_ ГИДРОХИМИЯ, ГИДРОБИОЛОГИЯ, ₋ ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ

УДК 556.114.7:550.42:541.49(571.6)

ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ РАСТВОРЕННЫХ ФОРМ МЕТАЛЛОВ И МЕТАЛЛО-ГУМУСОВЫХ КОМПЛЕКСОВ В ВОДАХ ЗЕЙСКОГО ВОДОХРАНИЛИЩА

© 2021 г. С. И. Левшина^{а, *}, Л. А. Матюшкина^а

^аИнститут водных и экологических проблем ДВО РАН, Хабаровск, 680000 Россия

*e-mail: levshina250@gmail.com
Поступила в редакцию 30.01.2021 г.
После доработки 20.04.2021 г.
Принята к публикации 24.05.2021 г.

Впервые оценено содержание растворенных форм металлов и их металло-гумусовых комплексов в водах Зейского водохранилища. Воды характеризовались высоким содержанием ионов Fe^{3+} , Cu^{2+} , Zn^{2+} , превышающим $\Pi Д K_{px}$ в 1.5—3.7 раза, что, вероятно, является их природным фоном. Установлено, что подавляющая часть растворенных металлов (Al, Fe, Cu, Cr, V, Ni, Zn) связана гумусовыми кислотами в комплексах. Доля последних составляет от 40 до 62% общих растворенных форм, что способствует снижению детоксикации вод. По количеству закомплексованных гумусовым веществом ионов металлов в водах водохранилища их можно представить следующим убывающим рядом: $Fe > Al > Cu > Ni > Cr > V > Zn > Pb > Co > Mn > Mg \ge Ca > Cd$. В целом качество исследуемых вод удовлетворительное. Однако повышенное (1.1 $\Pi \mathcal{A}_{px}$) содержание Pb^{2+} со стороны р. Гилюй, вероятно, связано с антропогенным (разработкой месторождений) источником поступления.

Ключевые слова: Зейское водохранилище, поверхностные воды, металлы, металло-гумусовые комплексы.

DOI: 10.31857/S0321059621060109

ВВЕДЕНИЕ

Проблемы качества поверхностных вод в пределах природных и природно-хозяйственных объектов становятся все более острыми. Особенно актуальна оценка экологического состояния поверхностных вод в связи с содержанием и динамикой в них металлов. Известно их негативное прямое воздействие на жизнедеятельность водных экосистем и опосредованное – на здоровье человека [15, 32]. Физиологическое действие металлов на биоту различно в зависимости от природы элемента, типа соединения, в котором он существует в природной среде, а также от его концентрации [6]. Часть металлов (Fe, Mn, Cu, Zn, Со, Мо) относится к числу важнейших "биометаллов", необходимых для жизнедеятельности водной биоты [6, 26]. Однако такое выделение в определенной степени условно, так как перечисленные выше металлы при содержаниях >ПДК могут быть токсичными для живых организмов. К группе типичных металлов-токсикантов относят Hg, Cd, Pb, Sn, Ni, Cr, которые в определенных концентрациях и химических формах обладают мутагенными и канцерогенными свойствами [4].

Наличие растворенных форм металлов в поверхностных водах обусловлено как природными, так и техногенными источниками их поступления [11, 26]. Считается, что токсичны для биоты свободные (ионные) формы металлов и их соединения с неорганическими лигандами [5, 18, 21]. В то же время комплексообразование с лигандами гумусовой природы, к которым относятся гуминовые кислоты (ГК) и фульвокислоты (ФК) (в качестве обобщающего применяют термин "гумусовые кислоты" – $\Gamma \Phi K$), существенно и/или полностью снижает токсичность металлов [24, 28, 47]. Причина детоксикации связана со снижением химической и биологической активности металлов в подобных комплексных соединениях [38].

Зейское водохранилище — крупнейшее в Приамурье, оно создавалось в 1964—1985 гг. в ходе строительства ГЭС с целью зарегулирования р. Зеи и предотвращения паводков и катастрофических наводнений. Ему принадлежит третье место среди водохранилищ России по объему (68.4 км³), глубине (в нижней части до 100 м) и площади водосбора (83.8 тыс. км²) [25]. Речная сеть на водосборах водохранилища представлена 84 водото-

ками разной длины (от 10 до 545 км), из которых непосредственно в водоем впадают немногим более половины. Водосборная территория водохранилища характеризуется сложной тектонической структурой, преобладанием средне- и низкогорного рельефа, выходом к дневной поверхности магматических (гранитоиды, габбро, частично базальты) и метаморфических (кристаллические сланцы, гнейсы) пород [2, 13]. Почвенный покров в пределах водосбора водохранилища представлен преимущественно горными буротаежными (часто мерзлотными) почвами с характерной для них Al-Fe-гумусовой дифференциацией профиля [3]. Широко распространены заболоченные пространства, особенно на Верхнезейской равнине, в центре которой и расположен водоем. Заболоченность составляет в среднем 40%, а на водосборах некоторых рек (Дуткан, Темна и др.) до 70 и даже 90% [31].

