_ ГИДРОХИМИЯ, ГИДРОБИОЛОГИЯ, ₌ ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ

УЛК 574.524:574.64:550.47

РАСПРЕДЕЛЕНИЕ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ МЕЖДУ КОМПОНЕНТАМИ ЭКОСИСТЕМЫ В ГУБЕ БЕЛОЙ (ОЗЕРО ИМАНДРА, МУРМАНСКАЯ ОБЛАСТЬ)¹

© 2021 г. А. С. Павлова^{а, *}, С. С. Сандимиров^а, Л. П. Кудрявцева^а

^аИнститут проблем промышленной экологии Севера КНЦ РАН, г. Апатиты, 184209 Россия *e-mail: as.pavlova@ksc.ru Поступила в редакцию 08.07.2019 г. После доработки 17.03.2020 г. Принята к публикации 09.06.2020 г.

Рассмотрено влияние крупного горнорудного комплекса АО "Апатит" на водную экосистему оз. Имандра. Приведены гидрохимические данные, характеризующие зону загрязнения, показано распределение и накопление химических элементов между абиотическими и биотическими компонентами экосистемы: вода, донные отложения, сестон, рыба. Приведены доказательства, что субарктическое озеро в результате загрязнения по содержанию биогенных элементов стало соответствовать эвтрофному статусу, возросли концентрации Al, Sr и Mn в 2–3 раза, Cu и Ni — в 4—6 раз по сравнению с их условно "фоновыми" значениями. Дана оценка биогенного и минерального вклада в формирование донных отложений, а также биодоступности и аккумуляции металлов водными организмами.

Ключевые слова: озеро Имандра, донные отложения, сестон, коэффициент загрязнения, коэффициент накопления.

DOI: 10.31857/S0321059621010235

ВВЕДЕНИЕ

Добыча апатит-нефелиновых руд Хибинского щелочного массива приводит к интенсивным процессам выщелачивания химических элементов, содержащихся в этих породах, и к увеличению их поступления в водную среду. Оценить качество среды водных экосистем, а также степень антропогенного влияния можно как по абиотическим параметрам, так и по биотическим с применением биоиндикации. При этом многие химические элементы, входящие в состав загрязняющих веществ, естественным образом включаются в биогеохимические циклы. В поверхностных водах планктонные организмы и рыбы взаимодействуют с растворенными и взвешенными формами микроэлементов через различные процессы: активное биологическое поглощение, адсорбцию-десорбцию, питание зоопланктона, агрегацию частиц, микробиологическое разложение и т.д. Корректная оценка накопления того или иного элемента в организме животных должна быть основана на сравнении его содержания в тканях и на усредненном пищевом субстрате (включая воду).

Цель настоящего исследования — современная характеристика химического состава поверхностных вод, донных отложений (ДО) и изучение особенностей распределения химических элементов, поступающих со стоками горнопромышленного производства, между абиотическими и биотическими компонентами экосистемы губы Белой оз. Имандра.

МАТЕРИАЛЫ И МЕТОДЫ

Имандра — самый крупный водоем в Мурманской области: длина озера — 109 км, средняя ширина — 3.2 км, площадь с островами — 880.5 км², средняя глубина — 13 м, объем воды — 10.9 км³. Площадь территории водосбора (1379 водотока) составляет 12300 км² [12]. Губа Белая расположена в юго-восточной части плеса Большая Имандра, и в настоящее время на ее берегах сформировался ландшафт, представленный серией отстойников — "хвостов" обогащения апатитового сырья (рис. 1). После отсечения части ее акватории дамбой с целью складирования там отходов апатит-нефелиновых обогатительных фабрик (АНОФ) АО "Апатит"

¹ Работа выполнена в рамках темы НИР (№ 0226-2019-0045) и хоздоговора "Оценка современного состояния и самоочищающей способности поверхностных вод в зоне деятельности промышленных объектов АО "Апатит".

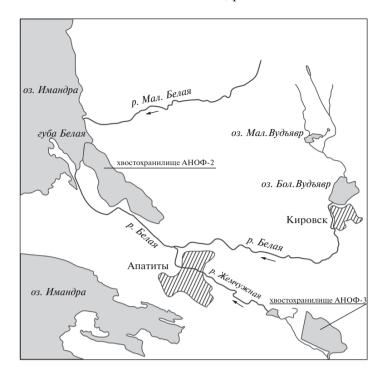


Рис. 1. Картосхема района исследований.

