20–40% CH ₄ : 60–80%	Пермеат	Ацетат целлюлозы (NATCO, UOP Honeywell, Grace);
Биогаз		CO ₂ : 30–40% CH ₄ : 45–70% N ₂ : 5–15%		Полиимид (AirLiquide); Поли- сульфон (AirProducts); Перфторполимеры (MTR)
Дымовые газы	CO ₂ /N ₂	$CO_2: 8-15\%$ $N_2: 60-70\%$ $H_2O: 15-25\%$	Пермеат	Пилотные установки: Полиимиды; FSC; PEEKWC
Продукты реакции водяного газа	CO_2/H_2	CO ₂ : 40–45% H ₂ : 50–60%	Пермеат или ретентат*	Пилотные: Pd-мембраны для выделения H ₂

Таблица 1. Содержание основных компонентов в промышленных смесях газов, содержащих CO₂, и мембраны, применяемые для их разделения

*Зависит от природы материала, механизма проницаемости, обусловленной диффузией или растворимостью. FSC – мембраны с фиксированным носителем (fixed-site carrier); PEEKWC – полиэфирэфиркетон с кардовой группировкой.

госберегающие модульные мембранные технологии при разделении таких смесей газов весьма перспективен.

Мембранные технологии являются разделением в потоке. Входящий (сырьевой) поток разделяется на поток, проходящий через мембрану (пермеат), обогащенный быстропроникающим компонентом, и поток над мембраной (ретентат), обогащенный медленнопроникающим компонентом.

Как правило, процессы мембранного газоразделения реализуются с использованием полимерных мембран с тонким (от нескольких десятков до нескольких сотен нанометров) непористым селективным слоем [13–15]. Массоперенос в таких мембранах осуществляется по механизму растворение—диффузия. Стационарный поток газа через мембрану прямо пропорционален перепаду давления и обратно пропорционален толщине мембраны:

$$J = P\Delta p/l,\tag{1}$$

где Δp — перепад давлениям на мембране, l — толщина мембраны (селективного слоя), P — коэффициент проницаемости газа для материала селективного слоя мембраны. В литературных источниках P обычно приводится во внесистемных единицах Баррер (1 Баррер = 10^{-10} см³(н.у.) см/см² с (см рт. ст.)). Для харак-

теристики мембран с неизвестной толщиной селективного слоя используют величину проницаемости P/l в единицах GPU (1 GPU = 10^{-6} см³(н.у.)/см² с (см рт. ст.)).

Величина *P* определяется коэффициентами диффузии *D* и растворимости *S* газа в материале

$$P = DS \tag{2}$$

В литературе по мембранной тематике, как правило, D выражается в см²/с, а S – в см³(н.у.)/см³ см рт. ст. либо в см³(н.у.)/см³ атм.

Фактором, характеризующим эффективность газоразделительного процесса, является селективность разделения газов *i* и *j*:

$$\alpha_{ii} = P_i / P_i \tag{3}$$

С учетом выражения (2) селективность α_{ij} является произведением селективности диффузии $\alpha_{ij}^{D} = D_i/D_j$ на селективность растворимости $\alpha_{ij}^{S} = S_i/S_j$.

Величины P, D и S, селективности проницаемости. диффузии и растворимости считаются параметрами системы полимер-газ при постоянной температуре и небольших перепадах давления [13–15]. Чем больше Р для быстропроникающего компонента і и больше селективность разделения для конкретной пары газов α_{ij} , тем выгоднее данный полимер применять в качестве мембранного материала. Однако с увеличением проницаемости в целом селективность падает. В связи с этим эффективность полимера для разделения той или иной пары газов определяется положением на соответствующих диаграммах проницаемость-селективность (диаграммах Робсона) по отношению к так называемым верхним границам распределения [16-20]. В промышленных смесях газов СО₂ является, как правило, быстропрони-

Таблица 2. Эффективные кинетические диаметры и эффективные параметры Леннард-Джонса по работе [21]

Газ	$d_{ m op},$ Å	$(\epsilon/k)_{igg}, K$
H ₂	2.14	62.2
N_2	3.04	83.0
CO ₂	3.02	213.4
CH ₄	3.18	154.7

кающим компонентом, поэтому считается, что для обеспечения эффективного потока CO_2 через мембрану величина $P(CO_2)$ в современных мембранных полимерных материалах должна быть не менее 100 Баррер, а для мембран 100 GPU [3, 5].

Для промышленных смесей газов, содержащих CO₂, можно выделить основные пары газов, перспективных для мембранного газоразделения: CO₂/CH₄, CO₂/N₂, и CO₂/H₂. В каждом из трех случаев необходимо применять различные полимерные материалы, селективность которых определяется разными соображениями.

Коэффициент диффузии газа в полимерном материале по известным из литературы линейным корреляциям зависит от квадрата эффективного кинетического диаметра *d* [21]:

$$\lg D = K_1 - K_2 d^2 \tag{4}$$

Коэффициент растворимости зависит от параметра Леннард-Джонса для газов є/k [21]:

$$\lg S = K_3 + K_4(\varepsilon/k) \tag{5}$$

Эффективные кинетические диаметры и эффективные параметры Леннард-Джонса для указанных выше газов представлены в табл. 2.

Поскольку для пары газов СО₂/СН₄, диаметр СН₄ существенно выше, коэффициент диффузии CO₂ больше, чем CH₄. Из сравнения данных по параметрам Леннарда-Джонса видно, что и коэффициент растворимости СО₂ больше, чем СН₄. Следовательно, и проницаемость СО₂ значительно превышает таковую для CH₄, а селективность разделения пары газов СО₂/СН₄ определяется селективностью и диффузии, и растворимости. С точки зрения мембранных процессов пермеат должен обогащаться CO_2 , а CH_4 должен концентрироваться в ретентате. Данный процесс наиболее удобный по технологическому оформлению. Естественно, что это и наиболее удобная для мембранного разделения пара газов, и с 80-х годов XX века стали применяться мембраны на основе ацетата целлюлозы (Separex) для выделения CO₂ из природного газа, несмотря на то, что величина Р(СО₂) для ацетата целлюлозы не превышает 6 Баррер [22]. Дешевизна полимера в

данном случае была решающим аргументом. Природный газ, как правило, содержит 20-40% СО2 (табл. 1), однако в некоторых случаях вплоть до 70% [23]. Высокое содержание СО₂, конечно, требует многоступенчатого разделения смеси, что не способствует удешевлению процесса. В биогазе также содержится 30-40% СО₂, поэтому для его выделения используют те же мембранные материалы, что и при очистке природного газа (табл. 1). Азот, как и метан, накапливается в ретентате, однако разделение N₂/CH₄ является нетривиальной залачей в связи с низкой селективностью полимерных материалов в отношении данной пары газов. Тем не менее, примесь азота (до 15%) не мешает использовать выделенный метан для сжигания [24]. Следовательно, для пары газов СО₂/СН₄ поиск новых мембранных материалов определенно связан с материалами с повышенной проницаемостью по СО₂ и относительно высокой селективностью разделения CO₂/CH₄. Некоторые примеры таких материалов представлены в табл. 3. Применение сверхвысокопроницаемых стеклообразных полиацетиленов (ПТМСП), высокопроницаемых полиимидов, или высокоэластических полимеров (ПДМС) для разделения этой пары газов невыгодно, поскольку высокая проницаемость СО₂ [25-27], сопровождается низкой селективностью диффузии СО₂/СН₄ (табл. 3). Для разделения данной пары газов перспективно применение перфторированных [17, 28–30] и поверхностно фторированных [31, 32] аморфных полимеров, которые также привлекательны в связи с тем, что селективность N_2/CH_4 для них выше 1.5–2.0. Однако их использование крайне ограничено вследствие узкого ассортимента и высокой стоимости. Верхние границы на диаграмме Робсона (рис. 1) для этой пары газов определяют, как правило, жесткоцепные высокопроницаемые стеклообразные полимеры [33] из групп лестничных полимеров с внутренней микропористостью (PIM) [5, 17, 19, 34–39] и термически преобразованных (TR) полимеров [5, 17, 20, 34, 40, 41]. Для ряда лестничных полимеров наблюдается достаточно высокая селективность диффузии (табл. 3) [42], что при повышенной растворимости СО2 приводит и к высокой селективности разделения. Преимущества и недостатки указанных полимеров будут обсуждаться ниже.

Для пары газов CO_2/N_2 , основной при разделении дымовых газов (табл. 1), кинетические диаметры газов практически одинаковы (табл. 2), поэтому селективность диффузии невелика и мало отличается от единицы [43]. Поскольку параметр Леннард-Джонса у CO_2 существенно больше, чем у N_2 , селективность разделения этой пары газов в основном определяется селективностью растворимости. Следовательно, для данной пары газов

1 11		*				,		
Полимер	T_g , °C	<i>P</i> (CO ₂),		α		$D(\mathrm{CO}_2) \times 10^8$,	α^D	Лите-
полимер		Баррер	CO ₂ /CH ₄	CO ₂ /N ₂	CO ₂ /H ₂	см ² /с	CO ₂ /CH ₄	ратура
ПДМС	-120	3250	3.4/17	12/24	5/25	1100	0.9/2.1	25
ПТМСП	>280	27000	1.8/7.5	4.1/ 11	1.8/52	3300	0.9/ 1.2	26
6FDA-pTMPD	420	678	20/ 30	18/ 41	1.2/15	21	5/16	27
AF2400	250	2600	6/18	4.7/ 26	1.1/ 24	580	2.1/2.9	28
PIM-1	>350	4970	12/14	18/ 21	2.9/ 29	81	2.8/ 8.1	36
TPIM-1	>350	1550	31/ 22	29/31	0.6/20	24	8.4/15	37
PIM-EA-TB	>350	7140	10/12	14/ 18	0.9/33	87	2.4/ 7.8	38
SBF-PIM	>350	13900	13/ 9.6	18/ 14	2.2/41	180	4.3/5.3	39
TR	>450	1624-5569	22-46/1 4-22	13–26/ 20–30	0.91-1.5/ 20-30	165-260	7.0–16/ 4.4–5.6	40, 41
PEBAX 1074	-40	111	11/60	_	—	93.8	1.1/7.5	44
PEBAX 1657	-40	106	20/61	77/ 78	12.5/ 8.1	61	1.9/ 9.4	45
PEBAX 2533	-65	204	8.1/ 48	26/ 62	5.0/10	167	1.4/5.5	46

Таблица 3. Примеры полимеров различных классов для разделения пар газов CO₂/ CH₄, CO₂/N₂, CO₂/H₂; их температуры стеклования и газоразделительные характеристики (пояснения в тексте)

Примечание. ПТМСП – политриметилсилилпропин; ПДМС – полидиметилсилоксан; 6FDA – 4,4'-(гексафторизопропилиден)дифталевый ангидрид; pTMPD – 2,3,5,6-тетраметилфенилендиамин; AF2400 – поли[4,5-дифтор-2,2-*бис*-(трифторметил)-1,3-диоксол-со-тетрафторэтилен]; PIM-1 – полимер с внутренней микропористостью (полибензодиоксан)

ТРІМ-1 — триптиценовый полимер с внутренней микропористостью

SBF – спиро-*бис*-флуорен; TR – термопреобразованные полимеры; PEBAX 1074 – блок-сополимер полиэфир–полиамид (45% – полиамид 12.55% – полиэтиленоксид); PEBAX 1657 – блок-сополимер полиэфир–полиамид (40% – полиамид нейлон-6, 60% – полиэтиленгликоль); PEBAX 2533 – блок-сополимер полиэфир–полиамид (12% – полиамид 12.84% – политетраметиленоксид).