На экологическое состояние поверхностных вод водосборной территории Зейского водохранилища оказывают влияние освоение и промышленная разработка горнорудных месторождений [7]. С 1986 г. ведомственная гидрохимическая лаборатория при Федеральном управлении эксплуатации Зейского водохранилища проводит систематические наблюдения за качеством воды в водоеме, в том числе за содержанием нормируемых металлов (Fe, Cu и др.). В настоящее время необходимо расширить перечень определяемых элементов, а также выявить особенности комплексообразования ГФК с ионами металлов, что крайне важно при оценке качества поверхностных вод.

Цель настоящей работы — изучение особенностей распределения растворенных форм металлов и металло-гумусовых комплексов (Ме-ГФК) в водах Зейского водохранилища и оценка экологического состояния водоема. При этом водохранилище и его заливы рассматривали как единую водную систему.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В основу работы положены результаты гидрохимических исследований вод Зейского водохранилища, его заливов, рек Бомнак и Зеи, проводившихся летом 2011 г. в период низкой воды. Отбор проб проводился с борта судна по акватории водохранилища от верхнего притока — р. Бомнак до р. Зеи в 500 м от плотины ГЭС ниже по течению (рис. 1). Воду отбирали как с поверхностных горизонтов (0.5 м от поверхности), так и с различных глубин (от 10 до 40 м) по [12]. Всего обследовано 26 станций.

В пробах определяли цветность (Цв) воды, водородный показатель рН стандартными методами, принятыми в гидрохимии; взвешенные вещества (ВВ) гравиметрическим методом по [30].

Растворенный органический углерод C_p определяли в фильтрованной воде методом сухого сжигания на анализаторе углерода ТОС-ve ("Shimadzu", Япония) в соответствии с [37]. Растворенные формы отделяли от взвешенных фильтрованием через ядерные фильтры с диаметром пор 0.45 мкм под вакуумом. ГФК выделяли на целлюлозных анионообменниках — диэтиламиноэтилцеллюлозе (ДЭАЭ-метод) [16]. Комплексы Ме—ГФК извлекали непосредственно из вод (in situ). В качестве основной характеристики реакционной способности металлов в связывании с ГФК рассматривали условные (суммарные) константы устойчивости ($\lg K$) соответствующих комплексов.

Изучали растворенные в воде формы металлов, наиболее распространенных в Приамурье и относящихся к разным классам опасности в соответствии с нормативами, принятыми для вод рыбохозяйственного использования [27]: Cd, Pb (2-й класс опасности); Zn, V, Cu, Co, Ni, Cr (3-й класс опасности); Fe, Al, Mn, Mg, Ca (4-й класс опасности). Природные воды фильтровали (размер пор 0.45 мкм) под вакуумом, переливали в контейнеры объемом 50 мл и подкисляли концентрированной НОО3 (очищенной методом изотермической перегонки) до рН 2. Хранили 2-4 сут и менее при температуре 2-5°C. Определяли металлы на масс-спектрометре "ICP-MS Elan DRC II" фирмы "PerkinElmer" (США) по [29] в Хабаровском инновационно-аналитическом центре при Институте тектоники и геофизики (ХИАЦ ИТиГ) им. Ю.А. Косыгина ДВО РАН. Для градуировки использовали многоэлементные стандартные растворы фирмы "PerkinElmer Pure Plus Multi-element Calibration Standard 3, 5". Степень извлечения растворенных ионных форм проверялась экспериментально методом "введено-найдено" и составила 85-95%. Погрешность анализа при определении элементов в воде составляла 15-38% отн. Для извлечения из воды ГФК и элементов, связанных с ними, использовали метод концентрирования на диэтиламиноэтилцеллюлозе (ДЭАЭ-целлюлозе) в соответствии с методикой [16].

Статистическая обработка материала проводилась с применением общепринятых методик при помощи приложения Excel-2010, программного пакета "Statistica, Version 10" с учетом рекомендаций [9].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Полученные характеристики содержания растворенных металлов в водах Зейского водохранилища, его придаточной системы, а также усредненные данные для рек мира представлены в табл. 1.

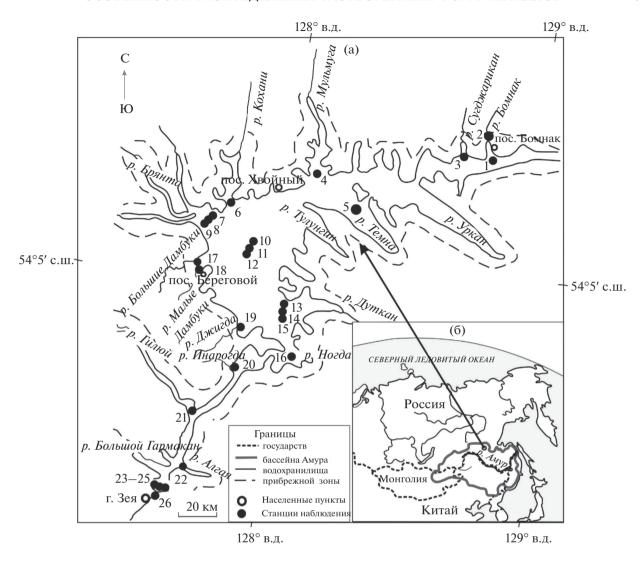


Рис. 1. Картосхема территории со станциями отбора проб воды (а), месторасположение Зейского водохранилища (б).

