——— ГИДРОФИЗИЧЕСКИЕ ПРОЦЕССЫ ——

УДК 532.59;556.556.4

СЕЙШЕВЫЕ КОЛЕБАНИЯ В СИСТЕМЕ СЕВАСТОПОЛЬСКИХ БУХТ¹

© 2021 г. Ю. В. Манилюк^{а, *}, Д. И. Лазоренко^а, В. В. Фомин^а

^аФИЦ "Морской гидрофизический институт РАН", Севастополь, 299011 Россия *e-mail: uvmsev@yandex.ru Поступила в редакцию 15.09.2020 г. После доработки 02.11.2020 г. Принята к публикации 30.03.2021 г.

В линейном приближении на основе гидродинамической конечноэлементной модели ADCIRC исследованы сейшевые колебания в системе севастопольских бухт, возникающие в результате воздействия волновых возмущений на жидкой границе расчетной области. Расчеты выполнены для возмущений с периодами от 1 до 52 мин продолжительностью воздействия от 4 до 24 ч. Найдены резонансные периоды бухт системы. Установлено, что воздействие возмущений длительностью >15 ч с периодами 1–15 мин приводит к генерации интенсивных высокочастотных мод сейш с периодами 2.0-4.5 мин, которые начинают доминировать над низкочастотными модами (периоды >10 мин) во всех севастопольских бухтах, что создает в них условия возникновения тягуна. Бухты системы взаимодействуют друг с другом путем обмена энергией через их входы, что выражается в проникновении колебаний с периодами собственных мод каждой из бухт в соседние бухты. Мода Гельмгольца Севастопольской бухты (период 48 мин) проявляется во всех бухтах системы.

Ключевые слова: сейши в бухтах, севастопольские бухты, модель ADCIRC. **DOI:** 10.31857/S0321059621050126

ВВЕДЕНИЕ

В береговой зоне Севастополя расположена система бухт разных конфигурации, размеров и батиметрии (рис. 1), имеющих важное значение для жизнедеятельности города. Большинство из них имеют вытянутую форму (длина превосходит ширину) и глубоко вдаются в побережье. К бухтам такого вида принадлежат бухты Севастопольская, Карантинная, Стрелецкая, Камышовая, Казачья. Другой вид образуют бухты, у которых ширина и длина незначительно различаются: Круглая, Абрамова, Песочная.

К наиболее часто наблюдаемым явлениям в замкнутых и частично замкнутых водоемах относятся сейши — стоячие колебания массы воды во всем водоеме или в обособленной его части [10]. Сейши в частично замкнутых бассейнах (бухтах, заливах, гаванях), связанных одним или несколькими выходами с морем, представляют собой особый вид сейшевых движений ('harbor oscillations"). Они отличаются от сейш в полностью замкнутых водоемах следующим [10, 20]: обычно эти колебания генерируются не непосредствен-

¹ Работа выполнена в Морском гидрофизическом институте РАН в рамках государственного задания (тема 0827-2018-0004, шифр "Прибрежные исследования") при финансовой поддержке РФФИ (проект 18-05-80035). ным воздействием внешних факторов (атмосферного давления, ветра, осадков и пр.) на внутреннюю акваторию, а за счет прихода длинных волн из открытого моря через вход; потери волновой энергии в основном не связаны с процессами диссипации, а происходят за счет излучения ее через открытую границу: в частично замкнутых акваториях существует особый вид колебаний мода Гельмгольца (нулевая или фундаментальная мода), аналогичная основному тону акустического резонатора, отсутствующая в замкнутых водоемах. Данная мода не имеет узловых линий в акватории бухты. Как показывают данные натурных наблюдений, в бухтах и гаванях с узким входом мода Гельмгольца обычно доминирует над всеми остальными видами собственных колебаний и определяет общий характер движений во внутренней акватории [10]. Детальное исследование моды Гельмгольца в реальных бухтах проведено в [3, 11].

Длинные волны, приходящие в бухты из открытого моря, генерируются в основном процессами двух принципиально разных типов [10]: во-первых, анемобарическими (АБ) процессами, включающими в себя воздействия флуктуаций атмосферного давления и ветра на поверхность моря, а также колебания уровня моря, вызванные рассеянием энергии крупномасштабных длинно-

Рис. 1. Конфигурация и рельеф дна системы севастопольских бухт: А – Севастопольской; Б – Южной; В – Карантинной; Г – Песочной; Д – Стрелецкой; Е – Круглой; Ж – Абрамова; З – Камышовой; К – Казачьей. Серые линии – изобаты, м. Цифрами отмечены точки, в которых выводились результаты численного моделирования.

волновых образований типа метеоприливов или штормовых нагонов на неоднородностях рельефа и линии берега; во-вторых, нелинейными взаимодействиями ветровых волн или крупной зыби, приводящими к возникновению инфрагравитационных (ИГ) волн. Характерные периоды АБ-волн — в интервале от нескольких десятков секунд до нескольких часов, а ИГ-волн — от 30 до 300 с. Проникая во внутреннюю акваторию, АБ- и ИГ-волны генерируют там резонансные сейшевые колебания. Периоды таких сейш близки к собственным периодам бухт, определяемых их батиметрией и профилем береговой черты.