губа представляет собой довольно узкий залив, в который впадает р. Белая. АО "Апатит" с 1930 г. (на протяжении 90 лет) сбрасывает по р. Белой сточные воды (производственные, шахтные, ливневые), содержащие тысячи тонн взвешенных веществ, сульфатов, хлоридов, десятки тонн фосфора, нефтепродуктов и других загрязняющих веществ, применяемых в процессе флотации апатит-нефелиновых руд (ОП-4, талловые масла и др.). Сюда также сбрасываются коммунально-бытовые сточные воды городов Кировска и Апатиты [11].

Отбор проб воды и образцов сестона в губе Белой проводился в летне-осенний период 2011 г. Всего отобрано 20 проб воды и 3 пробы сестона для химического анализа. Пробы воды отбирали с разных горизонтов батометром Рутнера. ДО отобраны в августе 2012 г. пробоотборником открытого гравитационного типа "Skogheim" [18]. ДО делили на слои высотой 1 см. Отбор проб для определения видового состава фитопланктона проводился по общепринятым методикам гидробиологического мониторинга [15]. Сестон отбирался с помощью планктонной сети Апштейна методом траления за лодкой по водоему в толше воды на глубине ~3 м в течение 1-3 ч, чтобы собрать необходимую для химического анализа массу образца 30-50 г в сыром весе. По конструкции планктонная сеть близка к классической зоопланктонной сети Апштейна с планктонным стаканом, диаметром 400 мм, длиной 1000 мм и с размерами пор 29 мкм.

Отлов сига обыкновенного (*Coregonus lavaretus L.*) проводился в 2012 г. с использованием стандартного набора ставных сетей длиной 25 м и высотой 1.5 м с размерами ячеи 10, 16, 20, 31, 36, 40, 45 мм из нейлонового монофиламента с диаметром нити 0.15 мм для сетей с малой ячеей и 0.17 мм для сетей с большой ячеей.

Аналитические методы исследования вод, включая химический анализ компонентов и их первичную подготовку, проводились по стандартным сертифицированным методикам измерений. Анализ воды включал в себя определение рН, щелочности, ионного состава (Na $^+$, K $^+$, Ca $^{2+}$, Mg $^{2+}$, Cl $^-$, SO $_4^{2-}$) и биогенных компонентов (NH $_4^+$, Si, NO $_3^-$, PO $_4^{3-}$). Катионы Na $^+$, K $^+$, Ca $^{2+}$, Mg $^{2+}$ определялись на атомно-абсорбционном спектрофотометре "Perkin-Elmer360" в режиме пламенной атомизации. Анионы Cl $^-$, SO $_4^{2-}$, NO $_3^-$ определялись методом жидкостной хроматографии "Waters HPLS" с кондуктометрическим детектором "Waters 432". Si, PO $_4^{3-}$, P $_{06\text{III}}$, NO $_3^-$, N $_{06\text{III}}$ и NH $_4^+$ определялись фотометрическим методом.

Концентрации металлов (Al, Fe, Mn, Sr, Cu, Ni, Zn, Co, Cr, Cd) в воде, ДО, сестоне и рыбе определяли атомно-абсорбционным методом с атомизацией в графитовой печи на приборе "Aanalyst 800", а также с использованием атомно-абсорбционного спектрофотометра "Perkin-Elmer 360" в режиме пламенной атомизации. Со-

держание ртути определяли методом атомно-абсорбционной спектроскопии холодного пара на приборе "FIMS-100 Perkin-Elmer".

По методике И.В. Родюшкина [14] определялись формы металлов Al, Fe, Mn, Sr и Cu: взвешенные и растворимые (лабильные формы — истинные ионы, гидратированные ионы и ионы в составе неустойчивых комплексов, нелабильные — устойчивые комплексные соединения металлов).

Пробы ДО также высушивались при 105° С, далее для определения общих концентраций металлов навеску образца (0.4 г) разлагали в 4 мл $HNO_{3конц}$ в автоклаве с тефлоновым вкладышем при 140° С в течение 4 ч. В пробах сестона и ДО также определяли зольность [4].

Первичная подготовка проб сестона и рыбы проводилась методом разложения высушенных при 105° С образцов в смеси кислот $HNO_{3\kappa ohil}$ и $HCl_{\kappa ohil}$ в микроволновой системе "Speedwave" MWS-3".

Для контроля качества измерений элементов в воде использовались государственные стандартные образцы (ГСО). Для внутреннего контроля качества процедуры пробоподготовки и качества измерений донных отложений и планктонных образцов общей массой 30—50 г в сыром виде проводилась минерализация сертифицированного образца морского седимента PACS-2 (Canada 08/1997), для контроля ихтиологических проб использовались сертифицированные образцы мышцы акулы DORM-2 (Canada09/1999) и DORM-3 (Canada02/2007) [13].

Для оценки степени загрязнения пресноводного озера химическими веществами использованы коэффициенты загрязнения (C_f) Hákanson для донных отложений [17].В качестве модели минеральной взвеси взяты кларки элементов в земной коре по А.П. Виноградову [3].