Основные макрокомпоненты в водах – ионы щелочноземельных металлов Ca^{2+} и Mg^{2+} . Согласно классификации О.А. Алекина [1], исследуемые воды относятся к кальциевой группе гидрокарбонатного класса, что характерно для большинства поверхностных вод бассейна Амура [36]. Главные источники названных макрокомпонентов – карбонатные породы (известняки, доломиты и др.) и продукты их выветривания на территории водосбора водохранилища [10]. Несмотря на то, что воды характеризовались высоким содержанием Ca²⁺ и Mg²⁺, наличие комплексов Ca— Мg-ГФК в них невысокое — в целом ~7% валовых растворенных форм (табл. 2). В условиях природных вод ионы Ca²⁺ и Mg²⁺ не подвергаются гидролизу и практически не способны к реакциям комплексообразования с лигандами, что связано как с их строением (большим ионным радиусом), так и с низкими константами устойчивости с ГФК (табл. 3). Невысокая закомплексованность Ca^{2+} и Mg^{2+} веществами гумусовой природы характерна для поверхностных вод всего бассейна Амура, дренирующих разные природные зоны (от степных до таежных ландшафтов) [44].

Содержание растворенного Al в водах менялось от 40 до 80 мкг/дм³, что превышало средние показатели рек мира в 1.2-2.5 раза. Однако такие концентрации, по мнению авторов [34, 35], типичны для рек бассейна Среднего Амура. Повышенные концентрации растворенного Al в водах Зейского водохранилища соответствуют высокому содержанию Al_2O_3 в продуктах выветривания горных пород и почвах [2, 14]. Важным источником растворенного Al в поверхностных водах следует считать миграцию Al-Fe-гумусовых соединений из почв горно-таежного и тундрового поясов [3]. Поэтому количество комплексов Al-ГФК

Таблица 1. Содержание растворенных форм элементов в водах Зейского водохранилища, его заливов и рек Зеи, Бомнак (мкг/дм³, вдхр — водохранилище, прочерк — отсутствие данных)

лище, пј	лище, прочерк — отсутствие данных)	0														
№ станции	Место отбора, и горизонт, глубина	Mg*	Ca*	ΙΥ	Fe	Mn	>	Cr	ပ္	ž	Cu	Zn	Cd	Pb	Hd	С _р , мг С/дм ³
1	р. Бомнак,	1.1	4.9	40	174	13.3	0.48	0.27	0.053	1.21	1.62	7.1	0.014	0.44	7.2	6.7
	1 км выше устья															
7	р. Бомнак, устье	6.0	4.7	54	325	15.4	0.63	0.28	0.056	1.09	1.80	7.9	0.016	0.49	7.1	8.9
3	р. Сугджарикан	6.0	3.8	92	368	19.3	0.82	0.26	0.062	0.70		8.1	0.019	0.34	8.9	9.7
4	р. Мульмуга	1:1	3.1	62	361	16.0	08.0	0.24	0.067	1.12		12.8	0.018	0.48	8.9	8.9
5	р. Темна	1.0	5.0	64	326	10.1	0.44	0.22	0.041	0.63		9.8	0.015	0.22	7.0	6.9
9	р. Кохани	1.0	4.0	63	341	18.8	0.64	0.37	0.071	06.0		9.3	0.015	0.32	7.0	7.5
7	р. Брянта,	1.0	4.5	61	311	19.0	89.0	0.28	0.069	1.02	1.50	8.8	0.014	0.32	7.1	8.3
	поверхностный горизонт															
8	10 м	1.0	4.8	63	372	15.8	0.71	0.20	0.069	0.87		9.1	0.013	0.35	7.0	7.8
6	20 M	1.0	4.8	57	279	12.0	0.75	0.27	0.067	1.26	2.12	9.6	0.010	0.72	7.0	8.1
10	вдхр, центральная часть,	1.1	4.3	63	183	14.0	69.0	0.32	0.059	1.38		14.1	0.017	0.28	7.0	9.5
	поверхностный горизонт															
П	20 м	1.0	4.3	54	293	15.0	0.67	0.27	0.048	1.06	1.72	11.7	0.015	0.26	7.0	7.8
12	40 м	1.0	4.2	54	230	15.8	0.59	0.26	0.052	0.94	1.96	8.6	0.012	0.44	7.2	7.5
13	р. Дуткан,	1.0	3.0	62	332	18.5	0.44	0.20	0.055	0.64	2.62	9.6	0.015	0.23	6.7	6.5
	поверхностный горизонт															
14	20 M	1.0	3.2	59	569			0.27	0.037	0.92	3.02		0.014	0.23	8.9	6.3
15	40 M	1.0	3.1	45	279			0.25	0.033	0.52	1.79		0.013	0.24	8.9	7.9
16	р. Ногда	1:1	4.7	29	264			0.30	0.049	1.09	1.81		0.015	0.28	7.1	8.1
17	р. Большие Дамбуки	1.0	4.3	75	322			0.29	0.068	1.15	2.20		0.016	5.01	7.2	0.6
18	р. Малые Дамбуки	1.0	8.8	74	294			0.29	0.063	1.56	1.50		0.015	0.45	6.9	8.0
19	р. Джигда	0.9	4.4	55	277	12.4	0.75	0.22	0.052	1.13	3.30	6.7	0.013	0.26	7.0	9.1
20	р. Инарогда	1.0	4.9	80	173			0.27	0.058	1.04	2.46		0.019	0.28	7.0	9.5
21	р. Гилюй	1.0	3.9	78	313			0.28	0.078	1.52	1.86		0.024	6.53	7.0	10.9
22	Р. Алгая	1.0	4.2	62	287			0.28	0.050	0.93	3.52		0.013	0.55	8.9	9.5
23–25		$1.0 \pm$			$311 \pm$			$0.27 \pm$	± 70.00	$0.95 \pm$	$2.70 \pm$		$0.019 \pm$	$0.56 \pm$	7.0 ±	9.8 ±
	приплотинная часть	± 0.1	± 0.5	± 2	± 21			± 0.06	± 0.015	± 0.1	± 0.5	7	± 0.003	± 0.12	± 0.2	± 1.2
26	р. Зея, 500 м	0.9	4.1	58	301			0.23	0.088	0.81	2.72		0.018	0.49	7.1	7.5
	ниже плотины ГЭС															
	Среднее для рек мира [39]	3.1	13.3	32	99	34	0.71	0.7	0.148	0.801	48	09.0	0.08	0.079	I	I
	$\Pi A K_{px}$	40	180	40	100	10		20**	10	10		10	5	9	I	I
* *****	3															