Важный параметр, характеризующий резонансные свойства бухты, – ее добротность Q (Q-фактор). Этот параметр не только служит мерой затухания энергии колебаний [10, 20], но и позволяет оценить, во сколько раз могут усилиться в вершине бухты входящие в нее волны. Чем выше добротность, тем более сильные колебания (при прочих равных условиях) можно ожидать для данной системы [10]. Например, если Q = 10, то соответствующая волна усилится (за несколько осцилляций) в вершине бухты в ~10 раз. Предварительные оценки значения Q для моды Гельмгольца можно получить, воспользовавшись формулой для бассейна прямоугольной формы постоянной глубины [20]: Q = L/l (L - длина, l)– ширина бухты).

Короткопериодные сейши (с периодами до 5 мин) могут быть причиной такого опасного явления, как тягун [10, 20], — сильные возвратно-поступательные движения воды, приводящие к обрыву швартовых и столкновениям судов, затрудняющие погрузочно-разгрузочные работы. В севастопольских бухтах базируется большое количество судов различного назначения, расположено несколько портов, поэтому актуальна задача определения условий генерации в них короткопериодных сейш, которые могут привести к возникновению тягуна.

Смежные бухты взаимодействуют друг с другом за счет их связи через входы, в которые проникают собственные колебания соседних бухт. Это расширяет модовый состав сейш в каждой бухте и увеличивает риск возникновения опасных для судов и береговой инфраструктуры колебаний уровня воды и течений. Так, например, на о. Менорка в бух. Сьютаделья ("Ciutadella") достаточно интенсивно проявляется мода Гельмгольца соседней бух. Платха Гран ("Platja Gran") [11, 14], затрудняющая работу порта. В статье [19] на основе лабораторных экспериментов установлено, что взаимодействие смежных бухт оказывает значительное влияние на параметры сейшевых колебаний. В системе севастопольских бухт находятся 10 крупных бухт, которые в той или иной мере воздействуют друг на друга, что необходимо учитывать при прогнозировании в них опасных явлений.

Важный параметр, определяющий модовый состав и характеристики генерируемых в бухтах резонансных колебаний, — длительность действия возмущения. В [13] на основе математического моделирования исследован отклик яхтенной марины Рима ("yaht harbor of Rome", Остин,

Италия) длиной 1 км, шириной 200 м, глубиной 4 м) на волновые возмущения с периодами, близкими к собственным периодам бухты, приходящими в бухту из открытого моря по нормали к входу. Показано, что отдельные моды могут усиливаться в десятки и даже сотни раз. При этом продолжительность действия возмущения должна составлять сотни часов. На самом деле реальную опасность для судов могут представлять резонансные колебания, возбуждаемые в бухте за относительно короткое время (до суток), с амплитудами, превышающими в 3–5 раз амплитуды входящих волн.

Настоящая работа посвящена определению резонансных периодов всех основных севастопольских бухт, исследованию взаимодействия отдельных бухт системы друг с другом и влиянию длительности действия начального возмущения на генерацию в них сейш. Также анализируются условия генерации в бухтах высокочастотных мод (с периодами до 5 мин), которые могут служить причиной возникновения тягуна. Для достижения указанных целей используются результаты математического моделирования и имеющихся данных натурных наблюдений.

ОБЗОР РЕЗУЛЬТАТОВ ПРЕДЫДУЩИХ ИСЛЕДОВАНИЙ

Натурные наблюдения

К настоящему времени данные натурных наблюдений имеются только для бух. Севастопольской. В [2] представлены результаты обработки данных наблюдений за уровнем моря с дискретностью 5 мин за период с апреля 2001 г. по сентябрь 2002 г., выполненных с помощью прибрежного мареографа на гидрометеорологической станции Севастополь, расположенной на м. Павловском (рис. 1). В течение указанного периода измерений максимальная амплитуда сейшевых колебаний составила 10-24 см. На рис. 2 приведен спектр колебаний уровня в бух. Севастопольской, построенный по 90-суточной реализации [2]. На данном спектре выделяются колебания, соответствующие полусуточной и суточной составляющим прилива, а также периоды 0.9, 1.25, 2.5 ч, характерные для сейш. В работе [18], посвященной исследованию приливов в Черном море, указывается, что на побережье Крыма наиболее интенсивны главная лунная полусуточная составляющая $M_2 = 12.42$ ч и гравитационная лунно-солнечная суточная составляющая $K_1 = 23.93$ ч. Интенсивности этих приливных мод близки к другу, что хорошо согласуется с рис. 2.

Сведения о течениях в Севастопольской бухте, имеющих сейшевое происхождение, получены в результате кратковременных измерений параметров течений, выполненных во время экспедиций

Рис. 2. Спектр колебаний уровня моря в бух. Севастопольской для 90-суточной реализации 02.05.2001– 30.07.2001 [2]. Показаны периоды (ч) для основных пиков.