Для каждого элемента вклад биогенной доли (Me_{6uo}) определялся в общем виде, согласно выражению [6]:

$$\mathrm{Me}_{\mathrm{био}} = \frac{100 \times \left(\mathrm{C}_{i\mathrm{cectoh}} \left(100 - \mathrm{3}_{\mathrm{дo}} \right) \right)}{\mathrm{C}_{i\mathrm{ДO}} \left(100 - \mathrm{3}_{\mathrm{cectoh}} \right)},$$

где $Me_{\text{био}}$ — долевое участие i-го химического элемента в образце, %; $C_{i\text{сестон}}$, $C_{i\text{ДО}}$ — содержание i-го химического элемента в сестоне и донном осадке; $3_{\text{ДО}}$, $3_{\text{сестон}}$ — зольность ДО и сестона соответственно, %.

Степень накопления химических элементов различными компонентами экосистемы оценивалась с помощью безразмерного коэффициента накопления ($K_{\rm H}$) как отношение концентрации элемента в данном компоненте к его концентрации в воде [2, 6]:

$$K_{\rm H} = \frac{C_{i \text{компонент}}}{C_{i \text{ROMB}}},$$

 $C_{iкомпонент}$ — содержание i-го химического элемента в компоненте среды, мг/кг_{сух в}; $C_{iвода}$ — содержание i-го химического элемента в воде, мг/л. Порядок величин $K_{\rm H}$ рассматривается в шкале логарифмов $\lg K_{\rm H}$.

Исследуемые формы элементов и их соединений определялись расчетным путем с использованием программного комплекса "CHEAQS" [19] по набору гидрохимических параметров пробыволы.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Гидрохимическая характеристика губы Белой оз. Имандра

Вода оз. Имандра в природном ее состоянии относилась к нейтральной с рН от 6.4 до 7.2 [9]. В конце 1990-х—начале 2000-х гг. рН вод в губе Белой менялся от 7.33 до 7.82 в зависимости от гидрологического сезона [10, 11]. В настоящее время рН воды в губе Белой увеличился в сторону подщелачивания — 7.27—8.74. Минерализация составляет в среднем 81 мг/л, что в 3 раза превышает естественное природное значение (20-30 мг/л). Для природных вод Кольского Севера типично преобладание НСО₃ в анионном составе и Са²⁺ в катионном. Поступление промышленных сточных вод в водоем обусловливает не только повышение общего содержания солей, но и изменение соотношения главных ионов в воде губы Белой. В минерализации воды отмечается повышение доли сульфатов, среди катионов – натрия:

$$M$$
 81 мг/л $\frac{\text{SO}_4^{2-}(44) \text{ HCO}_3^{-}(40) \text{ Cl}^{-}(15) \text{NO}_3^{-}(1)}{\text{Na}^{+}(65) \text{ Ca}^{2+}(18) \text{ K}^{+}(9) \text{ Mg}^{2+}(8)}$ рН 7.65.

В доиндустриальный период оз. Имандра характеризовалось как олиготрофный водоем с достаточно низким содержанием соединений азота (NO_3 до 35 мкг/л) и фосфора (PO_4 до 8 мкг/л). Обогащение воды биогенными элементами —

основной критерий процесса эвтрофирования. Развитие промышленности на территории побережья озера способствует интенсивному поступлению в него промышленных, а также хозяйственно-бытовых сточных вод. Концентрация

общего фосфора и азота в осенний период в губе Белой варьировали от 19 до 97 мкгР/л и от 200 до 661 мкгN/л, а среднее содержание фосфатов и нитратов составляло 15 и 347 мкгN/л соответственно. По классификации С.П. Китаева [5], вода в губе Белой в настоящее время соответствует эвтрофному статусу. Концентрация кремния в среднем составляет 0.28 мг/л.

Для оценки степени загрязнения озера металлами в качестве условно-фоновых приняты усредненные концентрации в удаленных от промышленных узлов водоемах Кольского п-ова: Al < 30, Sr < 26, Ni < 1, Cu < 1 мкг/л [11]. В период интенсивного антропогенного воздействия поступление в водоем стоков от АО "Апатит" привело к увеличению в нем содержания тяжелых металлов. В период исследования концентрации Al и Sr превысили "фоновые" значения в среднем в 3 раза. Эти элементы – основные компоненты сточных вод АО "Апатит" – поступают в губу Белую в составе тонкодисперсных взвесей нефелина после фильтрации технологических стоков через дамбу хвостохранилища, а также в результате пыления хвостохранилищ. Наблюдается увеличение содержания Си и Ni в 4-6 раз (табл. 1). Повышение концентраций Cu и Ni связано с их поступлением в водоем в составе сточных вод медно-никелевого комбината, расположенного в северной части оз. Имандра на расстоянии от него ~30 км, а также воздушным путем. Содержание Fe и Mn составляет в среднем 37 и 12 мкг/л соответственно. По данным [11] приняты условнофоновые концентрации Fe (34 мкг/л) и Мп (5.6 мкг/л). Таким образом, наблюдается превышение содержания Мп в 2 раза. Концентрация Zn в губе Белой составляет ~ 1.5 мкг/л, что соответствует ее условно-фоновым значениям (2 мкг/л). Содержание Со, Рb и Сr – в пределах обнаружения концентрации -0.2 мкг/л, а Cd -0.05 мкг/л.