поиск новых мембранных материалов связан с материалами с повышенной растворимостью СО₂ и проницаемостью, а также с повышенной селективностью разделения. С точки зрения мембранных процессов, пермеат должен обогащаться CO₂, а N₂ концентрироваться в ретентате, что также достаточно удобно для мембранной технологии. В то же время дымовые газы перед применением мембранного разделения необходимо охлаждать, к тому же они обогащены парами воды и окислами серы или азота, что требует дополнительной очистки. В связи с этим необходимость применения дополнительных стадий сдерживает применение мембранного газоразделения для пары газов CO₂/N₂ – на сегодняшний день существуют только пилотные установки. С точки зрения диаграммы Робсона (рис. 2) верхние границы для пары газов CO₂/N₂ весьма условны, поскольку облако точек практически вытянуто вдоль оси проницаемости. Впрочем, верхние границы также определяются теми же группами полимеров, что и в случае пары CO₂/CH₄, т.е. PIM-полимерами [19, 20, 34]. Тем не менее, именно для пары газов СО₂/N₂ в последние годы исследуют материалы с повышенной растворимостью СО₂ на основе блок-сополимеров полиамидов с полиэтиленоксидом (типа РЕВАХ [44-46]), которые также определяют верхнюю границу для пары газов CO₂/N₂ (табл. 3), или других сополимеров и сеток, содержащих алифатические полиэфирные блоки. Среди изучаемых материалов фигурируют полинорборнены с алифатическими эфирными

Рис. 1. Фрагмент диаграммы Робсона для пары газов CO₂/CH₄ с верхними границами 1991 [16] и 2008 [17] гг. Также на диаграмме указана граница 2019 г. из работы [19]. Ромбы — массив полимеров из Базы данных ИНХС РАН [22]; круги — данные из табл. 4; квадраты — данные из табл. 5; треугольники — данные из табл. 6. Цветные рисунки можно посмотреть в электронной версии.

Рис. 2. Фрагмент диаграммы Робсона для пары газов CO₂/N₂ с верхней границей 2008 [17] г. Также на диаграмме указана граница 2019 г. из работы [19]. Ромбы — массив полимеров из Базы данных ИНХС РАН [22]; круги — данные из табл. 4; квадраты — данные из табл. 5; треугольники — данные из табл. 6.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия С том 63 № 2 2021

Рис. 3. Диаграмма Робсона для пары газов H₂/CO₂ с верхними границами 1991 [16] и 2008 [17] гг. Ромбы — массив полимеров из Базы данных ИНХС РАН [22]; круги — данные из табл. 4; квадраты — данные из табл. 5; треугольники — данные из табл. 7.

боковыми группами, также ведется разработка мембран с активным транспортом CO₂. Преимущества и недостатки этих материалов также будут обсуждаться ниже.

Наиболее сложной для мембранного разделения является пара газов H_2/CO_2 (или CO_2/H_2), однако и наиболее важной. поскольку в современных технологиях стоит задача перехода на водородную энергетику, а получаемый из синтез-газа водород обязательно содержит большое количество СО₂ (табл. 1). Несмотря на то, что диаметр молекулы Н₂ мал по сравнению с СО₂ (табл. 2) и коэффициент диффузии Н2 существенно выше, чем у СО₂, растворимость Н₂ в полимерах настолько мала по сравнению с растворимостью CO2, что величины коэффициентов проницаемости Н₂ и СО₂ для многих полимеров сравнимы: большинства полимеров селективность лля Н₂/СО₂ не превышает 2–4, а диаграмма Робсона проходит через линию инверсии селективности $\alpha = 1$ (рис. 3). Это означает, что существует много полимеров, для которых проницаемость СО2 выше, чем для водорода, такие, как высокоэластические полимеры, высокопроницаемые стеклообразные полимеры, например, полиацетилены,

полинорборнены, лестничные PIM-полимеры (табл. 3). Для таких полимеров основной компонент смеси водород оказывается в ретентате, а в пермеате накапливается СО₂, что выгодно с точки зрения технологического процесса. Повышение проницаемости СО₂ по сравнению с водородом, как и в случае пары газов СО₂/N₂, может быть реализовано и с помощью применения сополимеров на основе алифатических эфиров или в мембранах с активным транспортом СО2. Именно поэтому в работах зачастую рассматривают пары газов CO₂/N₂ и CO₂/H₂ совместно, а для пары газов СО₂/H₂ также сформирована диаграмма проницаемость-селективность (рис. 4), для которой проведена особая верхняя граница [13, 47]. Тем не менее, для большинства стеклообразных полимеров селективность Н2/СО2 больше единицы, и для этих материалов основной компонент смеси, водород, оказывается в пермеате, что с точки зрения технологического оформления процесса невыгодно. Тем не менее, для низкопроницаемых термостойких полимеров, например для полибензимидазола [48], с повышением температуры может наблюдаться увеличение селективности

Рис. 4. Фрагмент диаграммы Робсона для пары газов CO₂/H₂. Верхняя граница 2012 г. из работы [47]. Ромбы – массив полимеров из Базы данных ИНХС РАН [22]; круги – данные из табл. 4; квадраты – данные из табл. 5; треугольники – данные из табл. 6.

H₂/CO₂ при резком росте проницаемости водорода.

При анализе перспективности полимеров и полимерных мембран для разделения смесей газов, содержащих СО₂, в табл. 3 и в последующих таблицах наряду с величиной коэффициента проницаемости СО₂, или проницаемости мембраны, даны селективности разделения всех основных пар газов (CO₂/CH₄, CO₂/N₂, и CO₂/H₂, или Н₂/СО₂), а полужирным показаны данные для селективности материала на соответствующей верхней границе диаграмм Робсона 2008 г. [17] (или верхней границе для СО₂/H₂ [47]) при данном уровне проницаемости диоксида углерода. Сравнение селективностей показывает расположение полимера относительно верхней границы. Если в цитируемых работах приведены коэффициенты диффузии СО2, в таблицах указываются соответствующие величины D, селективности диффузии, и полужирным – данные для селективности диффузии на верхней границе диаграммы коэффициент диффузии—селективность диффузии [42, 43] для пары газов CO₂/CH₄. Сравнение селективностей диффузии свидетельствует о возможной упорядоченности упаковки цепей в полимерной матрице [42, 49].

ЖЕСТКОЦЕПНЫЕ ВЫСОКОПРОНИЦАЕМЫЕ СТЕКЛООБРАЗНЫЕ ПОЛИМЕРЫ

Жесткоцепные высокопроницаемые полимеры, формирующие верхние границы диаграммы Робсона 1991 г. [16] и 2008 г. [17] в области высоких коэффициентов проницаемости представлены в основном полиацетиленами [16, 17], перфторированными аморфными тефлонами AF [17, 29, 30] и лестничными PIM-полимерами с внутренней микропористостью [17, 34, 35]. Жесткоцепные высокопроницаемые стеклообразные полимеры [33] из группы термически преобразованных (TR) полимеров [5, 17, 34] также располагаются в области верхней границы и выше, иногда их

2021

Nº 2

Таблица 4. Перспективные жесткоцепные высокопроницаемые полимеры и их газоразделительные характери-
стики для пар газов CO_2/CH_4 , CO_2/N_2 , CO_2/H_2 (пояснения в тексте)

		$P(\mathrm{CO}_2),$		α		$D(CO_2) \times$	α^{D}	Лите-
Полі	имер	Баррер	CO ₂ /CH ₄	CO ₂ /N ₂	CO ₂ /H ₂	$\times 10^{8}, cm^{2}/c$	CO ₂ /CH ₄	ратура
PIM	-Trip	21500- 52800	7.3–15/ 5.8–8.2	14–22/ 9.1–12	1.8–7.8/ 48–65	170–640	1.6–4.8/ 2.8–5.5	20
Trip-ПИ	PMDA TPDA NTDA BCDA	1310-5010	13–19/ 14–24	16–19/2 1– 33	0.82–1.4/ 19–29	_	_	52
	6FDA 12		14–38/ 21–58	15–26/ 30–75	0.61– 1.2/ 8.4–21	14	8.9/ 20	52, 53
ПИ с осно-	6FDA	201	18/ 48	20/ 63	_	_	_	55
ваниями Трегера	SBIDA + + 6FDA	218-5140	8.7–33/ 14–46	13–23/ 20–61	0.73/ 10–30	67	2.5/ 9.0	54-56
	PMDA	4460	11/ 15	15/ 21	_	_	_	54
	MMDA + + FDDA	1120-1200	23–24/ 24–25	22/ 34–35	1.1-1.2/18	16-18	4.6-5.3/ 18-19	57, 58
ПИ с осно Трегера	ованиями а и SBF	4470	12/15	17/ 21	_	58	3.3/ 9.6	54
SBF	-ПИ	4700–6670	12–14/ 13–15	18–21/ 19–21	1.6–2.0/ 29–32	_	_	59
SBF-PIM		8850-22300	6.6–17/ 8.0–11	15—26/ 12—17	2.0–2.9/ 36–48	91-310	2.1-4.8/ 4.0-7.6	60
PIM-подобные сопо- лимеры		1230-5480	18–23/ 14–24	17–28/ 20–34	1.8–4.2/ 1–30	24-120	1.7–6.3/ 6.7–15.2	61–66
Кардовые ПИ		155—217	21–29/ 47–53	17–22/ 61–69	_	—	—	67
Пентиптиц	еновые ПИ	812	_	24/ 39	_	_	_	68
SBIDA	А-ПИ	158-333	23–28/ 40–52	20–29/ 53–68	_	_	_	69
ПИ с псевд	оосновани-	948	24/ 27	24/37	1.3/ 20	—	—	70
ями Тј	регера	1660	17/22	22/ 30	0.82/17	_	_	
Перфтори поли	рованные меры	141-1800	7.5–13/ 21–55	5.6–6.9/ 29–71	1.1/ 8.9	270	2.3/ 4.3	71, 72
Полинор	борнены	140-25900	2.4–10/ 7.6–55	6.5–20/ 12–71	2.1/ 8.9–51	25-29	2.5–2.8/ 14– 15	73–75
		755–937	_	16–37/ 37–40	_	-	_	76
ROMP	CF3	21 300	5.4/ 8.2	9.0/12	2.1/ 24	630	2.0/ 2.8	77
	OMe	2900	11/ 17	19/ 25	2.6/ 48	91	3.5/ 7.6	
CANAL полимеры		157-2520	12–33/ 18–53	16–22/ 26–68	0.56–1.5/ 9.2–23	11-35	3.1–5.9/ 13–23	78, 80
		1340-2210	5.0–5.8/ 19–23	11–12/ 27–32	1.5–1.6/ 19–22	8.5-13	2.1–2.5/ 21–26	79
TR-пол	имеры	108-410	22–28/ 37–61	14—18/ 49—78	0.5-0.6/ 8.1–13	_	_	86–90
		270–655	33–68/ 31–43	20-32/ 42-57	0.33–1.2/ 11–15	—	—	