Морского гидрофизического института в 2008 и 2014 гг. [8, 9]. При этом было установлено, что у входа в бухту флуктуации скорости течений происходят с периодом ~60 мин.

Математическое моделирование

В работе [6] рассмотрены условия возникновения тягуна в бух. Севастопольской, возможности генерации сейш инфрагравитационными волнами, проведены оценки возможных скоростей сейшевых течений в бух. Севастопольской. В [12] с использованием метода конечных элементов вычислены собственные периоды старших мод бух. Севастопольской: 50.0, 22.0, 14.7, 12.0, 9.5, 7.9, 6.4 мин. В [16, 17] исследованы сейшевые колебания в Севастопольской и Карантинной бухтах, вызываемые разными типами возмущений. В [1] с помощью конечноразностной модели выполнен расчет периодов собственных мод Карантинной бухты. Получены следующие периоды: 9.2, 5.5, 3.3, 1.8 мин.

Аналитические оценки резонансных характеристик севастопольских бухт

В табл. 1 приведены аналитические оценки собственных периодов севастопольских бухт. Как видно, величины собственных периодов севастопольских бухт ≤50 мин. Поэтому пики на энергетическом спектре, соответствующие периодам 1.25 и 2.5 ч (рис. 2), видимо, принадлежат высокочастотным модам собственных колебаний Черного моря.

Таблица 1. Периоды собственных колебаний севастопольских бухт, рассчитанные по формулам для бассейна постоянной глубины [4] и для бассейна с параболическим профилем дна [7] (эти значения указаны в скобках) (под названием бухт приведены: длина бухты, км; ширина бухты, км; средняя глубина бухты, м; глубина у входа в бухту, м)

Мода		бух. Севастопольская (7.0, 1.0, 11.7, 20.0)	бух. Южная (2.4, 0.32, 12.6, 17.0)	бух. Карантинная (1.57, 0.2, 8.2, 15.0)	бух. Песочная (0.395, 0.347, 3.1)		
k	т	$T_{ m km}$, мин	$T_{ m km}$, мин	$T_{ m km}$, мин	<i>T</i> _{km} , мин		
0	0	43.8	14.4	11.7	3.6		
1	0	14.6 (15.0)	4.8 (5.6)	3.9 (3.9)	1.2		
2	0	8.8 (9.5)	2.9 (3.5)	2.3 (2.5)	0.7		
3	0	6.3 (6.9)	2.1 (2.6)	1.7 (1.8)	0.5		
0	1	2.8	1.0	0.7	2.1		
1	1	2.8	0.9	0.7	1.5		
		бух. Стрелецкая (2.0, 0.38, 9.9, 20.0)	бух. Круглая (1.1, 0.68, 5.3, 15.0)	бух. Абрамова (0.512, 0.474, 2.6)	бух. Камышовая (2.8, 0.41, 9.1, 20.0)		
k	т	$T_{ m km}$, мин	$T_{ m km}$, мин	$T_{ m km}$, мин	$T_{ m km}$, мин		
0	0	13.5	10.2	6.8	19.8		
1	0	4.5 (4.3)	3.4 (2.7)	2.3	6.7 (6.0)		
2	0	2.7 (2.7)	2.0 (1.7)	1.4	4.0 (3.8)		
3	0	1.9 (2.0)	1.5 (1.3)	1.0	2.8 (2.8)		
0	1	1.3	3.0	3.1	1.5		
1	1	1.2	2.3	2.4	1.4		

Расчет *Q*-фактора для севастопольских бухт по формуле для бассейна прямоугольной формы и постоянной глубины [20] с использованием геометрических размеров бухт, приведенных в табл. 1, дал следующие значения для бухт: Севастопольской – 7, Южной – 7.5, Круглой – 1.6, Карантинной – 7.9, Стрелецкой – 5.2, Камышовой – 6.8.

ГИДРОДИНАМИЧЕСКАЯ МОДЕЛЬ И ОПИСАНИЕ МЕТОДИКИ ЧИСЛЕННЫХ ЭКСПЕРИМЕНТОВ

Для определения параметров генерируемых в севастопольских бухтах сейшевых колебаний резонансных периодов и исследования влияния длительности действия начального возмущения проведена серия численных экспериментов на основе конечно-элементной модели ADCIRC (Advanced Circulation Model for Shelves Coasts and Estuaries) [15]. Использован вариант модели, основанный на осредненных по глубине линеаризованных уравнениях движения в длинноволновом приближении без учета силы Кориолиса. Описание модели и выбора ее параметров приведено в [17].

Моделирование сейшевых колебаний в системе Севастопольских бухт проведено на сетке из 107202 треугольных конечных элементов (рис. 3). Расчетная область включала в себя все бухты и

ВОДНЫЕ РЕСУРСЫ том 48 № 5 2021

часть прибрежной зоны в виде сектора с радиусом 8 км. Сетка сгущалась в бухтах (длины сторон треугольников здесь составляли ~50 м). Шаг интегрирования по времени $\Delta t = 0.025$ с.