 * мг/дм 3 . ** Хром шестивалентный (Сг $^{6+}$).

Таблица 2. Распределение металло-гумусовых комплексов (мкг/дм³) и их доли (%) в растворенных формах элементов в водах Зейского водохранилища, его заливов и рек Зеи, Бомнак (в скобках — номер станции; верхняя строка — Ме—ГФК, нижняя — доля, % Ме—ГФК в элементе; вдхр — водохрпнилище)

его заливов и рек зеи, вомнак (в скооках	ак (в скос	жах — номер	мер стан.	ции; верх	няя строг	Ka — Me—ı	ФК , ниж	няя— доля,	% Me-1 4	к в элемен	не, вдхр	— водох	опнилище)
Место отбора	Mg	Ca	Al	Fe	Mn	^	Cr	Co	N.	Cu	Zn	Cd	Pb
р. Бомнак	37	141	21	95	3.7	0.19	0.12	0.015	0.58	62.0	2.4	0.001	0.16
1 км выше устья (1)	3.4	2.9	52.5	54.6	27.8	39.6	44.4	28.3	47.9	48.7	33.8	7.1	36.4
ycrbe (2)	17	88	28	167	4.5	0.25	0.13	0.017	0.52	0.91	2.7	0.001	0.19
	1.9	1.9	51.9	52.1	29.2	39.7	46.4	30.4	47.7	50.5	34.2	6.2	38.8
р. Сугджарикан (3)	29	110	39	199	5.3	0.33	0.12	0.017	0.32	0.54	3.1	0.003	0.13
4	3.2	3.0	51.3	54.1	27.5	40.2	46.1	27.4	44.9	50.0	38.3	10.5	38.2
р. Мульмуга (4)	36	94	32	196	4.5	0.33	0.11	0.020	0.50	9.76	5.5	0.001	0.20
	3.3	3.0	51.6	54.2	28.1	41.0	45.8	29.8	44.6	50.3	42.2	5.5	41.7
р. Темна (5)	28	125	33	174	2.7	0.19	0.11	0.012	0.26	1.07	3.6	0.001	0.09
	2.9	25	516	53.4	7 9 2	43.2	50.05	29.3	413	5 25	41.9	6.7	40.9
и Кохани (6)	; ç	 60	31.0	175	7.07	2:C+ 0.0	0.00	0.021	0.41	0.50	; «	<0.0	0.7
p. recount (9)	, c	, c	7.07	C 12	0.0	70.60	75.0 15.0	20.0	7.57	10.0	0.0	U.001	70.6
Ļ	2.7	2.7	4.7.7	21.2	0.67	40.0	4.C.4	29.6	45.0	49.7	40.7	пе оон.	0.04
р. Брянта,	64	149	67	601	7.0	0.28	cI.U	0.020	0.30	0./4	5.7	0.001	0.13
поверхностный горизонт (7)	4.5	3.1	47.5	51.1	30.0	40.8	46.4	30.0	49.0	49.3	42.0	7.1	40.6
10 M (8)	35	139	32	213	5.3	0.30	0.09	0.022	0.42	0.99	4.0	0.001	0.14
	3.5	2.9	50.8	57.2	33.5	42.2	45.0	31.9	48.3	51.6	43.8	6.9	40.0
20 M (9)	52	149	29	158	3.2	0.33	0.14	0.019	0.59	1.08	3.9	0.001	0.28
	5.2	3	50.9	56.4	32.1	44.0	7 15	283	47.2	50.8	40.2	10.01	38.0
вихи пентизикиза изстк	35	95	33	103	4.4	0.30	0.16	0.019	<i>C9</i> 0	1.07	0.9	0000	0.12
HARP, Remigration acts, (10)	2,5	, ,	0 05	26.7	21.7	25.5	707	22.2	20:07	50.5	2.0	11 0	20.00
110Верхностный горизонт (10)	7.5	7:7	5.00	7.6.	t	4.5.5	1.6	22.7	. · ·	50.0	17.7	0.00	7.7
20 M (11)	38 9	86	31	1/6	5.1 5.5	0.32	0.I.S	0.016	0.52	0.92	7.7	0.007	0.11