АІ и Fe находились преимущественно во взвешенных формах — от 80 до 90% от общего содержания (табл. 2), которые представлены в виде гидроксидных и оксидных соединений этих металлов, в том числе с сорбированными пленками органических веществ гумусовой природы. Лабильные формы АІ и Fe представлены соединениями с ионами хлоридов и гидроксогруппами. Основная форма Sr — лабильная, в наиболее токсичной ионной форме Sr содержится более чем на 97%. Мп находился преимущественно во взвешенной форме, образованной окислами с соединениями Fe, органическим веществом и сорбированными ионами других металлов.

Распределение Си по формам в результате последовательного разделения согласуется с данными проведенных расчетов и указывает на более высокое содержание растворенных форм — в том числе комплексов с гумусовыми лигандами и неорганическими анионами (хлориды, гидроксогруппы).

Ионы Zn в большей степени находятся в лабильной форме в виде гидроксо-соединений. Лабильная ионная форма Ni^{2+} составляет >90%. Рв представлен как в лабильной, так и в нелабильной форме, >50% его соединений — лабильные гидроксо-соединения.

Химический состав ДО

Попадая в водную экосистему, химические вещества распределяются между компонентами этой водной среды — часть растворяется в воде, образуя ионы металлов, гидратированные ионы и ионы в составе неустойчивых комплексов, часть находится в виде взвесей. Также элементы сорбируются и аккумулируются гидробионтами, а большая их доля удерживается ДО [7–9, 14]. В ДО губы Белой отмечается максимальное содержание большинства металлов среди других компонентов экосистемы (табл. 3).

В верхних слоях ДО губы Белой содержание Al, Fe, Mn, Zn и Co в среднем в 1.5 раза выше, чем в нижних "условно-фоновых" слоях. Аккумуляция металлов Sr, Cu, Pb в слое 0-3 см увеличивается в 2.5-3 раз, а Cd и Hg – до 4 раз по отношению к нижним слоям ДО. Отмечается высокое содержание Ni в верхних слоях – до 10 раз относительно "условно фоновых" концентраций. Это увеличение, как отмечалось выше, связано с их накоплением в результате поступления в составе сточных вод медно-никелевого комбината, а также с аэротехногенным переносом. По рассматриваемым элементам степень загрязнения ДО в губе Белой меняется от умеренной (по Al, Fe, Mn, Zn и Co) до значительной (по Sr, Cu, Cd и Pb). Высокая степень загрязнения отмечена по Ni и Hg ($C_f > 6$).

При оценке вклада биогенной и минеральной форм металлов, поступающих через сестон в ДО озера, установлено, что от 39 до 45% Hg и Cd поставляется через органическое вещество сестона. На долю биогенной составляющей Zn и Pb приходится от 10 до 20%. Для большинства рассматриваемых металлов Мебио не превышает 10%. ДО в губе Белой формируются главным образом за счет минеральных компонентов, однако не исключается и некоторый вклад конституционных (биогенных) элементов скелетных и покровных тканей планктонных организмов. Как отмечено в [6], существует методическая проблема геохимической интерпретации вещественного состава проб планктона с целью отнесения их либо к чисто планктонным образцам, либо к пробам сестона (смесь планктона, органического детрита и минеральной взвеси), для ее решения необходимы более углубленные исследования.