Таблица 4. Окончание

Примечание. PIM-Trip – группа триптиценовых PIM-подобных полимеров общей структуры

Тгір ПИ — полиимиды с триптиценовыми диаминами; PMDA — пиромеллитовый диангидрид; TPDA — триптиценовый диангидрид; NTDA — 1,4,5,8-нафталинтетракарбоксильный диангидрид; BCDA — бицикло[2.2.2]окт-7-ен-2,3,5,6-тетракарбоксильный диангидрид; SBIDA — спиро-*бис*-индановый диангидрид; MMDA — 5,5'-(мезитилметилен)-*бис*-(4-метилфталевый ангидрид); FDDA — 5,5'-(9H-флуорен-9,9-диил)-*бис*-(4-метилфталевый ангидрид); ROMP-CF3 — метатезисный полинорборнен с лестничной структурой в боковой цепи

выделяют в самостоятельную группу полимеров [17, 33].

Лестничные и частично лестничные аморфные полимеры с жестким изгибом основной цепи (РІМ-полимеры) представляют собой отдельный класс высокопроницаемых полигетероариленов, перспективных для газоразделительных процессов. Первым и наиболее известным из них был PIM-1, синтезированный N.B. МсКеоwn и P.M. Budd в 2004 г. [50]. С 2004 г. было синтезировано и исследовано множество полимеров с жестким изгибом основной цепи [20, 35, 42], как лестничных полимеров, так и полиимидов с теми же фрагментами структуры основной цепи. Подробные обзоры последних достижений в данной области и анализ причин их высокой проницаемости и селективности представлены в работах [5, 20, 34, 35, 42]. Основными особенностями этого класса полимеров является высокая селективность диффузии, что свидетельствует о высокой упорядоченности упаковки цепей [42]. Наибольшей проницаемостью по СО₂ и наилучшим соотношением проницаемость-селективность обладают лестничные полимеры ряда PIM-Trip с триптиценовым жестким фрагментом в основной цепи [19]. Именно эти полимеры (рис. 1 и 2) образуют верхнюю границу 2019 г. на диаграммах Робсона [19], и для них наблюдаются наилучшие селективности диффузии (табл. 4). Данные для полимеров на диаграмме коэффициент диффузии селективность диффузии [42, 43] для СО₂/СН₄ находятся в области верхней границы и даже выше нее, что по данным работы [42] означает высокую степень упорядоченности упаковки цепей. Такие полимеры [38, 42] причисляют к так называемым "органическим молекулярным ситам". Высокоселективные свойства указанных полимеров сохраняются и для смесей газов [51], что позволяет считать эти полимеры перспективными для мембранного разделения смесей CO₂/CH₄ и CO₂/N₂ (табл. 4).

Главный недостаток таких полимеров – их невысокая механическая прочность и нестабильность характеристик во времени из-за быстрого физического старения [19], поэтому были синтезированы и исследованы ПИ с аналогичными

CN

 R_2

Ra

R

структурами в диаминном фрагменте [52, 53]. Все эти ПИ имеют достаточно высокие P(CO₂) (табл. 4). ПИ с жесткими плоскими диангидридами (PMDA. NTDA) и лиангилрилами с жестким изгибом цепи (TPDA, BCDA) [52] на диаграмме Робсона для СО2/СН4 располагаются вблизи верхней границы 2008 (табл. 4). Отметим, что ПИ с диангидридом 6FDA [52, 53], несмотря на достаточно высокие $P(CO_2)$, далеки от верхней границы (CO₂/CH₄) 2008 г. [17], равно как и для пары газов CO₂/N₂ (табл. 4). Для ПИ с диаминами на основе оснований Трегера [54-58] наблюдается аналогичная картина: они также обладают высокой проницаемостью СО2, но недостаточно высокой селективностью для пар газов СО₂/СН₄ (табл. 4), за исключением ПИ с жестким плоским диангидридом PMDA и со спиро-бис-флуореновым (SBF) диангидридом с жестким изгибом цепи [54], а также со специфическими диангидридами с высокой заторможенностью вращения [57, 58]. Как и ПИ с триптиценовыми диаминами, все эти ПИ находятся в удалении от верхней границы диаграммы CO₂/N₂ (табл. 4). Однако ПИ на основе SBF-диангидрида [59] располагаются на верхней границе Робсона 2008 г., а SBF лестничные РІМ-полимеры SBF-РІМ [60] – даже выше верхней границы на диаграммах СО₂/СН₄ и СО₂/N₂ (табл. 4). Кроме того, SBF-PIM характеризуются высокой селективностью диффузии [42] (табл. 4), что приближает их по свойствам к другим органическим молекулярным ситам с высокой упорядоченностью упаковки цепей [42].

В группу высокопроницаемых полимеров с недостаточной селективностью для пар газов CO₂/CH₄ и CO₂/N₂ (табл. 4) попадают сополимеры PIM-1 с различными фрагментами в основной цепи [61-66], ПИ с кардовыми диаминами [67] и с лиаминными фрагментами на основе пентиптицена [68], спиробисиндана [69], с диангидридами на основе псевдооснований Трегера [70]. Новые перфторированные полимеры [71, 72] и высокопроницаемые метатезисные [73, 74] и аддитивные [75, 76] полинорборнены, несмотря на высокую проницаемость СО₂, значительно уступают лестничным полигетероариленам по соотношению проницаемость-селективность (табл. 4). Тем не менее, в последние годы были синтезированы полимеры, сочетающие норборненовые фрагменты (ROMP) с лестничной структурой в боковой цепи [77], и лестничные так называемые. CANAL-полимеры [78-80]. Эти полимеры обладают высокой проницаемостью СО2, однако селективность для пар газов CO₂/CH₄ и CO₂/N₂ (табл. 4) недостаточна для преодоления верхней границы Робсона 2008 г. Ближе всех к верхней границе подходят CF3-замещенные полимеры с лестничными боковыми цепями [77] с высокой селективностью диффузии и, следовательно, с высокой упорядоченностью упаковки цепей.

Термически преобразованные (TR) полимеры представляют собой класс полимеров, перспективных для газоразделения [81] и получающихся по внутримолекулярной термохимической перегруппировке гидроксилсодержащих ПИ в полибензоксазолы, описанной еще в 60-х гг. XX века [82].

С начала 2000-х годов эти материалы активно изучаются различными группами [83], и на диаграммах Робсона 2008 г. [17] они выделены в отдельную группу перспективных полимеров.

Несмотря на то, что термохимическая перегруппировка может идти по нескольким направлениям [84, 85] в зависимости от условий ее проведения, на сегодняшний день очевидно, что в результате этой твердофазной термохимической реакции при 350–450°С, в матрице полимера происходит декарбоксилирование с образованием дополнительного неравновесного свободного объема, что сказывается на резком увеличении проницаемости материала [81, 83]. Как правило, на диаграммах Робсона большинство TR-полимеров находятся вблизи границы 2008 г. [83, 86, 87], а при варьировании условий термоперегруппировки выходят за ее пределы [83, 87] (табл. 4). Увеличение жесткости полимерной матрицы после термохимической реакции, как правило, приводит к ухудшению механической прочности TRполимеров. Одним из вариантов повышения прочности и стабильности TR-полимеров является применение сополимеров с ПИ, содержащими карбоксильные группы и способные к сшивке и к декарбоксилированию при температурах термохимического процесса [88]. Такие сшитые материалы на диаграмме Робсона СО₂/СН₄ располагаются выше верхней границы 2008 г. (табл. 4). Именно из сополимеров и сшитых сополимеров в настоящее время формируют полые волокна для газоразделительных процессов [89, 90]. При этом

на диаграммах Робсона CO₂/N₂ (табл. 4), как и для большинства жесткоцепных полигетероариленов, TR-полимеры далеки от верхней границы 2008 г.

Таким образом, среди жесткоцепных высокопроницаемых стеклообразных полимеров для разделения пары газов CO_2/CH_4 можно рекомендовать как многие лестничные и частично лестничные аморфные полимеры с жестким изгибом основной цепи, ПИ, содержащие соответствующие структурные фрагменты, так и TR-полимеры. Однако для разделения пары газов CO_2/N_2 подходят только так называемые органические молекулярные сита, лестничные, триптиценовые, или спиро-бисфлуореновые полимеры, а также ПИ на основе спиро-*бис*-флуоренового диангидрида.