	3.8	2.3	57.4	60.1	34.0	8'.4	55.6	33.3	49.1	53.5	43.6	13.3	42.3
40 M (12)	35	96	29	132	5.3	0.27	0.13	0.016	0.46	1.03	4.1	0.001	0.18
	3.5	2.3	53.7	57.4	33.5	45.1	50.0	30.8	48.9	52.5	41.7	8.3	40.9
р. Дуткан,	34	96	34	190	5.5	0.20	0.09	0.019	0.27	1.32	3.8	0.001	0.09
поверхностный горизонт (13)	3.4	3.2	54.8	57.2	29.7	45.5	45.0	34.5	42.2	50.4	39.6	6.7	39.1
20 M (14)	38	116	32	163	4	0.27	0 14	0.013	0 38	1.63	×	0 00	60 0
(11) W 07	8 %	3.6	27.5	8 09	30.3	, r	2.15	35.1	71.0	57.0	2.5	200.5	30.0
	0.0	0.0	4.4.6	0.00		; ; ;	01.0	1.00	41.0	0.4.0	45.5	14.7	1.70
40 M (13)	30	501	55	169	8.0	0.23	0.12	0.011	0.27	0.94	2.5	0.001	0.11
	3.0	5.4	51.1	58.4	29.9	45.1	48.0	33.3	51.9	52.5	43.2	6.9	45.8
р. Ногда (16)	40	144	34	160	4.2	0.30	0.14	0.016	0.59	0.90	3.7	0.005	0.10
	3.6	3.1	50.7	9.09	32.6	42.9	46.7	32.7	53.0	49.7	44.6	13.3	35.7
р. Большие Дамбуки (17)	36	901	36	161	0.4	0.26	0.13	0.022	0.56	1.08	2.6	0.001	1.60
	3.6	2.5	48.0	50.0	32.3	32.5	8.44	32.4	48.7	49.1	29.9	6.3	31.9
р. Малые Дамбуки (18)	34	145	34	151	0.4	0.28	0.13	0.020	0.71	0.71	2.4	0.001	0.17
	3.4	3.0	45.9	51.7	33.9	41.8	44.8	31.4	45.5	47.3	30.0	6.7	37.8
р. Джигда (19)	33	154	28	141	3.8	0.34	0.10	0.017	0.54	1.62	5.6	0.001	60.0
	3.7	3.5	50.9	50.8	34.4	45.3	45.5	32.7	48.3	49.1	38.8	7.7	34.6
р. Инарогда (20)	40	144	34	93.4	4.2	0.30	0.13	0.016	0.49	1.31	3.9	0.003	0.10
	4.0	2.9	42.5	54.6	32.8	41.7	48.1	27.6	47.3	53.3	44.3	10.5	35.7
р. Гилюй (21)	39	154	37	158	4.3	0.27	0.12	0.023	0.48	06.0	2.8	0.003	2.14
	3.9	3.9	47.4	50.5	28.4	39.7	42.9	29.5	31.6	48.4	31.5	8.3	32.8
р. Алгая (22)	32	144	36	178	3.7	0.33	0.13	0.017	0.33	2.01	4.7	0.002	0.23
	3.2	3.4	58.1	62.3	30.1	45.3	46.4	34.0	35.5	57.1	47.0	15.4	42.8
вдхр., приплотинная часть	33 ± 3	2	34 ± 1	165 ± 19	4.13 ± 0.5	0.23 ± 0.02	0.14 ± 0.02	0.020 ± 0.003	0.46 ± 0.07	1.44 ± 0.13	4.2 ± 0.2	0.002	0.24 ± 0.01
(23–25)	$3.3 \pm 0.3 3.1 \pm$	0.1	54.0 ± 1.6	55.7 ± 1.7	31.1 ± 0.8	44.2 ± 1.2	48.6 ± 1.9	29.9 ± 1.0	48.4 ± 0.8	53.8 ± 1.9	47.4 ± 0.6	10.5	42.6 ± 1.1
р. Зея	40	151	30	165.9	4.4	0.21	0.10	0.028	0.37	1.40	3.15	0.003	0.17
500 м ниже плотины ГЭС (26)	4.4	3.7	51.7	55.1	29.5	43.8	45.8	31.8	45.7	51.3	47.2	11.1	36.3
							Ĭ						

Таблица 3. Логарифмы условных констант устойчивости ($\lg K$) комплексных соединений ионов металлов с гумусовыми веществами природных вод (по литературным данным)