Таблица 1. Гидрохимические показатели губы Белой (здесь и в табл. 3 в числителе — среднее, в знаменателе — минимальное—максимальное значения)

Показатель, размерность	Значение	Показатель, размерность	Значение		
рН	7.65 7.27–8.74	Na, мгл ⁻¹	17.0 16.0–18.0		
Электропроводность, (20°С), мкСмсм $^{-1}$	$\frac{104}{103-135}$	К, мгл ⁻¹	$\frac{3.60}{3.16 - 4.40}$		
Щелочность, мкэквл $^{-1}$	$\frac{454}{391-570}$	Mg, мгл ⁻¹	$\frac{1.01}{0.89 - 1.09}$		
Органическое вещество, мгСл ⁻¹	$\frac{3.4}{2.9-3.8}$	Al, мкг/л	$\frac{91}{46-175}$		
$P_{ m o 6m},$ мкгл $^{-1}$	$\frac{55}{19-97}$	Fe, мкг/л	$\frac{37}{13-62}$		
PO_4^{3-} , мкг $P\pi^{-1}$	$\frac{15}{2-51}$	Мп, мкг/л	$\frac{12}{4.9-31}$		
$N_{ m o 6 m},$ мкгл $^{-1}$	$\frac{406}{200-661}$	Sr, мкг/л	<u>67</u> 55–87		
NO_3^- , мкг $N\pi^{-1}$	$\frac{347}{176-478}$	Си, мкг/л	$\frac{4.1}{3.7-4.6}$		
$\mathrm{NH_4^+},\mathrm{Mkr}\mathrm{N}\pi^{-1}$	$\frac{34}{3-85}$	Ni, мкг/л	$\frac{6.2}{4.9-8.6}$		
HCO_3^- , мгл $^{-1}$	$\frac{26}{24-30}$	Zn, мкг/л	$\frac{1.5}{0.4-4.5}$		
SO_4^{2-} , мгл $^{-1}$	$\frac{22}{20-23}$	Cd, мкг/л	$\frac{0.05}{0.01 - 0.18}$		
Cl^- , мгл $^{-1}$	$\frac{5.6}{5.4-5.7}$	Со, мкг/л	<0.2		
Si, мгл ⁻¹	$\frac{0.28}{0.05 - 0.66}$	Рь, мкг/л	$\frac{0.2}{0.1-0.3}$		
Са, мгл ⁻¹	$\frac{4.21}{3.95 - 4.60}$	Сг, мкг/л	$\frac{0.2}{0.1-0.6}$		

Таксономический и химический состав сестона

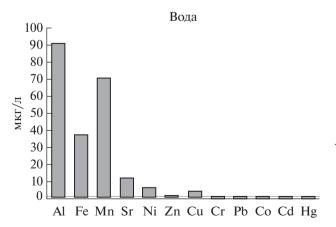
В составе фитопланктонного сообщества — главной части сестона — обнаружено 104 таксона водорослей: *Bacillariophyta* — 53, *Chlorophyta* — 24, *Cyanophyta* — 15, *Chrysophyta* — 4, *Dinophyta* — 3, *Charophyta* — 5. В течение всего вегетационного периода в общей биомассе фитопланктона доминировали диатомовые водоросли. Массовые представители (до 80% численности) фитопланктона — 4 вида диатомовых водорослей: *Aulacoseiraislandicavar. helvetica* О. Müll., *DiatomatenueAg. var. tenue*, *AsterionellaformosaHass. var. formosa*, *FragilariacrotonensisKitt. var. Crotonensis* [1].

Химический анализ вод и сестона губы Белой показал, что содержание металлов варьирует в широких пределах (рис. 2) и распределяется для

сестона в ряду: Al > Fe > Mn > Sr > Ni > Zn > Cu > Cr ≥ Pb > Co > Cd > Hg. Наиболее большое накопление отмечено для элементов Al (в среднем 6838 мкг/ $\Gamma_{\text{сух в}}$) и Fe (в среднем 4302 мкг/ $\Gamma_{\text{сух в}}$). Содержание Mn составляет в среднем 234 мкг/ $\Gamma_{\text{сух в}}$.

Содержание металлов в органах и тканях сига (Coregonuslavaretus L)

Металлы неравномерно накапливаются в органах и тканях рыб. Наиболее высокие содержания AI отмечены в жабрах (до 46.9 мкг/ $\Gamma_{\text{сух в}}$), что, вероятно, связано с адсорбированием взвешенных частиц металла на жаберном аппарате. Си главным образом депонируются в печени рыб. Приоритетным органом — накопителем металлов


Таб	Таблица 2. Формы нахождения металлов в водной толще губы Белой и долевое распределение взвешенной и рас-									
TBO	римой форм ме	талло	в (%)							
			D 1	D 1	D					