Расчеты выполнялись для трех интервалов периодов возмущений, перекрывающих диапазон собственных периодов Севастопольских бухт (табл. 1):

$$\Delta T_1 = 30-52$$
 мин,
 $\Delta T_2 = 8-30$ мин, $\Delta T_3 = 1-15$ мин. (1)

Выбранные диапазоны содержат как высокочастотные моды сейш Черного моря (возмущения, вызванные перемещением циклонов над акваторией моря, волнами цунами; диапазоны $\Delta T_1, \Delta T_2$), так и инфрагравитационные волны (возмущения свободной поверхности моря, вызванные колебаниями атмосферного давления; диапазон ΔT_3).

Каждый численный эксперимент состоял из двух этапов. На первом этапе использованы нулевые начальные условия, и при t > 0 на открытой границе расчетной области задавались возмущения вида [17]:

$$\eta = \frac{a_0}{N} \sum_{n=1}^{N} \sin(\omega_n t), \qquad (2)$$

Рис. 3. Расчетная конечно-элементная сетка для системы Севастопольских бухт.

где $a_0 = 10$ см — амплитуда колебаний; N — количество гармоник в ряде; *n* – номер гармоники; $\omega_n = 2\pi/T_n$ – частота колебаний; T_n – период колебаний. Период колебаний каждой гармоники ряда (2) определяется выражением $T_n = T_{\min} +$ рида (2) определяется выраженныя $T_n = T_{\min} + (T_{\max} - T_{\min})\delta_n$, где T_{\min} , T_{\max} – минимальный и максимальный период колебаний, $\delta_n = (n-1)/(N-1)$. Количество гармоник – $N = (T_{\max} - T_{\min})/t_d + 1$ (в расчетах использовался шаг $t_d = 10$ с). На втором этапе граничное условие (2) заменялось условием свободного прохождения и моделировались свободные длинные волны. В качестве начальных условий задавались поля U, V и η для момента времени t, соответствующего окончанию первого этапа расчетов. Длительность второго этапа расчетов составляла 4 ч модельного времени. Длительность первого этапа расчетов, на котором проходила генерация волн, варьировала от 4 до 24 ч. Нижняя временная граница первого этапа выбиралась на основе данных наблюдений: в работе [2] установлено, что для интенсификации сейш в бух. Севастопольской необходимо воздействие не кратковременное, а продолжительное – порядка 4–5 ч.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ И ОБСУЖДЕНИЕ

Расчеты проведены при следующих длительностях воздействия внешнего возмущения: 4, 10, 15, 24 ч. С помощью спектрального анализа полей, полученных на втором этапе численных экспериментов, определены периоды сейшевых колебаний во всех основных бухтах Севастополя (рис. 1). В табл. 2, 3 представлены рассчитанные периоды мод резонансных колебаний для бухт, используемых для базирования, ремонта судов и перевалки грузов, для различной длительности этапа генерации волн. Энергия колебаний указанных мод $\geq 10\%$ максимальной; периоды упорядочены по убыванию энергии колебаний (T_1 – период с максимальной энергией). Расположение контрольных точек показано на рис. 1.

Большинство севастопольских бухт имеет высокий Q-фактор, что способствует генерации в них интенсивных мод Гельмгольца. Для всех рассмотренных интервалов периодов и длительностей действия возмущений интенсивные моды Гельмгольца генерируются (табл. 2, 3) в следующих бухтах: Севастопольской (период 48.0 мин, Q = 7.0), Карантинной (11.4 мин, 7.9), Стрелецкой (15.0 мин, 5.2), Камышовой (период 21.8 мин, Q = 6.8). Мода Гельмгольца (период 8.9 мин, Q = 1.9) возбуждается также и в бух. Круглой, имеющей низкий Q-фактор, но только на среднечастотных (ΔT_2) и высокочастотных (ΔT_3) интервалах периодов возмущений.

Увеличение продолжительности действия возмущений в интервале периодов ΔT_3 приводит к интенсификации высокочастотных мод с периодами 2.8–4.5 мин. Данные моды начинают преобладать над модами Гельмгольца. Для бух. Карантинной для этого достаточно длительности воздействия 15 ч. Для крупных бухт (Севастопольской, Камышовой, Казачьей и Стрелецкой) необходимо, чтобы длительность воздействия составляла 24 ч (табл. 2, 3). При этом в бух. Стрелецкой мода Гельмгольца (период 15.0 мин) остается достаточно интенсивной и уступает моде с периодом 3.9 мин только в вершине бухты (табл. 3).