ПОЛИМЕРЫ СО СПЕЦИФИЧЕСКИМ ВЗАИМОДЕЙСТВИЕМ С СО₂

В последние годы для разделения пары газов CO₂/N₂ особое внимание привлекают полимерные материалы, содержащие функциональные группы, способные специфически взаимодействовать с молекулами диоксида углерода. Так, одним из наиболее известных полимеров этого круга являются термопластичные сополимеры РЕВАХ – блок-сополимеры полиамидов ПА-6 или ПА-12 с полиэтиленоксидом или политетраметиленоксидом [2, 44-46, 91, 92] (табл. 1). Высокая проницаемость диоксида углерода определяется в этих блок-сополимерах высокой растворимостью СО₂ в гибких алифатических полиэфирных блоках вследствие специфических взаимодействий квадрупольной молекулы СО₂ с диполями полиэфирных звеньев [2, 91, 92]. Жесткие полиамидные блоки задают механическую прочность полимеров. Поскольку температура стеклования полиэфирных блоков в зависимости от длины блока меняется от -53 до -78°C [92], диполи в простых эфирных группах при комнатной температуре подвижны и способны к взаимодействию с квадруполями СО2, а также с другими полярными молекулами [91]. Благодаря такому специфическому взаимодействию высокая растворимость СО₂ в полиэфирных блоках или сегментах обеспечивает и высокую проницаемость СО₂ в подобных полимерах. Неполярные молекулы (H₂, N₂, CH₄) не взаимодействуют с диполями эфирных групп, и проницаемость этих газов мало отличается от проницаемости в каучуках [2]. Длина полиэфирных блоков не может быть велика, поскольку линейные алифатические полиэфиры легко кристаллизуются, что приводит к снижению газопроницаемости [92]. В связи с этим усилия в данной области в последние годы сосредоточены в основном на создании сшитых алифатических полиэфиров [2, 93, 94] и сетчатых сополимеров алифатических полиэфиров с другими каучуками, например с ПНБ и ПДМС [95, 96], а также сверхразветвленных [97], гребнеобразных [98], звездообразных структур [99] и сетчатых сополимеров с полиэтиленгликоль- и диэтиленгликольметакрилатами [100], в том числе и с трехзамещенными азотсодержащими группами [101, 102] (табл. 5). Интересно, что при увеличении давления для сшитых алифатических полиэфиров характерен рост как проницаемости, так и селективности [93], а добавление в качестве наполнителей краун-эфиров [94] способствует повышению проницаемости и сохранению селективности. Внедрение в сополимерную сетку азотсодержащих групп не вызывает значительного роста селективности, хотя авторы [91, 101, 102] и утверждают, что это должно приводить к усилению специфических взаимодействий, и даже к облегченному транспорту СО₂ в таких системах [91].

Определяющая роль подвижности диполей эфирных групп в достижении специфического взаимодействия с СО2 косвенно доказывается результатами исследований стеклообразных полимеров с боковыми группами, также содержащими алифатические эфирные группы. При введении алифатических эфирных групп в жесткоцепные аддитивные ПНБ и ПТЦН [76, 103-106] (табл. 5), в целом также увеличивается растворимость СО₂. Однако эффекты для жесткоцепных полимеров не столь однозначны, как для гибкоцепных. Например, последовательное замещение боковой группы Si(OEt)₃ в АПНБ-Si(OEt)₃ на Si(OC₂H₄OMe)₃ [76, 103] отражается в постепенном увеличении растворимости СО₂ и росте селективности СО2/N2 при снижении температуры стеклования от 338 до 307°С. Авторы объясняют такой эффект специфическими взаимодействиями эфирных групп с СО₂, однако только гомополимер АПНБ-Si(OC₂H₄OMe)₃ приближается к верхней границе на диаграмме Робсона CO₂/N₂. При этом для алкоксисилилзамещенных ПТЦН [104] увеличение длины алкильного заместителя при связи Si-O приводит только к уменьшению селективности полимера, несмотря на заметное снижение температуры стеклования. Тем не менее, наиболее простой АПТЦН-Si(OMe)₃ оказывается на верхней границе диаграммы Робсона CO₂/N₂. Введение же через промежуточный гибкий CH₂-мостик группы OMe [105] или этоксигруппы [106] в боковую цепь аддитивного ПНБ, несмотря на высокую селективность СО₂/N₂, вызывает снижение проницаемости даже по сравнению с АПНБ-Еt [105, 106]. По-видимому, в таких полимерах диполи эфирных групп в отсутствие их высокой подвижности взаимодействуют друг с

	, 4,		D	,		D	
Полимер	<i>P</i> (CO ₂),		α^{P}		$D(\mathrm{CO}_2) \times 10^8$,	α^{D}	Лите-
полимер	Баррер	CO ₂ /CH ₄	CO ₂ /N ₂	CO_2/H_2	см ² /с	CO ₂ /CH ₄	ратура
ПЭГ сшитый (3 атм)	380	—	53/ 50	10/12	_	_	93
ПЭГ сшитый (17 атм)	470	_	65/ 47	13/13	_	_	93
ПЭГ сшитый	600	_	50/ 43	_	_	_	94
ПЭГ/ППГ-ПДМС сшитый	300-600	14-17/32-41	50-60/ 43-55	_	_	_	95
ПЭГ/ППГ-ПДМС–Ад сшитый	340-510	16–17 <u>/34–39</u>	51-52/ 45-52	-	_	_	96
ПОЭМ сверхразветвленный	100	—	42/ 78	_	_	_	97
Поли(ВЭЭМ)-стат. гребне- образный	230-530	-	44–51/ 45–60	-	_	_	98
ПЭГ звездообразный	500-800	—	40–50/ 39–56	_	_	_	99
Сополимер ПЭГМА/ММА/БПМА	111	_	50/77	-	_	_	100
Сополимер ПЭГМА/ДЭАЭМА-ММА	308	-	38/ 54	-	_	_	101
ПЭГ сверхразветвленный (Jeffamine)	160	_	55/68	-	_	—	102
$APNBSi(OC_2H_4OMe)_3$	755	_	37/40	_	350	_	103
PTCNSi(OMe) ₃	2000	15/ 20	36/ 28	5.1/22	-	_	104
PTCNSi(OEt) ₃	1000	6.5/ 26	22/ 36	3.4/17	-	_	104
APNBCH ₂ OMe	180	15/ 50	30/65	2.3/ 9.7	18	2.3/18	105
APNBEO	119	17/58	31/75	1.8/8.4	9.1	3/25	106

Таблица 5. Перспективные полимеры со специфическим взаимодействием с CO₂ и их газоразделительные характеристики для пар газов CO₂/CH₄, CO₂/N₂, CO₂/H₂ (пояснения в тексте)

Примечание. ПЭГ – полиэтиленгликоль; ППГ – полипропиленгликоль; Ад – адамантан; ПОЭМ – поли(оксиэтилен метакрилат); поли(ВЭЭМ)-стат. – поли(винилоксиэтоксиэтил метакрилат) статистический; ПЭГМА – поли(этиленгликоль метил эфир метакрилат); ММА – метилметакрилат; БПМА – 4-бензоилфенил метакрилат; ДЭАЭМА – 2-(диэтиламино) этил метакрилат; APNB-Si(OC2H4OMe)₃ – аддитивный полинорборнен с Si(OC2H4OMe)₃ заместителем; PTCN-Si(OEt)₃ – политрициклононен с Si(OEt)₃ заместителем; APNBCH₂OMe – аддитивный полинорборнен с Si(OEt)₃ заместителем; APNBCH₂OMe – Addition с Si(OEt)₃ заместителем; A

другом, что не способствует специфическому взаимодействию с CO₂.

Более ярко выражено специфическое взаимодействие CO_2 с мембранами, функционирующими по механизму активного транспорта [107]. Эти материалы активно исследуются в последние годы для разделения смесей газов CO_2/N_2 и CO_2/H_2 . Принцип активного (облегченного) транспорта состоит в том, что для CO_2 повышается вклад растворимости за счет специфического взаимодействия с материалом мембраны.

Суммарный коэффициент проницаемости *Р* при низких давлениях определяется как сумма вкладов за счет пассивного и активного транспорта:

$$P = P_D + P_C = k_D D_D + D_C k_C, \tag{6}$$

где P_D – коэффициент проницаемости для процесса пассивного транспорта, k_D – коэффициент растворимости для "популяции" Генри молекул сорбата в полимерной матрице, D_D – соответствующий этой "популяции" коэффициент диф-фузии пассивного транспорта в матрице, P_C – коэффициент проницаемости для процесса облегченного транспорта, D_C – эффективный коэффициент диффузии для "популяции" специфически взаимодействующих молекул сорбата, *k*_C – коэффициент растворимости для "популяции" специфически взаимодействующих молекул сорбата. Для невзаимодействующих газов, таких как N₂, H₂, величина *P* определяется только первым слагаемым в уравнении (6), тогда как для СО2 специфическое взаимодействие может значительно увеличивать коэффициент проницаемости и, следовательно, существенно повышать селективность разделения смесей газов, содержащих CO₂.

Например, такими взаимодействующими с группами CO₂ являются группы –NH₂, –NH–R, -N-R₂ по аналогии с традиционными процессами аминной очистки [5] и мембранными контакторами [9-12]. В присутствии воды в мембране азотсодержащие группы протонируются, а СО₂ переходит в карбонат- или гидрокарбонат-ион [108], как и в случае аминной очистки. Величина k_{C} в данном случае определяется концентрацией азотсодержащих групп и константой равновесия реакции взаимодействия диоксида углерода с азотсодержащими группами [5, 108]. Представленные в обзорах [5, 108] величины проницаемости и селективности таких мембран достигают очень высоких значений. Например, мембраны из поливиниламина при высокой влажности и рН [109] достигают селективности разделения CO₂/N₂ до 800 при высокой производительности (табл. 6), а жидкие мембраны из поли(амидоамин)-дендримера (ПАМАМ) достигают селективности СО₂/N₂ 19000 [110]. Мембраны из ПВС и поли-N-изопропиламина [111] демонстрируют селективность для $CO_2/H_2 - 300$, а для $CO_2/N_2 - 650$. Более поздние работы [112, 113] не подтверждают столь высоких значений, однако также демонстрируют высокую проницаемость и селективность (табл. 6). Введение в ПДМС сшивок, содержащих иминные и амидоксимные группы, также приводит к высоким [114] сочетаниям проницаемости и селективности для СО₂/N₂. Высокоселективными оказываются мембраны из сополимеров поливиниламина и поли(диаллилдиметиламмоний хлорида) (ПДАДМАХ) [115] (табл. 6). Весьма эффективными для СО₂/H₂ показали себя мембраны из ПДАДМАХ, допированные четвертичными аммониевыми основаниями [116, 117] (табл. 6). Существенным недостатком таких мембран является наличие воды в мембране, что требует увлажнения газовых потоков и ограничивает их применение температурами, близкими к комнатной, поэтому их использование в настоящий момент лимитируется экспериментальными установками и рекомендовано для топливных элементов.