Ионы металла	pН	Лиганд	$\lg K$	Метод определения	Литературный источник
G 2+	5.0	ФК	3.0	рН-потенциометрия	[5]
Ca ²⁺	5.0	ФК	3.1	То же	[50]
3.c. 2+	8.0	ГК	3.26	Гель-хроматография	[46]
Mg^{2+}	5.0	ФК	2.71	рН-хроматография	[50]
$\mathrm{Fe^{2+}}$	7.0	ФК	4.6	Гель-хроматография	[6]
Fe^{3+}	6.8	ФК	7.15	То же	[6]
Mn^{2+}	8.0	ФК	4.45	То же	[46]
	7.0	ГК	6.0	Анодная вольтамперометрия с накоплением	[46]
Cu^{2+}	8.0	ФК	8.4	Гель-хроматография	[46]
	7.5	ФК	5.7	То же	[6]
Al ³⁺	3.0	ФК	4.9	Ионный метод,	[41]
	4.0	ФК	5.2	потенциометрическое титрование	
	5.0	ФК	3.54	Ионный метод, потенциометрическое титрование	[50]
Zn^{2+}	6.8	ГК	5.0	Ультрафильтрация	[40]
	8.0	ΦК	5.36	Гель-фильтрация на нейтральных сефадексах	[46]
Ni ²⁺	5.0	ФК	3.81	рН-хроматография	[50]
INI	8.0	ГК	5.14	Гель-хроматография	[46]
	7.6	ФК	6.97	Ультрафильтрация, равновесный диализ	[42]
Co ²⁺	8.0	ГК	4.67	Гель-хроматография на нейтральных сефадексах	[46]
	8.0	ФК	4.90	То же	[46]
V^{4+}	5.0	ФК	5.6	Электронный парамагнитный резонанс, гель-хроматография	[52]
Pb^{2+}	6.0	ФК	5.0	Ионообменная хроматография	[5]
Cd ²⁺	4.0-8.0	ФК	3.15-4.08	Ионометрия, диализ	[49]

в водах высокое и составляет 42.5—58.1% валовых растворенных форм. Высокая степень связывания в анионные комплексы ионов Al^{3+} с $\Gamma\Phi K$ определена, в частности, в водах Киевского водохранилища (лесная зона) — 68—82% валовых растворенных форм [21].

Один из наиболее распространенных биогенных элементов на Земле, участвующих в круговороте органического вещества (ОВ) биосферы, — Fe.

Результаты показали, что содержание растворенного Fe в водах водохранилища было довольно высокое (\geq 300 мкг/дм³). Это в 2.3—5.7 раза выше показателей для рек мира и в 1.5—3.7 раз превышает ПДК $_{px}$ [27]. Предыдущие исследования [44] показали, что концентрация растворенного Fe в водах р. Зеи в ее среднем течении в летний меженный период составляла 248 мкг/дм³, более высо-

кие показатели — до 800 мкг/дм³ — определены для ее левобережного притока — р. Граматухи. Это свидетельствует об активном выносе растворенного Fe с водосборной территории р. Зеи. Для сравнения, в водах крупного правобережного притока Амура — р. Сунгари (полностью протекает по территории Китая) 98% Fe выносится во взвешенной форме [44].

Высокое содержание Fe в водах водохранилища обусловлено несколькими причинами. Одна из них связана с высокой железорудной минерализацией территории. Так, в бассейнах рек Брянты, Бомнак, Дамбуки, питающих водохранилище, выявлены обширные железорудные районы с серно-колчеданными и железо-титановыми оруденениями [7]. В тех или иных количествах и формах Fe постоянно присутствует во всех аккумулятивных образованиях в долинах рек и почвенном покрове гор на территории бассейна Амура. Другой важнейший источник растворенного Fe и его комплексов гумусовой природы в водах — уже упомянутая Al–Fe-гумусовая миграция из почв горного пояса [3]. Большая часть растворенного Fe в исследуемых водах находится в форме комплексов $Fe-\Gamma\Phi K$ (до 62.3%), более устойчивых по сравнению с ионными формами и менее доступных для биоты. Миграция Fe в системе водохранилища происходит в условиях низкой минерализациеи вод, преимущественно слабокислой и нейтральной реакции среды (рН 6.5-7.2), повышенного содержания C_p (до $10.9\,\mathrm{MF}\,\mathrm{C/дm^3}$) с высокой долей $\Gamma\Phi\mathrm{K}$ (50—70% от C_p). Цв вод по акватории водоема менялась от 70 до 125 град. В водоем постоянно выносятся воды с больших массивов торфяных верховых болот, особенно с левобережными притоками (реки Дуткан, Алгая), которые и являются здесь основным источником гумусовых веществ [45]. Они и обусловливают максимальную Цв вод [19]. Следует отметить, что в ландшафтах, богатых современными органогенными отложениями, интенсивность миграции Fe в поверхностных водах достаточно велика - коэффициент его водной миграции $K_{Fe} = 2.8$ [33]. Выявлена положительная корреляционная связь (r = 0.52, p < 0.05, n = 24) между содержанием Fe (в комплексах Fe-ГФК) и Цв вод водоема.

В вертикальном распределении Fe, особенно в центральной части водохранилища, выявлено увеличение концентраций с глубиной, где преимущественно и происходит формирование водного гумуса. Здесь на глубине 20—40 м установлена концентрация Fe в ~2 раза выше, чем в поверхностных водах. В предыдущие годы исследователями [23] выявлено увеличение валовых концентраций металлов с глубиной водохранилища. Однако придонные воды, к сожалению, авторами статьи не изучались. В целом воды характеризовались невысокими концентрациями ВВ в воде, которые менялись от 7.5 до 23.3 мг/дм³. Минимальные показатели отмечены для левобережных заливов Дуткан, Ногда, формирующихся под воздействием вод, поступающих с заболоченных территорий. Более высокие показатели выявлены в водах заливов Бомнак, Суджарикан, Гилюй, что не исключает привноса взвеси в результате проводимых изыскательских работ на водосборах этих рек.