Таблица 2. Периоды сейшевых колебаний в бух. Севастопольской в зависимости от длительности действия возмущения (ДДВ). $D_1 = 4 \text{ ч}, D_2 = 10 \text{ ч}, D_3 = 15 \text{ ч}, D_4 = 24 \text{ ч}$ (интервал изменения периодов $\Delta T_1 - 30 - 52$ мин не показан, так как во всех рассмотренных точках бухты доминирует мода Гельмгольца бух. Севастопольской с периодом 48 мин. Энергия остальных мод $\leq 10\%$ максимума)

		Интервалы периодов возмущений										
No morrier	ппр		$\Delta T_2 - 8$	—30 мин		$\Delta T_3 - 1 - 15$ мин						
л⊍ точки	ддв	-	период	ы сейш		периоды сейш						
		T_1	T_2	T_3	T_4	T_1	T_2	T_3	T_4			
1	D_1	48.0	21.8	17.1	10.9	17.1	48.0	11.4	24.0			
	D_2	48.0	17.1			48.0	17.1	24.0				
	D_3	48.0	24.0	16.0		48.0	17.1	24.0				
	D_4	48.0	24.0			17.1	24.0	48.0				
5	D_1	48.0	17.1			17.1	48.0					
	D_2	48.0	17.1			48.0	17.1					
	D_3	48.0	17.1			48.0	17.1	3.9				
	D_4	48.0				3.9	17.1	48.0				
6	D_1	48.0	17.1	11.4		17.1	48.0	11.4	3.1			
	D_2	48.0	17.1	11.4		48.0	2.9	3.1				
	D_3	48.0	10.0	4.3	11.4	48.0	17.1	2.9	3.8			
	D_4	48.0				2.8	17.1	4.0	3.8			
11	D_1	48.0	21.8	17.1	11.4	48.0	11.4	16.0	6.2			
	D_2	48.0	11.4			48.0	3.1	11.4	2.9			
	D_3	48.0	24.0	11.4		48.0	3.9	16.0	3.8			
	D_4	48.0				3.9	17.1	2.9	48.0			
15	D_1	48.0	17.1	21.8	10.9	17.1	48.0	10.9	12.6			
	D_2	48.0	16.0	10.9		48.0	2.9	17.1	10.9			
	D_3	48.0	24.0	10.0	11.4	48.0	16.0	2.9	24.0			
	D_4	48.0				2.9	17.1	3.9	2.0			
19	D_1	48.0	17.1	12.6	21.8	16.0	12.6	48.0	10.9			
	D_2	48.0	17.1	4.4	3.9	2.9	3.1	48	4.4			
	D_3	48.0	10	3.9	4.3	3.9	2.9	48.0	16.0			
	D_4	48.0	10.0			3.9	2.9					
20	D_1	48.0	17.1	12.6	21.8	16.0	12.6	48.0	10.9			
	D_2	48.0	17.1	12.6	11.4	48.0	2.9	16.0	12.6			
	D_3	48.0	10	22.0	17.1	3.9	48.0	16	2.9			
	D_4	48.0	9.6			3.9	16.0	2.9				

На рис. 4 приведены энергетические спектры колебаний уровня моря в вершине бух. Карантинной. Видно, что воздействие возмущения длительностью 4 ч приводит к тому, что в вершине бухты доминируют моды с периодами 11.4—12.6 мин. При длительности действия возмущения 10 ч начинают появляться сейши с периодами 2.5—4.4 мин. При дальнейшем увеличении дли-

тельности действия возмущений до 15 ч картина сейшевых колебаний в бухте существенно меняется. Низкочастотные моды ослабевают, и начинает преобладать мода с периодом 4 мин (рис. 4в, табл. 3). Когда длительность действия возмущения равна 24 ч, колебание с периодом 4 мин преобладает во всей акватории бух. Карантинной (рис. 4в, табл. 3).

МАНИЛЮК и др.