В качестве переносчиков CO_2 также рассматриваются ионные жидкости (**ИЖ**) благодаря высокой растворимости в них CO_2 [118, 119] и полимерные ионные жидкости (**ПИЖ**) с азотсодержащими катионами или четвертичными аммониевыми основаниями с различными противоионами [108, 119]. В первом случае, как правило, применяют пористые полимерные мембраны, импрегнированные ионными жидкостями (Supported ionic liquid membranes SILM) [108, 118, 119], или импрегнированные ИЖ поликислоты, например Nafion [108, 118–121] или Nexar [122], а также сетчатые полимеры, наполненные ионными жидкостями [123, 124]. Селективность пары газов CO_2/N_2 в таких мембранах может достигать 60 и в некоторых случаях превышать 100 [124]. И проницаемость, и селективность таких мембран также существенно зависит от влажности.

Количественно параметры пассивного и облегченного транспорта можно рассчитать на основе различных моделей [107, 125], в том числе оценить экспериментально с помощью выделения вклада пассивного транспорта для невзаимодействующих газов [120, 126] при малых давлениях. Однако, как правило, эти эксперименты и расчеты не проводятся, и исследователи ограничиваются параметрами проницаемости мембран или мембранных материалов и селективностей пар газов, содержащих CO₂.

Главным недостатком рассматриваемых мембран является наличие жидкой фазы, хоть и с высокой вязкостью и низким давлением паров. Такие мембраны могут длительно работать при перепадах давления не более 1 атм, что существенно ограничивает область их применения.

Для преодоления этого недостатка фрагменты ионных жидкостей ковалентно включаются в полимерную цепь, формируя полимерные ионные жидкости [108, 119]. Как правило, катионные фрагменты ИЖ включаются как в боковые группы полимера [127–134], так и в основную цепь, сформированную пирролидиниевыми [127, 128, 135, 136], триазольными [133], бензимидазольными [134, 137] или имидазолиевыми [138] группами. Используют также и сшивку полиимидов катионогенными группами [139, 140]. В табл. 6 представлены данные для различных ПИЖ. В остальных случаях измерения проводились для ПИЖ, наполненных ИЖ, и величины Р(СО₂) были много меньше 100. По сравнению с полимерами из табл. 5 особенно высокими значениями селективностями ПИЖ не отличаются.

Не менее интересны и попытки использования катионселективных мембран, например, перфторированных сульфокислот Aquivion [139, 140] для разделения смесей, содержащих СО₂. Несмотря на невысокие факторы разделения, то, что эти мембраны являются промышленными, дает некое преимущество перед другими вариантами. Перфторированные анионы в таких полимерах. как Nafion или Aquivion, мало отличаются от анионов ИЖ по своей рК. В связи с этим применение влажных перфторированных полисульфокислот [141], в том числе и наполненных ИЖ [120–122] для задач выделения CO₂ из смесей при температурах, близких к комнатным, малых перепадах давления и небольших потоках весьма перспективно. Наконец, полиионные комплексы [142], несмотря на более скромные значения проницаемости (табл. 6), чем в остальных случаях, оказываются привлекательными для разделения таких

Nº 2

2021

Маубрана	<i>P</i> (CO ₂),		α^{P}		$D(CO_2) \times$	α^{D}	Питература
меморана	Баррер	CO ₂ /CH ₄	CO_2/N_2	CO_2/H_2	× 10 ⁸ , см ² /с	CO ₂ /CH ₄	литература
ПВАм, рН 12	3200*	—	800	_	—	_	109
ПВАм (102°С)	1780	_	75/ 29	52/ 21	_	_	112
ПМВАм (102°С)	6800	_	350/19	162/33	_	_	112
ПВАм-пиперазин	1100	_	290/35	_	_	_	113
АО-ПДМСПНБ	6800	_	19/ 19	_	_	_	114
Сополимер ПДАДМААц/ПВАм	1840*	—	160	—	—	—	115
ПДАДМАХ+ NR_4^+	110*	—	—	103	—	_	116
ПДАДМА Φ +NR $_4^+$	140*	_	_	108	—	-	117
[C ₂ PEG-Im-PI][Br]	480	37/ 34	27/ 46	_	16	4.8/ 19	129
[C ₈ PEG-Im-PI][Br]	108	48/ 61	35/ 78	_	5.1	4.1/ 34	129
P[VBMP][Tf ₂ N]	1330*	—	17	_	_	—	131
P[VBHEDMA][Tf ₂ N]	110*	—	42	_	—	—	131
NPTAm-3	435	_	12/ 48	_	_	_	133
NPTAm-1	265	_	18/57	_	_	_	133
PI-2-TFSI	90	38 <u>/65</u>	22/ 83	_	37	2.7/12	134
LP(1:2)	170		36/ 66	_	52		138
[DBX-PI][Br]	469	34 <u>/35</u>	23/ 47	_	16	4.7/19	139
[BIX-PI][Br]	200	33 <u>/48</u>	18/ 63	_	8.6	5.9/ 26	139
[xPI-PDMS-0.10][Br]	799	36/ 28	16/ 39	_	—	—	140
[xPI-PDMS-0.15][Br]	377	36/ 38	18/ 50	_	—	—	140
Aquivion	400	30/ 37	_	_	_	_	141
PBE/PEDOT-PSS10%	68	—	77 /91	_	—	—	142
PBE/PEDOT 5%	52	—	51/ 100	_	—	—	142

Таблица 6. Перспективные полимерные мембраны, содержащие ионогенные группы и их газоразделительные характеристики для пар газов CO₂/CH₄, CO₂/N₂, CO₂/H₂ (пояснения в тексте)

* GPU

Примечание. ПВАм – поливиниламин; ПМВАм – поли-N-метилвиниламин; АО–ПДМСПНБ – сетчатый сополимер полидиметилсилоксана и метатезисного полинорборнена, содержащий амидоксимные группы; ПДАДМААц – поли(диаллилдиметиламмоний ацетат); ПДАДМАФ – поли(диаллилдиметиламмоний фторид); NR $_{+}^{+}$ – четвертичные аммониевые основания; [C₂PEG-Im-PI][Br] и [C₈PEG-Im-PI][Br] – бромированные полиимиды, функционализированные ПЭГ-имидазолом, с различными длинами цепи этиленгликоля (C2, C8); P[VBMP][Tf₂N] – поли(винилбензилметиламмоний)-*бис*-(трифторметилсульфонил)имид; P[VBHEDMA][Tf₂N] – поли(винилбензил(2-гидроксиэтил)диметиламмоний)-*бис*-(трифторметилсульфонил)имид; NPTAm-1 – мембраны из поли(1,2,3-триазол)ов и новолака; PI-2-TFSI – полиимид, модифицированный *бис*-(трифторметансульфонил)имидом; LP(1:2) – композитная мембрана с соотношением полимерная ионная жидкость (низкомолекулярная) : сшивающий агент (полиоксиэтилен *бис*-(глицидиловый эфир)) 1 : 2; [DBX-PI][Br] – полиимид 6FDA-pTMPD, сшитый 1,4-диазобицикло[2.2.2]октаном; [BIX-PI][Br] – полиимид 6FDA-pTMPD, сшитый 1,4-ди(1H-имидазол-1-ил)бутан(*бис*-имидазолом); [xPI-PDMS-0.10][Br] и [xPI-PDMS-0.15][Br] – бромированные сополимеры 6FDA-pTMPD и полидиметилсилоксана, сшитые N,N'-диметилпиперазином; PBE/PEDOT-PSS10% – комплекс поли(2-[3-(2H-бензотриазол-2-ил)-4-гидроксифенил]этилметакрилат)-поли(оксиэтиленметакрилат) + поли(3,4-этилендиокситиофен)полистиролсульфонат; PBE/PEDOT 5% – комплекс поли(2-[3-(2H-бензотриазол-2-ил)-4-гидроксифенил]этилметакрилат)-поли(оксиэтиленметакрилат) + поли(3,4-этилендиокситиофен).

	T, ℃	Р, Баррер		α^{P}			$D(CO_2) \times$	α^D	Лите-
Полимер		CO ₂	H ₂	CO ₂ /CH ₄	CO ₂ /N ₂	H ₂ /CO ₂	× 10°, см²/с	CO ₂ /CH ₄	ратура
ПБИ	150	0.4	4	_	_	10/21	_	_	48
	200	0.5	10	_	_	20/14	_	_	48
ПБИ (H ₃ PO ₄ , 0.82%)	150	0.2	2	—	—	90/ 29	—	—	144
ПБИ (H ₃ PO ₄ , 0.25%)	150	0.2	8	_	_	40/16	_	_	144
ТФХ-ПБИ-6Н	150	0.93	21	_	_	23/10	_	_	145
	200	1.7	39	_	_	23/ 7.9	_	_	145
ТВВ-ПБИ (0.1%)	150	1.16	20.8	_	_	18/ 10	_	_	146
ТВВ-ПБИ (2%)	150	0.40	9.6	_	_	24/14	_	_	146
ПБИ	35	0.16	0.6	89/716	33/ 740	3.8/ 48	0.003	2.8/1600	147
ПБИ- <i>t</i> -Ви	35	1.91	10.7	38/ 280	32/ 314	5.6/14	0.65	38/ 99	147
ПБИ-HFA	35	2.91	12.2	42/ 238	22/ 271	4.2/13	1.1	27/ 76	147

Таблица 7. Перспективные высокотемпературные полимеры и мембраны, их газоразделительные характеристики для пар газов CO₂/CH₄, CO₂/N₂, H₂/CO₂ (пояснения в тексте)

Примечание. ПБИ – полибензимидазол; ПБИ (H₃PO₄, 0.82%) и ПБИ (H₃PO₄, 0.25%) – полибензимидазолы, допированные фосфорной кислотой, с разным содержанием допанта; ТФХ-ПБИ-6Н – ПБИ, сшитый терефталоил хлоридом; ТВВ-ПБИ (0.1%) и ТВВ-ПБИ (2%) – полибензимидазолы, сшитые 1,3,5-*трис*-(бромометил)бензолом, с разной концентрацией сшивающего агента; *t*-Bu – 5-*трет*-бутил изофталевая кислота; НFA – 4,4'-(гексафторизопропилиден)-*бис*-(бензойная кислота).

смесей именно в комбинации свойств, сочетающих заряженные и CO₂-селективные фрагменты, т.е. сочетающие свойства ИЖ и полиионных мембран. Возможно, в этом направлении в ближайшие годы появятся новые интересные результаты.