			Взвешенная форма			Раств	оримая с	форма	Растворимая, расчетные данные			
Элемент	Горизонт	рН	мкг/л	доля, %	расчет,	нелабильная, мкг/л	лабильная, мкг/л	доля, %	нелабильная, %	лабильная, %	всего, %	
Al	Поверхность	7.54	92.2	81	75	1.6	20.2	19	2.9	22.1	25	
	10 м	7.36	154	88	87	2.9	18.3	12	1	12	13	
Fe	Поверхность	7.54	24	86	85	2.6	1.4	14	8.5	6.5	15	
	10 м	7.36	56.2	91	89	4.3	1.5	9	6.5	4.5	11	
Sr	Поверхность	7.54	11.6	14	10	0.1	70.3	86	5	85	90	
	10 м	7.36	11.6	13	10	0.3	75.1	87	5	85	90	
Mn	Поверхность	7.54	9.8	98	99	0.1	0.1	2	0.3	0.7	1	
	10 м	7.36	30.2	97	99	0.3	0.5	3	0.3	0.7	1	
Cu	Поверхность	7.54	1.6	30	29	1	1.1	70	16	55	71	
	10 м	7.36	1.6	38	42	1.2	1.4	62	13	45	58	

Fe, Ni, Cd, Co, Pb и Hg в организме сига являются почки. В скелетной ткани максимально аккумулируются Sr (в среднем 859 мкг/ $\Gamma_{\rm сух~B}$) и Mn (до 41.5 мкг/ $\Gamma_{\rm сух~B}$). Аккумуляция Sr и Mn в скелете обусловлена биологическими свойствами элементов, оказывает влияние на процессы костеобразования [16]. Сг накапливается в скелетных тканях: составляя в жабрах 0.55, в скелете — 0.44 мкг/ $\Gamma_{\rm сух~B}$.

Элементы Sr, Zn и Hg в большей степени накапливаются в организме сига, что, вероятно, обусловлено биологическими свойствами самих элементов. Так, соединения Sr близки по свойствам к соединениям Са и оказывают влияние на процессы костеобразования, полностью заменяя последний, а также на активность ряда ферментов — каталазы, карбоангидразы и щелочной фосфатазы. Zn активно включается в биологические циклы, являясь металлоферментом, достаточно равномерно распределяется между органами и тканями рыб. Ртуть преимущественно концентрируется в жировой и мышечной тканях до 70% [16].

Расчеты коэффициентов накопления $K_{\rm hd}$ и $K_{\rm ht}$ показали, что биодоступность металлов для водных организмов, в частности для рыб, определяется преимущественно их растворимыми формами миграции в водной массе (табл. 4). Так, например, Sr, для которого основной формой является наиболее токсичная — лабильная, полностью накапливается из воды системами организма рыб, главным образом костными тканями.

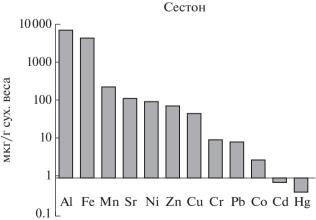


Рис. 2. Среднее содержание металлов в компонентах экосистемы губы Белой.

Таблица 3. Содержание металлов в ДО губы Белой (C_f – коэффициенты загрязнения; $Me_{био}$ – вклад биогенной доли металлов через сестон в ДО, %; кларки элементов в земной коре по [3])

Элемент	ДО, мкг/г	$_{\text{cyx B}}, n = 10$	C_f	Ме _{био} , %	Кларки	
	0-3 см	нижний слой		1410 био, 70		
Зольность, %	87.5	91			≈100	
Al	54803 36393–80145	$\frac{39163}{23000-52551}$	1.4	3	80 500	
Fe	$\frac{24377}{22247 - 26364}$	$\frac{20615}{13770 - 22210}$	1.2	5	46 500	
Mn	2975 1045–6566	$\frac{2016}{909-2846}$	2	2	1000	
Sr	$\frac{2303}{1083 - 5242}$	$\frac{792}{281-1600}$	3.2	2	340	
Cu	$\frac{272}{190-389}$	112 87–126	3.1	4	47	
Ni	855 498–1574	$\frac{82.6}{25.7-165}$	12	3	58	
Zn	125 88–146	91 69.2–113	1.4	13	83	
Cd	$\frac{0.44}{0.21 - 0.73}$	$\frac{0.1}{0.04 - 0.17}$	5.2	45	0.13	
Co	$\frac{28.7}{25.8 - 38.7}$	$\frac{18}{13.2-21.8}$	1.6	3	18	
Pb	12.8 10.1–14.5	$\frac{5.50}{1.82 - 9.92}$	3.5	17	16	
Cr	$\frac{33.5}{24.4 - 41.4}$	$\frac{48}{38.7-58.1}$	0.7	8	83	
Hg	$\frac{0.27}{0.16 - 0.38}$	$\frac{0.06}{0.02 - 0.24}$	8.2	39	0.083	

Высокие коэффициенты накопления Al, Fe и Mn, а также элементов Ni, Cd, Pb и Cr в сестоне губы Белой, вероятно, связаны не только с бионакоплением металлов в живых планктонных организмах, но также с процессами сорбции ионов металлов (в частности, адсорбции тонкодисперсных взвесей, представленных как минеральной, так и органической составляющей, на поверхности клеточных мембран организмов) и их способностью вступать в комплексообразование с органическими (например, продуктами метаболизма фитопланктона) и органоминеральными веществами [7, 16].