-		Интервалы периодов возмущений											
		$\Delta T_1 - 30 - 52$ мин			$\Delta T_2 - 8 - 30$ мин				$\Delta T_3 - 1 - 15$ мин				
№ точки	точки ДДВ периоды сейш					периоды сейш				периоды сейш			
		T_1	T_2	T_3	T_4	T_1	T_2	T_3	T_4	T_1	T_2	T_3	T_4
бух. Карантинная													
21	D_1	48.0				11.4	16.0	12.6	48.0	12.6	11.4	16.0	6.2
	D_2	48.0				11.4	48.0	12.6	17.1	11.4	12.6	16.0	48.0
	D_3	48.0				10.9	48.0	10.0	6.2	4.0	16.0	48.0	10.9
	D_4	48.0	12.6			48.0	10.9	10.0	8.6	4.0	16.0		
22	D_1	48.0	12.6	11.4		11.4	12.6	16.0	48.0	11.4	12.6	16.0	6.2
	D_2	48.0				11.4	12.6	10.0	48.0	11.4	12.6	10.0	2.5
	D_3	48.0				10.9	10.0	48.0	8.9	16.0	10.9	4.0	10.0
	D_4	48.0	12.6	10.9	10.0	48.0	10.0	10.9	8.9	4.0	16.0	2.9	4.7
бух. Стрелецкая													
25	D_1	48.0	16.0	14.1	12.6	16.0	12.6	48.0	4.4	15.0	12.6	4.4	6.9
	D_2	48.0	15.0			16.0	12.6	48.0	4.4	15.0	4.4	2.9	3.6
	D_3	48.0	15.0			14.1	7.5	17.1	4.4	15.0	4.4	3.6	3.3
	D_4	48.0	14.1	21.8		7.5	48.0	14.1	9.2	15.0	4.4	2.8	3.3
26	D_1	48.0	12.6	16.0	14.1	16.0	12.6	48.0		15.0	12.6	6.9	
	D_2	48.0	15.0			16.0	12.6	48.0	4.4	15.0	12.6	4.4	2.9
	D_3	48.0	14.1	12.6		14.1	7.5	17.1	11.4	15.0	4.4	4.0	2.8
	D_4	48.0	15.0	20.0		48.0	15.0	7.1	21.8	15.0	3.9	4.4	2.8
29	D_1	48.0	12.6	14.1		16.0	12.6	11.4	4.4	12.6	15.0	4.4	
	D_2	48.0	15.0			12.6	16.0	11.4	4.4	15.0	4.4	12.6	11.4
	D_3	48.0	15.0	12.6		14.1	11.4	4.4	7.5	15.0	4.4	4.0	3.6
	D_4	15.0	48.0	12.6	20	7.5	15.0	48.0	8.9	3.9	15.0	4.4	2.8
		1	r	r	б	ух. Камі	ышовая	1	1	n	1	1	r
34	D_1	48.0	21.8			21.8	10.4	48.0	15.0	10.4	21.8	14.1	2.6
	D_2	48.0	21.8			21.8	48.0	10.0	3.5	2.6	21.8	2.8	3.6
	D_3	48.0	21.8			21.8	10.4	9.2	5.3	3.6	2.6	21.5	2.8
	D_4	48.0	21.8	10.4		21.8	10.4	48	13.3	2.8	2.6	3.6	3.9
37	D_1	48.0	21.8			21.8	16.0	48.0		21.8	16.0	3.6	7.1
	D_2	48.0	21.8			21.8	48.0	16.0	3.5	21.8	3.5	2.6	1.7
	D_3	48.0	21.8			21.8	3.6			3.6	21.8	4.2	16
	D_4	21.8	48.0			21.8	48	9.2	7.5	3.6	4.2	3.9	16
39	D_1	48.0	21.8	16.0	10.4	21.8	10.4	16.0	7.1	21.8	10.4	16.0	6.7
	D_2	48.0	21.8			21.8	10.0	16.0	48.0	21.8	3.3	2.8	2.6
	D_3	48.0	21.8	10.4		21.8	9.2	5.5	14.1	21.8	3.6	10.4	16
	D_4	21.8	48.0	10.4	14.1	21.8	10.4	9.2	48.0	10.4	3.6	16	4.2

Таблица 3. Периоды сейшевых колебаний в наиболее крупных севастопольских бухтах в зависимости от длительности действия возмущения (ДДВ). $D_1 = 4$ ч, $D_2 = 10$ ч, $D_3 = 15$ ч, $D_4 = 24$ ч

ВОДНЫЕ РЕСУРСЫ том 48 № 5 2021

Рис. 4. Энергетические спектры сейшевых колебаний уровня, генерируемых в вершине бух. Карантинной (точка 23), в зависимости от длительности действия возмущений τ в интервале ΔT_3 : a – τ = 4 ч, б – τ = 10 ч, в – τ = 15 ч, г – τ = 24 ч. Показаны периоды (мин) для основных пиков.

В бух. Севастопольской при увеличении длительности действия возмущений в интервале периодов ΔT_3 начинает генерироваться поперечная сейша с периодом 2.8 мин (табл. 1, 2; рис. 5), которая наиболее интенсивна в пунктах у боковых берегов бухты (6, 9, 18, 19). При длительности действия возмущений 24 ч энергия колебаний этой моды превышает энергию всех других мод в этих точках акватории бухты. Поперечные сейши представляют серьезную опасность для судов и береговой инфраструктуры, так как их узловые линии проходят перпендикулярно входу в бухту. Это затрудняет излучение энергии колебаний в открытое море через вход в бухту и при длительном действии возмущений способствует накоп-

ВОДНЫЕ РЕСУРСЫ том 48 № 5 2021

лению энергии колебаний. При продолжительности действия возмущений 24 ч в интервале ΔT_3 по всей акватории проявляется также мода сейш с периодом 3.9 мин, доминирующая в точках 5, 11, 18, 19, 20 (табл. 2; рис. 5).

В бух. Камышовой в зоне грузовых причалов рыбного порта (точка 37) будет доминировать колебание с периодом 3.6 мин, когда длительность возмущения составляет 24 ч, а интервал периодов – ΔT_3 (табл. 3). При этих же условиях для возмущений в вершине бух. Стрелецкой (точка 29) будет доминировать мода с периодом 3.9 мин (табл. 3).

Таким образом, увеличение длительности действия возмущений (до ≥15 ч) в интервале перио-

Рис. 5. Энергетические спектры сейшевых колебаний уровня, генерируемых в бух. Севастопольской (точки 2, 18), в зависимости от длительности действия возмущений τ в интервале ΔT_3 : a – τ = 4 ч, б – τ = 10 ч, в – τ = 15 ч, г – τ = 24 ч. Показаны периоды (мин) для основных пиков.