Таким образом, для разделения смесей СО₂/N₂ и СО₂/H₂ наилучшими характеристиками обладают полимеры с азотсодержащими протонирующимися группами или четвертичными аммониевыми основаниями (табл. 6). Однако необходимость увлажнения этих мембран и работа во влажной атмосфере при низких температурах и давлениях резко ограничивает область их применения. Полимерные ионные жидкости и сетчатые (табл. 6) и блочные полимеры на основе алифатических полиэфиров (табл. 5) сравнимы по эффективности разделения смеси CO₂/N₂, однако ПИЖ значительно опережают высокоэластические полиэфиры при разделении смеси CO_2/CH_4 (табл. 6). Развитие мембран из полиионных комплексов, в свою очередь может значительно обогатить ассортимент полимеров для разделения смесей газов, содержащих СО₂.

ВЫСОКОТЕМПЕРАТУРНЫЕ ПОЛИМЕРЫ ДЛЯ ВЫДЕЛЕНИЯ СО₂ ИЗ ВОДОРОДСОДЕРЖАЩИХ СМЕСЕЙ

Выделение диоксида углерода из высокотемпературных газовых потоков при производстве водорода является одной из важнейших задач развивающейся водородной энергетики. Чтобы применять для этой цели полимерные мембраны, необходимо охлаждать газовый поток до температур, при которых указанные полимеры устойчиво функционируют. Следовательно, использование термостойких полимеров в данном случае оправдано. Так, для выделения водорода из водородсодержащих смесей газов, содержащих СО₂, в диффузионном режиме при высоких температурах могут применяться такие полимеры, как полибензимидазол (ПБИ) – один из наиболее термостабильных полимеров [48, 143, 144], и его модификации [145, 146]. Тогда селективность разделения H₂/CO₂ должна быть много больше единицы, и водород в результате мембранного разделения лолжен концентрироваться в пермеате, поэтому проницаемость водорода должна быть существенна. При комнатной температуре такие полимеры являются барьерными [48, 143, 147], *P*(H₂) составляет от 0.09 [48, 143] до 0.6 Баррер [147]. Однако при повышении температуры коэффициент проницаемости водорода для ПБИ быстро возрастает, достигая вполне приемлемых значений (до 20 Баррер для чистого H_2 и до 14 Баррер для смеси H₂/CO₂) при 250°С [48]. При этом селективность H₂/CO₂ достигает максимума 20 при 200°С (табл. 7), а селективность CO₂/CH₄ при 250°С составляет 33 [48]. Учитывая хорошую термостойкость ПБИ, есть возможность использования ПБИ мембран для выделения водорода из смесей газов, в том числе и содержащих СО₂, при высоких температурах, что соответствует требо-

Nº 2

2021

ваниям современного состояния водородной энергетики.

Дальнейшее улучшение разделительных характеристик ПБИ-мембран проведено в работе [144] путем насыщения ПБИ фосфорной кислотой за счет образования водородных связей с NH-группами ПБИ. При этом наблюдали повышение селективности выше 100 при 150°С (для смеси H₂/CO₂ состава 50 : 50) при незначительном уменьшении потока водорода.

Перспективны для таких процессов и сшитые термостойкие ПБИ [145, 146], в которых проницаемость водорода существенно выше (табл. 7). Подобные работы проводятся и для других ПБИ [147], причем при низких температурах эти материалы оказываются перспективнее ПБИ, однако при повышенных температурах на данный момент не имеется надежных данных. По-видимому, в этой области имеются серьезные перспективы для развития.

Таким образом, для мембранного разделения смесей газов, содержащих СО₂, в последние годы синтезировано и исследовано множество перспективных полимерных материалов. При разделении природного газа и биогаза (СО₂/СН₄) новые полимерные материалы, такие как жестколестничные полигетероарилены цепные С высокой проницаемостью и селективностью, несмотря на их уникальные свойства, пока не способны конкурировать с традиционными полимерами из-за высокой стоимости и нестабильности свойств во времени. Однако эти же материалы демонстрируют и высокую разделительную способность для смеси CO₂/N₂ (дымовые газы), поэтому дальнейшие разработки в данной области чрезвычайно перспективны. Для пар газов CO₂/N₂ и СО₂/Н₂ перспективен и ряд материалов со специфическим взаимодействием с СО₂ на основе полимеров с азотсодержащими группами и полимерных ионных жидкостей. В связи с этим дальнейшие исследования также перспективны, особенно для полиионных комплексов, данных для которых пока крайне мало. Наконец, очень важным направлением является поиск новых термостойких полимеров для высокотемпературного выделения СО₂ из водородсодержащих смесей.

Работа выполнена в рамках Государственного задания ИНХС РАН.

СПИСОК ЛИТЕРАТУРЫ

- Bredesen R., Kumakiri I., Peters T. // Membrane Operations / Ed. by E. Drioli, L. Giorno. Weinheim: Wiley, 2009. Ch. 9. P. 195.
- Han S.H., Lee Y.M. // Membrane Engineering for the Treatment of Gases / Ed. by E. Drioli, G. Barbieri. Cambridge: RSC Publishing, 2011. V. 1. Ch. 4. P. 84.

- 3. *Du N., Park H.B., Dal-Cin M.M., Guiver M.D.* // Energy Environ. Sci. 2012. V. 5. P. 7306.
- Rezakazemi M., Ebadi Amooghin A., Montazer-Rahmati M.M., Ismail A.F., Matsuura T. // Prog. Polym. Sci. 2014. V. 39. P. 817.
- Wang S., Li X., Wu H., Tian Z., Xin Q., He G., Peng D., Chen S., Yin Y., Jiang Z., Guiver M.D. // Energy Environ. Sci. 2016. V. 9. P. 1863.
- Alekseev E.S., Alentiev A.Yu., Belova A.S., Bogdan V.I., Bogdan T.V., Bystrova A.V., Gafarova E.R., Golubeva E.N., Grebenik E.A., Gromov O.I., Davankov V.A., Zlotin S.G., Kiselev M.G., Koklin A.E., Kononevich Yu.N., Lazhko A.E., Lunin V.V., Lyubimov S.E., Martyanov O.N., Mishanin I.I., Muzafarov A.M., Nesterov N.S., Nikolaev A.Yu., Oparin R.D., Parenago O.O., Parenago O.P., Pokusaeva Ya.A., Ronova I.A., Solovieva A.B., Temnikov M.N., Timashev P.S., Turova O.V., Filatova E.V., Philippov A.A., Chibiryaev A.M., Shalygin A.S. // Russ. Chem. Rev. 2020. V. 89. № 12. P. 1337.
- Xu Y., Lin L., Xiao M., Wang S., Smith A.T., Sun L., Meng Y. // Prog. Polym. Sci. 2018. V. 80. P. 163.
- Hepburn C., Adlen E., Beddington J., Carter E.A., Fuss S., Mac Dowell N., Minx J.C., Smith P., Williams C.K. // Nature. 2019. V. 575. P. 87.
- 9. *Bazhenov S.D., Lyubimova E.S.* // Petroleum Chem. 2016. V. 56. P. 889.
- 10. Kostyanaya M.I., Novitskii E.G., Bazhenov S.D. // Key Eng. Mater. 2020. V. 869. P. 321.
- Trusov A., Legkov S., van den Broeke L.J.P., Goetheer E., Khotimsky V., Volkov A. // J. Membr. Sci. 2011. V. 383. P. 241.
- Елисеев А.А., Петухов Д.И., Поярков А.А., Елисеев А.А., Комкова М.А., Подголин С.К., Лукашин А.В. Пат. 2672452С1 Россия. 2018.
- Baker R.W., Low B.T. // Macromolecules. 2014. V. 47. № 20. P. 6999.
- Matteucci S., Yampolskii Yu., Freeman B.D., Pinnau I. Materials Science of Membranes for Gas and Vapor Separation / Ed. by Yu. Yampolskii, I. Pinnau, B.D. Freeman. Chichester: Wiley, 2006. Ch. 1. P. 1.
- Ismail A.F., Khulbe K.C., Matsuura T. // Gas Separation Membranes. Polymeric and Inorganic. Heidelberg; New York; Dordrecht; London: Springer Int. Publ. Switzerland, 2015.
- 16. Robeson L. // J. Membr. Sci. 1991. V. 62. № 2. P. 165.
- 17. *Robeson L.* // J. Membr. Sci. 2008. V. 320. № 1–2. P. 390.
- Swaidan R., Ghanem B., Pinnau I. // ACS Macro Lett. 2015. V. 4. P. 947.
- Comesana-Gandara B., Chen J., Bezzu C.G., Carta M., Rose I., Ferrari M.-C., Esposito E., Fuoco A., Jansen J.C., McKeown N.B. // Energy Environ. Sci. 2019. V. 12. P. 2733.
- Lee W.H., Seong J.G., Hu X., Lee Y.M. // J. Polym. Sci. 2020. V. 58. P. 2450.
- 21. *Тепляков В.В.* // Журн. Всесоюз. хим. о-ва им. Д.И. Менделеева. 1987. Т. 22. № 6. С. 693.
- 22. База данных "Газоразделительные параметры стеклообразных полимеров". Информрегистр РФ, 1998.