Проведенные исследования показали, что химические элементы, поступающие в губу Белую оз. Имандра, интенсивно накапливаются в различных компонентах его экосистемы. Причем, уровни накопления неодинаковы и определяются

специфическими свойствами как самих элементов, так и особенностями систем организмов, в которых происходит их аккумуляция [2, 6].

Для анализа малых выборок и оценки степени зависимости между переменными были применены методы непараметрической статистики. Анализ содержания загрязняющих веществ в воде, ДО и рыбе, а также коэффициента загрязнения показал высокие корреляционные зависимости: коэффициент корреляции Пирсона: $R^2 = 0.645 - 0.973$ (p < 0.002). Пространственное распределение также показало высокую степень зависимости исследуемых параметров при сравнении с гидрохимическими показателям.

Таким образом, антропогенное загрязнение в губе Белой, накладываясь на природные процессы, оказывает существенное влияние на них, сти-

Компонент	Коэффициент	Fe	Al	Sr	Mn	Cu	Ni	Cd	Co	Zn	Pb	Cr	Hg
Сестон	$K_{ m Ht}$	5.2	4.9	3.2	4.3	4	5.2	4.5	4.2	5.2	4.7	4.5	3.8*
Мышцы	$K_{\rm Ht}$	2.6	1.4	2.2	2.2	2.3	2	1.9	2.3	4.4	1.8	2.9	3.5*
	$K_{ m Hd}$	3.5	2.1	2.3	3.5	2.5	_	_	_	_	_	_	_
Печень	$K_{ m Ht}$	3.7	1.8	1.9	2.9	3.7	2.4	3.1	2.7	5.2	2.4	2.8	3.6*
	$K_{ m Hd}$	4.6	2.6	2	4.3	4	_	_	_	_	_	_	_
Почки	$K_{ m Ht}$	4	2.1	2.1	2.7	3.3	2.8	4.1	3.7	5.2	2.8	3.2	3.7*
	$K_{ m Hd}$	4.8	2.7	2.2	4	3.5	_	_	_	_	_	_	_
Жабры	$K_{ m Ht}$	3.7	2.6	3.5	3.4	2.8	2.6	3	2.9	5.4	2.9	3.5	3.4*
	$K_{\rm Hd}$	4.6	3.5	3.5	4.8	2.9	_	_	_	_	_	_	_
Скелет	$K_{ m Ht}$	2.8	1.8	4.1	3.6	2.3	2.7	2.2	2	5.2	2.4	3.4	3.2*
	$K_{\rm Hd}$	3.7	2.4	4.1	4.9	2.7	_	_	_	_	_	_	-

Таблица 4. Коэффициенты накопления в компонентах среды ($K_{\rm ht}$ – относительно общего содержания металла, $K_{\rm hd}$ – относительно растворимой формы металла)

мулируя процессы эвтрофирования, а также обогащения вод токсичными микроэлементами, когда водоем подвергается воздействию прямых промышленных стоков.

выводы

В результате долговременного воздействия горнопромышленного комплекса АО "Апатит" на воду в губе Белой она претерпела техногенную трансформацию. Величина рН воды увеличилась в сторону подщелачивания, изменилось соотношение главных ионов минерализации: в анионном составе преобладающими стали сульфаты, в катионном — натрий. В настоящее время вода по содержанию биогенных элементов имеет эвтрофный статус. Концентрации Al, Sr и Mn увеличились в 2—3 раза, Cu и Ni — в 4—6 раз по сравнению с их условно "фоновыми" значениями в удаленных от промышленных узлов водоемах Кольского п-ова.

Аl, Fe, а также Mn преимущественно находятся во взвешенном состоянии. Сu преобладает в растворимой форме: в комплексах с гумусовыми лигандами и неорганическими анионами — хлориды, гидроксогруппы. Основной формой Sr является лабильная, представленная Sr²⁺ более чем на 97%. В лабильной форме преобладает Zn и Ni.

Степень загрязнения ДО оз. Имандра в районе губы Белой меняется от умеренной (Al, Fe, Mn, Zn и Co) до значительной (Sr, Cu, Cd и Pb). Высокая степень загрязнения отмечена для Ni и Hg ($C_f > 6$). Поступление рассматриваемых металлов в ДО связано, главным образом, с химическими элементами минерального происхождения и менее значимо — с органическим веществом сестона.

Биодоступность металлов водными организмами определяется преимущественно их формой нахождения в водной среде, а также их физикохимическими особенностями.