дов ΔT_3 приводит к генерации высокочастотных мод с периодами 2–4.5 мин, которые начинают доминировать над низкочастотными модами (в том числе модами Гельмгольца) во всей системе Севастопольских бухт, что может создать в них условия возникновения тягуна.

В табл. 4 приведены основные резонансные периоды севастопольских бухт, выделенные в результате анализа результатов расчетов. Данные периоды разделены на две группы: "собственные" (определяемые батиметрией и профилем береговой черты конкретной бухты) и "чужие" (проникающие из соседних бухт и прибрежной зоны). Бухты системы обмениваются энергией колебаний через свои входы за счет проникновения собственных мод одной бухты в другую бухту и наоборот. Например, мода Гельмгольца бух. Севастопольской (период 48 мин) проявляется с высокой интенсивностью во всех бухтах системы, когда периоды возмущений — в интервале ΔT_1 — ΔT_2 (табл. 3). При этом данная мода доминирует над всеми остальными модами резонансных колебаний во всех бухтах системы в интервале периодов ΔT_1 . Мода Гельмгольца Карантинной бухты (период 11.4 мин) проявляется в Севастопольской, Песочной и даже Казачьей бухтах. Бухты взаимодействуют не только на периодах мод Гельмгольца, но и на периодах более высокоча-

ВОДНЫЕ РЕСУРСЫ том 48 № 5 2021

	Периоды резонансных колебаний											
Бухта	собственные периоды, мин						"чужие" периоды, мин					
	T_0	T_1	T_2	T_3	T_4	T_5	A_1	<i>A</i> ₂	A_3	A_4	A_5	
Севастопольская	48.0	22.0	16.0	10.0	6.2	2.9	11.4	17	4.0			
Карантинная	11.4	4.0	2.5	1.8			48.0	16.0	10.0	12.6	6.2	
Стрелецкая	15.0	4.4	2.8				48.0	12.6	11.4	7.5	4.0	
Песочная	3.6	2.1					48.0	16.0	12.6	11.4	4.4	
Круглая	8.9	3.3	2.0				48.0	16.0	12.6	11.4	4.4	
Камышовая	21.8	7.0	3.6	2.8	1.7		48.0	16.0	10.0	9.2	4.2	

Таблица 4. Резонансные периоды севастопольских бухт (в бух. Севастопольской также выделяется собственная мода с периодом 12.6 мин)

стотных мод. Например, собственные моды Севастопольской бухты с периодами 16.0, 12.6, 10.0, 6.2 мин проникают в Карантинную бухту (табл. 3), а собственная мода бух. Карантинной с периодом ~4 мин проникает в бух. Севастопольскую (табл. 2).

Анализ результатов расчетов в точках 49, 52. 54, 55, 56, находящихся за пределами бухт, показал, что в прибрежной зоне возникают шельфовые сейши с периодами 15-17 мин, которые проникают во все бухты системы. Данные колебания выделяются во всех рассмотренных интервалах периодов и длительностей действия возмушений. Аналогичное явление наблюдается на о. Шикотан (Малая Курильская гряда) в бухтах Димитрова и Церковной, где регистрируются проникающие в них шельфовые сейши с периодом ~15 мин [5]. В [10] приведены результаты опубликованных в 1908 г. исследований К. Хонды (К. Honda), Т. Терады (Т. Terada) и др., которые провели анализ сейшевых колебаний в 65 бухтах на Японских островах. Ими установлено, что "в близлежащих бухтах и на участках открытого берега часто наблюдаются общие колебания". Таким образом, наличие сейш с периодами, общими для прибрежной зоны и системы близко расположенных севастопольских бухт, - общая физическая закономерность, которая согласуется с результатами натурных наблюдений в других регионах.

выводы

Для всех рассмотренных интервалов периодов и длительностей действия возмущений в бухтах системы, имеющих высокий *Q*-фактор (>6.5): Севастопольской, Камышовой, Карантинной, Казачьей, — генерируются интенсивные моды Гельмгольца.

Волновые возмущения в интервале периодов 1–15 мин, воздействующие >15 ч, приводят к генерации интенсивных высокочастотных мод (периоды 2–4.5 мин) и доминированию их над низкочастотными модами в крупных бухтах системы (Севастопольской, Камышовой, Стрелецкой, Карантинной), в которых базируются корабли и проводится перевалка грузов. Это создает в указанных бухтах условия для возникновения тягуна.

Бухты системы взаимодействуют друг с другом путем обмена энергией через их входы. Это выражается в проникновении собственных мод отдельных бухт в соседние бухты. Наиболее заметное воздействие на бухты системы оказывает мода Гельмгольца бух. Севастопольской (период 48 мин), которая проявляется во всех севастопольских бухтах, когда периоды возмущений составляют 15–52 мин.