- 23. Wind J.D., Paul D.R., Koros W.J. // J. Membr. Sci. 2004. V. 228. P. 227.
- 24. *Rasi S.* Academic dissertation "Biogas Composition and Upgrading to Biomethane". Jyväskylä: University of Jyväskylä. 2009.
- 25. Robb W.L. // Ann. NY Acad. Sci. 1968. V. 146. P. 119.
- Merkel T.C., Bondar V., Nagai K., Freeman B.D. // J. Polym. Sci., Polym. Phys. 2000. V. 38. P. 273.
- 27. *Lin W.H., Chung T.-S.* // J. Membr. Sci. 2001. V. 186. P. 183.
- Alentiev A.Yu., Yampolskii Yu.P., Shantarovich V.P., Nemser S.M., Plate N.A. // J. Membr. Sci. 1997. V. 126. P. 123.
- Merkel T.C., Pinnau I., Prabhakar R., Freeman B.D. // Materials Science of Membranes for Gas and Vapor Separation / Ed. by Yu. Yampolskii, I. Pinnau, B.D. Freeman. Chichester: Wiley, 2006. Ch. 9. P. 251.
- Yampolskii Yu., Belov N., Alentiev A. // J. Membr. Sci. 2020. V. 598. P. 117779.
- Yampolskii Yu.P., Belov N.A., Alentiev A.Yu. // Russ. Chem. Revs. 2019. V. 88. № 4. P. 387.
- Belov N.A., Blinov I.A., Suvorov A.V., Nikiforov R.Yu., Chirkov S.V., Alentiev A.Yu., Kambur M.P., Kostina Yu.V., Levin I.S., Shapagin A.V., Yampolskii Yu.P. // Membranes and Membrane Technologies. 2021. V. 3. № 2. P. 114.
- Robeson L.M., Dose M.E., Freeman B.D., Paul D.R. // J. Membr. Sci. 2017. V. 525. P. 18.
- 34. Kim S., Lee Y.M. // Prog. Polym. Sci. 2015. V. 43 P. 1.
- 35. Low Z.-X., Budd P.M., McKeown N.B., Patterson D.A. // Chem. Revs. 2018. V. 118. № 12. P. 5871.
- Bernardo P., Bazzarelli F., Tasselli F., Clarizia G., Mason C.R., Maynard-Atem L., Budd P.M., Lanč M., Pilnáček K., Vopička O., Friess K., Fritsch D., Yampolskii Yu.P., Shantarovich V., Jansen J.C. // Polymer. 2017. V. 113. P. 283.
- Ghanem B.S., Swaidan R., Ma X., Litwiller E., Pinnau I. // Adv. Mater. 2014. V. 26. № 39. P. 6696.
- Carta M., Malpass-Evans R., Croad M., Rogan Y., Jansen J.C., Bernardo P., Bazzarelli F., McKeown N.B. // Science. 2013. V. 339. P. 303.
- Bezzu C.G., Carta M., Tonkins A., Jansen J.C., Bernardo P., Bazzarelli F., McKeown N.B. // Adv. Mater. 2012. V. 24. P. 5930.
- 40. *Kim S., Jo H.J., Lee Y.M.* // J. Membr. Sci. 2013. V. 441. P. 1.
- Han S.H., Lee J.E., Lee K.-J., Park H.B., Lee Y.M. // J. Membr. Sci. 2010. V. 357. P. 143.
- 42. *Alent'ev A.Yu., Ryzhikh V.E., Belov N.A.* // Polymer Science C. 2020. V. 62. № 2. P. 238.
- Alentiev A., Yampolskii Yu. // Ind. Eng. Chem. Res. 2013. V. 52. № 26. P. 8864.
- 44. Azizia N., Mohammadia T., Behbahani R.M. // Chem. Eng. Res. Des. 2017. V. 117. P. 177.
- Rabiee H., Soltanieh M., Mousavi S.A., Ghadimi A. // J. Membr. Sci. 2014. V. 469. P. 43.
- Tocci E., Gugliuzza A., De Lorenzo L., Macchione M., De Luca G., Drioli E. // J. Membr. Sci. 2008. V. 323. P. 316.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия С

- 47. *Merkel T.C., Zhou M., Baker R.W.* // J. Membr. Sci. 2012. V. 389. P. 441.
- 48. Pesiri D.R., Jorgensen B., Dye R.C. // J. Membr. Sci. 2003. V. 218. P. 11.
- Alentiev A.Yu., Belov N.A., Chirkov S.V., Yampolskii Yu.P. // J. Membr. Sci. 2018. V. 547. P. 99.
- Budd P.M., Ghanem B.S., Makhseed S., McKeown N.B., Msayib K.J., Tattershall C.E. // Chem. Commun. 2004. № 2. P. 230.
- Stanovsky P., Karaszova M., Petrusova Z., Monteleone M., Jansen J.C., Comesaña-Gándara B., McKeown N.B., Izak P. // J. Membr. Sci. 2021. V. 618. P. 118694.
- 52. Ghanem B.S., Alghunaimi F., Wang Y., Genduso G., Pinnau I. // ACS Omega. 2018. V. 3. № 9. P. 11874.
- Alghunaimi F., Ghanem B., Alaslai N., Swaidan R., Litwiller E., Pinnau I. // J. Membr. Sci. 2015. V. 490. P. 321.
- Lee M., Bezzu C.G., Mariolino C., Bernardo P., Clarizia G., Jansen J.C., McKeown N.B. // Macromolecules. 2016. V. 49. № 11. P. 4147.
- Seong J.G., Zhuang Y., Kim S., Do Y.S., Lee W.H., Guiver M.D., Lee Y.M. // J. Membr. Sci. 2015. V. 480. P. 104.
- Zhuang Y., Seong J.G., Do Y.S., Lee W.H., Lee M.J., Guiver M.D., Lee Y.M. // J. Membr. Sci. 2016. V. 504. P. 55.
- Hu X., Lee W.H., Bae J.Y., Zhao J., Kim J.S., Wang Z., Yan J., Lee Y.M. // J. Membr. Sci. 2020. V. 615. 118533.
- Hu X., Lee W.H., Zhao J., Bae J.Y., Kim J.S., Wang Z., Yan J., Zhuang Y., Lee Y.M. // J. Membr. Sci. 2020. V. 610. 118255.
- Ma X., Ghanem B., Salines O., Litwiller E., Pinnau I. // ACS Macro Lett. 2015. V. 4. P. 231.
- Bezzu C.G., Carta M., Ferrari M.-C., Jansen J.C., Monteleone M., Esposito E., Fuoco A., Hart K., Liyana-Arachchi T.P., Colina C.M., McKeown N.B. // J. Mater. Chem. A. 2018. V. 6. P. 10507.
- 61. *Hossain I., Husna A., Kim D., Kim T.-H.* // Membr. J. 2020. V. 30. № 6. P. 420.
- 62. *Hossain I., Al Munsur A.Z., Kim T.-H.* // Membranes. 2019. V. 9. P. 113.
- 63. *Han X., Zhang J., Yue C., Pang J., Zhang H., Jiang Z. //* J. Ind. Eng. Chem. 2020. V. 91. P. 102.
- 64. Shrimant B., Kharul U.K., Wadgaonkar P.P. // React. Funct. Polym. 2018. V. 133. P. 153.
- 65. Yuan K., Liu C., Zhang S., Jiang L., Liu C., Yu G., Wang J., Jian X. // J. Membr. Sci. 2017. V. 541. P. 403.
- Hossain I., Nam S.Y., Rizzuto C., Barbieri G., Tocci E., Kim T.-H. // J. Membr. Sci. 2019. V. 574. P. 270.
- 67. Bermejo L.A., Alvarez C., Maya E.M., García C., de la Campa J.G., Lozano A.E. // eXPRESS Polym. Lett. 2018 V. 12. № 5. P. 479.
- 68. Shamsabadi A.A., Seidi F., Nozari M., Soroush M. // ChemSusChem. 2018. V. 11. № 2. P. 472.
- Shrestha B.B., Wakimoto K., Wang Z., Isfahani A.P., Suma T., Ghalei B., Sivaniah E. // RSC Advances. 2018. V. 8. № 12. P. 6326.
- Ma X., Abdulhamid M.A., Pinnau I. // Macromolecules. 2017. V. 50. P. 5850.

том 63 № 2 2021

- Belov N., Nizhegorodova Yu., Zharov A., Konovalova I., Shantarovich V., Yampolskii Yu. // J. Membr. Sci. 2015. V. 495. P. 431.
- Belov N., Nikiforov R., Polunin E., Pogodina Yu., Zavarzin I., Shantarovich V., Yampolskii Yu. // J. Membr. Sci. 2018. V. 565. P. 112.
- 73. Belov N.A., Gringo'lts M.L., Morontsev A.A., Starannikova L.E., Yampol'skii Yu.P., Finkelshtein E.Sh. // Polymer Science B. 2017. V. 59. № 5. P. 560.
- Morontsev A.A., Zhigarev V.A., Nikiforov R.Yu., Belov N.A., Gringolts M.L., Finkelshtein E.U., Yampolskii Yu.P. // Eur. Polym. J. 2018. V. 99. P. 340.
- Chapala P.P., Bermeshev M.V., Starannikova L.E., Belov N.A., Ryzhikh V.E., Shantarovich V.P., Lakhtin V.G., Gavrilova N.N., Yampolskii Yu.P., Finkelshtein Eu.Sh. // Macromolecules. 2015. V. 48. P. 8055.
- Maroon C.R., Townsend J., Gmernicki K.R., Harrigan D.J., Sundell B.J., Lawrence III J.A., Mahurin S.M., Vogiatzis K.D., Long B.K. // Macromolecules. 2019. V. 52. № 4. P. 1589.
- 77. He Y., Benedetti F.M., Lin S., Liu C., Zhao Y., Ye H.Z., Van Voorhis T., De Angelis M.G., Swager T.M., Smith Z.P. // Adv. Mater. 2019. V. 31. 1807871.
- Abdulhamid M.A., Lai H.W.H., Wang Y., Jin Z., Teo Y.C., Ma X., Pinnau I., Xia Y. // Chem. Mater. 2019. V. 31. P. 1767.
- 79. Lai H.W.H., Benedetti F.M., Jin Z., Teo Y.C., Wu A.X., De Angelis M.G., Smith Z.P., Xia N. // Macromolecules. 2019. V. 52. № 16. P. 6294.
- Ma X., Lai H.W.H, Wang Y., Alhazmi A., Xia Y., Pinnau I. // ACS Macro Lett. 2020. V. 9. P. 680.
- Park H.B., Jung C.H., Lee Y.M, Hill A.J., Pas S.J., Mudie S.T., Van Wagner E., Freeman B.D., Cookson D.J. // Science. 2007. Vol. 318. № 5848. P. 254.
- Кардаш И.Е., Праведников А.Н. // Высокомолек. соед. Б. 1967. Т. 9. № 12. С. 873.
- 83. Kim S., Lee Y.M. // Prog. Polym. Sci. 2015. V. 43. P. 1.
- Kostina J., Rusakova O., Bondarenko G., Alentiev A., Meleshko T., Kukarkina N., Yakimanskii A., Yampolskii Yu. // Ind. Eng. Chem. Res. 2013. V. 52. № 31. P. 10476.
- Kostina J., Bondarenko G., Gringolts M., Rodionov A., Rusakova O., Alentiev A., Bogdanova Y., Gerasimov V. // Polym. Int. 2013. V. 62. № 11. P. 1566.
- Smith Z.P., Hernandez G., Gleason K.L., Anand A., Doherty C.M., Konstas K., Alvarez C., Hill A.J., Lozano A.E., Paul D.R., Freeman B.D. // J. Membr. Sci. 2015. V. 493. P. 766.
- Luo S., Liu J., Lin H., Kazanowska B.A., Hunckler M.D., Roeder R.K., Guo R. // J. Mater. Chem. A. 2016. V. 4. P. 17050.
- Calle M., Jo H.J., Doherty C.M., Hill A.J., Lee Y.M. // Macromolecules. 2015. V. 48. P. 2603.
- Woo K.T., Dong G., Lee J., Kim L.S., Do Y.S., Lee W.H., Lee H.S., Lee Y.M. // J. Membr. Sci. 2016. V. 510. P. 472.
- Lee J.H., Lee J., Jo H.J., Seong J.G., Kim J.S., Lee W.H., Moon J., Lee D., Oh W.J., Yeo J., Lee Y.M. // J. Membr. Sci. 2017. V. 539. P. 412.
- 91. Nguyen Q.T., Sublet J., Langevin D., Chappey C., Marais S., Valleton J.-M., Poncin-Epaillard F. // Membrane

Gas Separation / Ed. by Yu. Yampolskii, B. Freeman. Weinheim: Wiley, 2010. Ch. 13. P. 255.