Наряду с Fe Mn — наиболее распространенный элемент в поверхностных и подземных водах Приамурья [17]. В целом содержание растворенного Mn в водах Зейского водохранилища не превысило средних концентраций элемента для рек мира, но было выше $\Pi Д K_{px}$ в 1.1-1.9 раза. Наличие Mn в воде обусловлено высокой марганцевожелезистой минерализацией территории водосборов. Более низкие, по сравнению с Fe, концентрации Mn в водах объясняются невысокой его миграционной способностью ($K_{Mn}-0.25-1.0$) [33].

Содержание комплексов Mn— $\Gamma\Phi K$ в воде невысокое, всего 27—34.4% валовых растворенных форм элемента. Вероятно, большая часть растворенного Mn представлена в виде свободных ионов и/или в составе карбонатных и гидрокарбонатных комплексов. В целом для поверхностных вод бассейна Амура процессы комплексообразования $\Gamma\Phi K$ с ионами Mn^{2+} не доминируют [20]. Исследователи [22] также указывают на невысокую (24—27%) закомплексованность данного металла $\Gamma\Phi K$.

Растворенные формы Рb в исследуемых водах имеют наиболее вариабельные показатели — от 0.22 до 6.53 мкг/дм³. Будучи токсичными для живых организмов соединения Pb^{2+} нарушают обмен веществ и выступают ингибиторами ферментов [15]. Максимальные показатели содержания растворенного Pb определены для вод залива р. Гилюй. Они превысили в 1.1 раза $\Pi Д K_{px}$, что, вероятно, связано с разработкой месторождений полиметаллов на территории бассейна этой реки (Усть-Гилюйский массив) [7]. Немного меньше (на 6%) концентрации Pb были в воде залива р. Большие Дамбуки, что также связано с горнорудными разработками на территории ее бассейна.

Степень закомплексованности ионов Pb^{2+} природными гумусовыми веществами в водах водохранилища менялась в диапазоне от 31.9 до 45.8% общих растворенных форм. Литературные данные о связывании ионов Pb^{2+} лигандами гумусовой природы весьма противоречивы. Одни авто-

ры считают, что комплексы Pb— $\Gamma\Phi K$ весьма устойчивы и сравнимы с соответствующими комплексами Cu^{2+} [40, 51]. Другие считают, что комплексы Pb^{2+} с "водным гумусом", напротив, уступают комплексообразованию Hg^{2+} , Cu^{2+} , Ni^{2+} и Zn^{2+} [48]. В целом в пресных поверхностных водах Pb на 90-98% существует в составе взвесей, что связано с его родством с природными адсорбентами (гидроксиды металлов, глинистые минералы и др.) [22].

Cu- один из важных микроэлементов в природных средах. Cu может иметь различную валентность, однако для поверхностных вод характерна степень окисления +2. Концентрация валовой растворенной Cu в исследуемых водах в целом достаточно высокая — до 3.52 мкг/дм³, что в 2.4 раза выше средних показателей для рек мира и в 3.5 раза выше $\Pi J K_{px}$. Повышенные концентрации Cu в воде связаны с наличием и разработкой многочисленных месторождений комплексных золото-медно-молибденовых, медно-железных и медно-никелевых руд [7].

Комплексы Си-ГФК в исследуемых водах присутствуют в значительных количествах и составляют 48.4—57.1% валовых растворенных форм. В целом для поверхностных вод бассейна Амура характерно высокое содержание растворенных форм Си и ее хелатных комплексов [20]. Даже в водах правого притока Амура – р. Сунгари, водосбор которой существенно преобразован в результате антропогенного воздействия, комплексы Си–ГФК составляли 56% общих растворимых форм элемента. Следует отметить, что комплексные соединения $\Gamma \Phi K$ с Cu^{2+} имеют более высокие log K по сравнению с другими ионами и лишь немногим уступают Fe³⁺. В частности, в поверхностных водах Каневского водохранилища, оз. Люцимир (Украина), принадлежащих разным природным зонам, выявлено значительное количество комплексов ионов Cu²⁺ с ФК и особенно с ΓK [21].

В исследуемых водах содержание растворенного Zn менялось в широком диапазоне — от 6.7 до 14.1 мкг/дм³, что более чем на порядок выше средних концентраций элемента для рек мира и незначительно превышает ПДК_{рх} для вод некоторых станций наблюдений. Повышенные показатели обусловлены наличием на территории бассейна Зеи значительного количества свинцовоцинковых рудопроявлений [7]. Содержание комплексов Zn-ГФК в водах менялось в диапазоне 29.9–47.4% общего растворенного Zn. Единого мнения о комплексообразовании ГФК с ионами Zn^{2+} нет. Однако авторы [46] считают, что Zn^{2+} образует с высокомолекулярными ОВ гумусовой природы устойчивые хелатные комплексы, уступающие лишь ионам Hg^{2+} , Cu^{2+} и Ni^{2+} . Проведенные ранее исследования также показали высокую степень связывания ионов Zn^{2+} с $\Gamma\Phi K$ в водах рек, дренирующих различные природные зоны бассейна Амура [43].