СПИСОК ЛИТЕРАТУРЫ

- Балинец Н.А., Хмара Т.В. Явление тягуна в бухтах Севастополя // Экологическая безопасность прибрежной и шельфовой зон и комплексное исследование ресурсов шельфа. 2006. № 14. С. 204–208.
- Горячкин Ю.Н., Иванов В.А., Репетин Л.Н., Хмара Т.Н. Сейши в Севастопольской бухте // Тр. Украинского гидрометеорол. ин-та. 2002. Вып. 250. С. 342– 353.
- 3. Джумагалиев В.А., Рабинович А.Б., Файн И.В. Теоретическая и экспериментальная оценка передаточных особенностей побережья Малокурильской бухты, о. Шикотан // Изв. РАН. Физика атмосферы и океана. 1994. Т. 30. № 5. С. 711–717.
- 4. Иванов В.А., Манилюк Ю.В., Санников В.Ф. Сейши в бассейне с открытым входом // Прикладная механика и техническая физика. 2018. Т. 59. № 4. С. 23–30.

https://doi.org/10.15372/PMTF20180404

5. Ковалев П.Д., Ковалев Д.П., Шишкин А.А. Особенности режима волнения в бухтах и на побережье острова Шикотан Малой Курильской гряды // Геосистемы переходных зон. 2020. Т. 4. № 2. С. 250– 258.

https://doi.org/10.30730/gtrz.2020.4.2.250-258

 Манилюк Ю.В. Сейши и тягун в Севастопольской бухте // Экологическая безопасность прибрежной и шельфовой зон моря. 2018. Вып. 3. С. 4–12. https://doi.org/10.22449/2413-5577-2018-3-4-12

- Манилюк Ю.В., Санников В.Ф. Исследование сейшевых колебаний в бухте переменной глубины // Экологическая безопасность прибрежной и шельфовой зон моря. 2019. Вып. 2. С. 4–12. https://doi.org/10.22449/2413-5577-2019-2-4-12
- Морозов А.Н., Лемешко Е.М., Шутов С.А., Зима В.В. Течения в Севастопольской бухте по данным AD-CP-наблюдений (июнь 2008) // Морской гидрофиз. журн. 2012. № 3. С. 31–43.
- Морозов А.Н., Лемешко Е.М., Шутов С.А., Зима В.В., Чепыженко А.А. Течения в Севастопольской бухте по данным ADCP наблюдений, ноябрь 2014 г. // Экологическая безопасность прибрежной и шельфовой зон и комплексное исследование ресурсов шельфа. 2014. Вып. 28. С. 25–30.
- Рабинович А.Б. Длинные гравитационные волны в океане: захват, резонанс, излучение. СПб.: Гидрометеоиздат, 1993. 325 с.
- 11. Рабинович А.Б., Монсеррат С., Файн И.В. Численное моделирование экстремальных сейшевых колебаний в районе Балеарских островов // Океанология. 1999. Т. 39. № 1. С. 16–24.
- 12. *Чехов В.Н., Лушников В.Ф.* К оценкам сейш в бухтах Крыма методом конечных элементов // Динам. системы. 2015. Т. 5 (33). № 1–2. С. 93–102.
- Bellotti G. Transient response of harbours to long waves under resonance conditions // Coastal Engenieering. 2007. V. 54. Iss. 9. P. 680–693. https://doi.org/10.1016/j.coastaleng.2007.02.002

 Liu P. L.-F., Monserrat M., Macros M., Rabinovich A.B. Coupling between two inlets Observation and modeling // J. Geophys. Res. 2003. V. 108. № C3. 3069. P. 14-1– 14-10. https://doi.org/10.1029/2002JC001478

15. Luettich R.A., Westerink J.J. Formulation and Numerical Implementation of the 2D/3D ADCIRC. 2004. http://adcirc.org/adcirc theory 2004 12 08.pdf

- Manilyuk Yu.V., Lazorenko D.I., Fomin V.V. Investigation of Seiche Oscillations in the Adjacent Bays by the Example of the Sevastopol and the Quarantine Bays // Phys. oceanogr. 2020. V. 27. Iss. 3. P. 242–256. https://doi.org/10.22449/1573-160X-2020-3-242-256
- Manilyuk Yu.V., Lazorenko D.I., Fomin V.V. Resonance Oscillations on the System of Adjacent Bays // Phys. Oceanogr. 2019. V. 26. Iss. 5. P. 374–386. https://doi.org/10.22449/1573-160X-2019-5-374-386
- Medvedev I.P. Tides in the Black sea: observations and numerical modelling // Pure Appl. Geophys. 2018.
 V. 175. Iss. 6. P. 1951–1969. https://doi.org/10.1007/s00024-018-1878-x
- Nakano M., Fujimoto N. Seiches in bays forming coupled system // J. Oceanogr. Society of Japan. 1987. V. 43. P. 124–134.
- Rabinovich A.B. Seiches and Harbor Oscillations (Chapter 9) // Handbook of Coastal and Ocean Engineering / Ed. Y.C. Kim. Singapoure: World Sci. Publ., 2009. P. 193–236.