- Car A., Yave W., Peinemann K.-V., Stropnik C. // Membrane Gas Separation / Ed. by Yu. Yampolskii, B. Freeman. Weinheim: Wiley, 2010. Ch. 12. P. 227.
- 93. *Kline G.K., Weidman J.R., Zhang Q., Guo R.* // J. Membr. Sci. 2017. V. 544. P. 25.
- 94. *Huang L., Liu J., Lin H.* // J. Membr. Sci. 2020. V. 610. 118253.
- 95. Hossain I., Kim D., Al Munsur A.Z., Roh J.M., Park H.B., Kim T.-H. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 24. P. 27286.
- 96. Kim. D., Hossain I., Kim Y., Choi O., Kim T.-H. // Polymers. 2020. V. 12. № 8. P. 1674.
- 97. Taniguchi I., Kinugasa K., Egashira S., Higa M. // J. Membr. Sci. 2016. V. 502. P. 124.
- 98. Sakaguchi T., Yamazaki S., Hashimoto T. // RSC Adv. 2017. V. 7. P. 13879.
- 99. Zhao H., Ding X., Yang P., Li L., Li X., Zhang Y. // J. Membr. Sci. 2015. V. 489. P. 258.
- 100. Park C.-Y., Chang B.-J., Kim J.-H., Lee Y. M. // J. Membr. Sci. 2019. V. 587. 117167.
- 101. Dong L., Wang Y., Chen M., Shi D., Li X., Zhang C., Wang H. // RSC Adv. 2016. V. 6. P. 59946.
- 102. Deng J., Dai Z., Yan J., Sandru M., Sandru E., Spontk R.J., Deng L. // J. Membr. Sci. 2019. V. 570– 571. P. 455.
- 103. Maroon C.R., Townsend J., Higgins M.A., Harrigan D.J., Sundell B.J., Lawrence J.A., O'Brien J.T., O'Neal D., Vogiatzis K.D., Long B.K. // J. Membr. Sci. 2020. V. 595. 117532.
- 104. Alentiev D.A., Egorova E.S., Bermeshev M.V., Starannikova L.E., Topchiy M.A., Asachenko A.F., Gribanov P.S., Nechaev M.S., Yampolskii Yu.P., Finkelshtein E.Sh. // J. Mater. Chem. A. 2018. V. 6. P. 19393.
- 105. Alentiev D.A., Zarezin D.P., Rudakova M.A., Nikiforov R.Yu., Belov N.A., Bermeshev M.V. // Polymer Science. 2021. V. 63. № 1. P. 68.
- 106. Wozniak A.I., Bermesheva E.V., Andreyanov F.A., Borisov I.L., Zarezin D.P., Bakhtin D.S., Gavrilova N.N., Ilyasov I.R., Nechaev M.S., Asachenko A.F., Topchiy M.A., Volkov A.V., Finkelshtein E.Sh., Ren X.-K., Bermeshev M.V. // React. Funct. Polym. 2020. V. 149. P. 104513.
- 107. Noble R.D., Koval C.A. // Materials Science of Membranes for Gas and Vapor Separation/Ed. by Yu. Yampolskii, I. Pinnau, B.D. Freeman Chichester: Wiley, 2006. Ch. 17. P. 411.
- 108. Jue M.L., Lively R.P. // React.Funct. Polymers. 2015. V. 86. P. 88.
- 109. Kim T.-J., Vrålstad H., Sandru M., Hägg M.-B. // J. Membr. Sci. 2020. V. 428. P. 218.
- 110. Kovvali A.S., Chen H., Sirkar K.K. // J. Am. Chem. Soc. 2000. V. 122. P. 7594.
- 111. Zhao Y., Ho W.S.W. // Ind. Eng. Chem. Res. 2013. V. 52. P. 8774.
- 112. Tong Z., Ho W.S.W. // J. Membr. Sci. 2017. V. 543. P. 202.
- 113. Chen Y., Ho W.S.W. // J. Membr. Sci. 2016. V. 514. P. 376.

120. Erdni-Goryaev E.M., Alentiev A.Y., Bondarenko G.N., Yampolskii Y.P., Yaroslavtsev A.B., Safronova E.Y. // Petroleum Chem. 2015. V. 53. P. 693

114. Hong T., Chatterjee S., Mahurin S.M., Fan F., Tian Z.,

115. Li P., Wang Z., Liu Y., Zhao S., Wang J., Wang S. //

116. Chen K.K., Salim W., Han Y., Gasda M., Ho W.S.W. //

117. Vakharia V., Salim W., Gasda M., Ho W.S.W. //

118. Martínez-Palou R., Likhanova N.V., Olivares-Xometl O. //

Membrane Technologies. 2014. V. 3. P. 178.

J. Membr. Sci. 2017. V. 530. P. 213.

J. Membr. Sci. 2015. V. 476. P. 243.

J. Membr. Sci. 2020. V. 612. 118484.

J. Membr. Sci. 2017. V. 533. P. 220.

Jiang D., Long B.K., Mays J.W., Sokolov A.P., Saito T. //

- 121. Dai Z., Ansaloni L., Ryan J.J., Spontak R.J., Deng L. // Green Chem. 2018. V. 20. P. 1391.
- 122. Dai Z., Ansaloni L., Ryan J.J., Spontak R.J., Deng L. // J. Membr. Sci. 2019. V. 588. 117193.
- 123. Erdni-Goryaev E.M., Alent'ev A.Yu., Belov N.A., Ponkratov D.O., Shaplov A.S., Lozinskaya E.I., Vygodskii Ya.S. // Petroleum Chem. 2012. V. 52. P. 494.
- 124. Dai Z., Ansaloni L., Gin D.L. Noble R.D., Deng L. // J. Membr. Sci. 2017. V. 523. P. 551.
- 125. Kang Y.S., Kim J.H., Won J., Kim H.S. // Materials Science of Membranes for Gas and Vapor Separation / Ed. by Yu. Yampolskii, I. Pinnau, B.D. Freeman. Chichester: Wiley, 2006.
- 126. Алентьев А.Ю. // Бутлеровские сообщения. 2016. T. 48. № 12. C. 60.
- 127. Tomé L.C., Isik M., Freire C.S.R., Mecerreyes D., Marrucho I.M. // J. Membr. Sci. 2015. V. 483. P. 155.
- 128. Tomé L.C., Gouveia A.S.L., Freire C.S.R., Mecerreyes D., Marrucho I.M. // J. Membr. Sci. 2015. V. 486. P. 40.
- 129. Kammakakam I., Nam S., Kim T.-H. // RSC Adv. 2016. V. 6. P. 31083.
- 130. Zhang C., Zhang W., Gao H., Bai Y., Sun Y., Chen Y. // J. Membr. Sci. 2017. V. 528. P. 72.

- 131. Nikolaeva D., Azcune I., Sheridan E., Sandru M., Genua A., Tanczyk M., Jaschik M., Warmuzinski K., Jansen J.C., Vankelecom I.F.J. // J. Mater. Chem. A. 2017. V. 5. P. 19808.
- 132. Nikolaeva D., Azcune I., Tanczyk M., Warmuzinski K., Jaschik M., Sandru M., Dahl P.I., Genua A., Loïs S., Sheridan E., Fuoco A., Vankelecom I.F.J. // J. Membr. Sci. 2018. V. 564. P. 552.
- 133. Ye L., Wan L., Tang J., Li Y., Huang F. // RSC Adv. 2018. V. 8. P. 8552.
- 134. Xu X., Wang J., Dong J., Li H.-B., Zhang Q., Zhao X. // J. Membr. Sci. 2020. V. 602. 117967.
- 135. Teodoro R.M., Tomé L.C., Mantione D., Mecerreyes D., Marrucho I.M. // J. Membr. Sci. 2018. V. 552. P. 341.
- 136. Tomé L.C., Guerreiro D.C., Teodoro R.M., Alves V.D., Marrucho I.M. // J. Membr. Sci. 2018. V. 549. P. 267.
- 137. Shaligram S.V., Wadgaonkar P.P., Khrul U.K. // J. Membr. Sci. 2015. V. 493. P. 403.
- 138. Yin J., Zhang C., Yu Y. Hao T., Wang H., Ding X., Meng J. // J. Membr. Sci. 2020. V. 523. 117405.
- 139. Kammakakam I., Nam S., Kim T.-H. // RSC Adv. 2015. V. 5. P. 69907.
- 140. You H., Hossain I., Kim T.-H. // RSC Adv. 2018. V. 8. P. 1328.
- 141. Olivieri L., Aboukeila H., Baschetti M.G., Pizzi D., Merlo L., Sarti G.C. // J. Membr. Sci. 2017. V. 542. P. 367.
- 142. Lee J.H., Jung J.P., Jang E., Lee K.B., Hwang Y.J., Min B.K., Kim J.H. // J. Membr. Sci. 2016. V. 518. P. 21.
- 143. Park H.B., Lee Y.M. // Advanced Membrane Technology and Applications / Ed. by N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura. Hoboken: Wiley, 2008. Ch. 24. P. 633.
- 144. Zhu L., Swihart M.T., Lin H. // Energy Environ. Sci. 2018. V. 11. P. 94.
- 145. Zhu L., Swihart M.T., Lin H. // J. Mater. Chem. A. 2017. V. 5. P. 19914.
- 146. Naderi A., Tashvigh A.A., Chung T.-S. // J. Membr. Sci. 2019. V. 572. P. 343.
- 147. Kumbharkar S.C., Karadkar P.B., Kharul U.K. // J. Membr. Sci. 2006. V. 286. P. 161.