В организмах рыб выявлены следующие закономерности: приоритетным органом — накопителем тяжелых металлов являются почки; для печени характерна высокая степень обогащения Zn, Hg и Cu; Cd концентрируется в печени и почках; костные ткани обогащены Sr.

СПИСОК ЛИТЕРАТУРЫ

- 1. Вандыш О.И., Денисов Д.Б., Черепанов А.А., Горбачева Т.А., Кашулин Н.А. Особенности планктонных сообществ губы Белой озера Имандра при долговременном воздействии сточных вод горнорудного производства // Тр. КНЦ РАН. Прикладная экология Севера. Апатиты: Изд-во КНЦ РАН, 2013. Вып. 3. С. 35—67.
- 2. Ветров В.А., Кузнецова А.И. Микроэлементы в природных средах региона озера Байкал / Под ред. М.И. Кузьмина. Новосибирск: Изд-во СО РАН, НИЦ ОИГГМ, 1997. 234 с.
- 3. Виноградов А.П. Средние содержания химических элементов в главных типах изверженных горных пород земной коры // Геохимия. 1962. № 7. С. 555—571.
- Даувальтер В.А. Исследование физического и химического состава донных отложений при оценке экологического состояния водоемов: учеб. пособие по дисциплине "Геохимия окружающей среды". Мурманск: Изд-во МГТУ, 2006. 84 с.
- 5. *Китаев С.П.* Основы лимнологии для гидробиологов и ихтиологов / Под ред. *Л.В. Карабановой*. Петрозаводск: Изд-во КарНЦ РАН, 2007. 395 с.

^{*} Коэффициенты накопления рассчитаны относительно предела обнаружения Hg методом холодного пара (≤0.05 мкг/л Hg) (ГОСТ Р 51212-98).

- 6. *Леонова Г.А.* Геохимическая роль планктона континентальных водоемов Сибири в концентрировании и биоседиментации микроэлементов. Новосибирск: Гео, 2012. 314 с.
- 7. *Линник П.Н., Набиванец Б.И.* Формы миграции металлов в пресных поверхностных водах. Л.: Гидрометеоиздат, 1986. 270 с.
- 8. *Малиновский Д.Н.* Особенности миграции загрязняющих веществ в районах разработки апатитонефелиновых месторождений Мурманской области. Дис. ... канд. геогр. наук. Апатиты: КНЦ РАН, 1999, 236 с.
- Материалы к изучению вод Кольского полуострова. Мурманск: Кольская база АН СССР, 1940. С. 45–98.
- 10. *Моисеенко Т.И., Гашкина Н.А.* Формирование химического состава вод Мурманской области в условиях функционирования горнорудных и металлургических производств // Арктика: экология и экономика. 2015. № 4 (20). С. 4—13.
- 11. Моисеенко Т.И., Даувальтер В.А., Лукин А.А., Кудрявцева Л.П., Ильяшук Б.П., Ильяшук Е.А., Сандимиров С.С., Каган Л.Я., Вандыш О.И., Шаров А.Н., Шарова Ю.Н., Королева И.М. Антропогенные модификации экосистемы озера Имандра // Отв. ред. Т.И. Моисеенко. М.: Наука, 2002. 403 с.: ил.
- 12. *Моисеенко Т.И., Яковлев В.А.* Антропогенные преобразования водных экосистем Кольского Севера. Л.: Наука, 1990. 220 с.

- 13. Павлова А.С., Кашулин Н.А., Денисов Д.Б., Терентьев П.М., Кашулина Т.Г., Даувальтер В.А. Распределение химических элементов между компонентами экосистемы арктического озера Большой Вудъявр (Хибины, Мурманская область) // Сибирский экол. журн. 2019. № 3. С. 348—366.
- 14. *Родюшкин И.В.* Формы нахождения металлов в воде озера Имандра // Проблемы химического и биологического мониторинга экологического состояния водных объектов Кольского полуострова. Апатиты: КНЦ РАН, 1995. С. 55–64.
- 15. Руководство по методам гидробиологического анализа поверхностных вод и донных отложений / Под ред. В.А. Абакумова. СПб.: Гидрометеоизат, 1992. 305 с.
- Чистяков Ю.В. Основы бионеорганической химии // М.: Химия, Колос-с, 2007. 539 с.
- 17. *Hakanson L*. An ecological risk index for aquatic pollution control sedimentological approach // Water Res. 1980. V. 17. № 36. P. 663.
- 18. *Skogheim O.K.* Rapport fra Arungenprosjektet. Oslo: NLH, 1979. № 2. 7 p.
- 19. Verweij W. CHemical Equilibria in AQuatic Systems (CHEAQS) Next program. 2014. [Электронный ресурс]. URL: http://www.cheaqs.eu/index.html (дата обращения: 20.05.2019)