Установлено, что содержание валового растворенного Ni в изучаемых водах в целом невысокое (до 1.56 мкг/дм³) и близко к содержаниям этого элемента в реках мира. В поверхностные воды Ni поступает из породообразующих минералов основных пород, вторичных минералов современной коры выветривания и почв [10]. Ni входит в состав медно-никелевых руд Брянтинского, Верхнезейского, Дамбукинского и других рудных районов, расположенных вдоль западного побережья Зейского водохранилища. В поверхностных водах 94.5% его переносятся во взвешенном состоянии [11]. Количество комплексов Ni-ГФК в исследуемых водах варьировало от 31.6 до 53.0% общих растворенных форм этого элемента. Невысокую закомплексованность Ni²⁺ авторы [22] объясняют конкурентным связыванием ФК с ионами Fe³⁺ и Cu²⁺.

Как и Ni, Co — токсичный металл как для человека, так и для водной биоты. Содержание общего растворенного Co в исследуемых водах в целом невысокое и менялось от 0.033 до 0.088 мкг/дм³, что ниже средних содержаний для рек мира. Степень закомплексованности ионов $\mathrm{Co^{2+}}$ лигандами гумусовой природы в целом невысокая — 27.4-35.1% общего растворенного $\mathrm{Co^{2+}}$ и близка к таковой для ионов $\mathrm{Mn^{2+}}$ [20].

Валовое содержание растворенного Сг в исследуемых водах невысокое — 0.20—0.37 мкг/дм³, что в ≥2 раза ниже средних показателей для рек мира. Считается, что Сг в поверхностных водах переносится преимущественно во взвешенных формах. Несмотря на невысокие количественные характеристики, содержание комплексов Сг−ГФК в воде достаточно высокое и составило 42.9—55.6% валовых растворенных форм элемента. Исследования в предыдущие годы показали также высокую (43% общих растворенных форм элемента) закомплексованность данного элемента ГФК не только в водах таежных рек, но также в водах с низкой Цв лесостепных ландшафтов бассейна Верхнего Амура [43].

Несмотря на то, что V относится к рассеянным элементам и в природе в свободном виде не встречается, его соединения высокотоксичны для биоты [8], что обусловливает необходимость контроля его содержания в природных средах. Присутствие данного элемента в воде обусловлено наличием его в пироксенах и магнетитах, широко распространенных в Приамурье [7]. Содержание валового растворенного V в водах менялось от 0.44 до 0.82 мкг/дм³, что близко к средней концентрации элемента в реках мира и <ПД $K_{\rm px}$. Ко-

личество комплексов V $-\Gamma\Phi K$ в воде составляло 32.5-45.5% общего растворенного V, что подтверждает ранее полученные результаты о достаточно высокой степени его комплексообразования с $\Gamma\Phi K$ [20].

Весьма токсичный металл для окружающей среды — Cd. В поверхностных водах он мигрирует преимущественно в растворенном состоянии и для него характерна степень окисления +2. Концентрации валового растворенного Cd в изучаемых водах очень низкие — от 0.010 до 0.024 мкг/дм³, что существенно ниже средних показателей для рек мира. Его поступление в поверхностные воды в основном связано с выщелачиванием из полиметаллических руд, привносом из почв и рудных отвалов в результате разработки месторождений. При этом содержание комплексов Cd-ГФК в водах невысокое (до 15.4% валовых растворенных форм элемента) или они вовсе не обнаружены. Полученные результаты еще раз подтверждают, что Cd не свойственны процессы комплексообразования с ГФК [20]. Вероятно, среди его растворенных форм доминируют ионные формы или комплексы с неорганическими лигандами.

выводы

Установлено, что воды Зейского водохранилища содержат растворенные формы металлов и их металло-гумусовые комплексы преимущественно в повышенных концентрациях, что связано с их миграцией с заболоченных территорий и горно-таежных почв водоразделов, а также с широким развитием на водосборной территории железорудной и полиметаллической минерализации горных пород. В целом, в водах водохранилища и его придаточной системы проявляется устойчивая закономерность связывания металлов в комплексы с $\Gamma\Phi K$, которая может быть представлена следующим рядом: Fe > Al > Cu > Ni > Cr > V > Zn > Pb > Co > Mn > Mg \geq Ca > Cd.

Авторы выражают благодарность Н.В. Бердникову, А.В. Штаревой (ХИАЦ ИТиГ ДВО РАН) за помощь в определении элементов в поверхностных водах; С.Ю. Игнатенко, Е.Н. Игнатенко (Зейский государственный природный заповедник) и сотрудникам аналитической лаборатории при Зейском водохранилище за помощь при сборе полевого материала.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Алекин О.А*. Основы гидрохимии. Л.: Гидрометеоиздат, 1970. 444 с.
- 2. Амурская область: опыт энциклопедического словаря / Под ред. *В.В. Воробьева*, *А.П. Деревянко*. Благовещенск: Амурское отд. Хабаровского кн. из-ва, 1989. 416 с.

- 3. *Ананко Т.В., Фридланд В.М.* О формировании горных бурых лесных почв, буротаежных почв и подбуров хребта Тукурингра // Почвоведение. 1983. № 10. С. 20—32.
- 4. Бингам Ф.Т., Коста М., Эйхенбергер Э. и др. Некоторые вопросы токсичности ионов металлов / Под ред. Х. Зигеля, А. Зигеля. М.: Мир, 1993. 368 с. Пер. с англ.
- 5. *Варшал Г. М.* Формы миграции фульвокислот и металлов в природных водах. Автореф. дис. ... докт. хим. наук. М.: ГЕОХИ РАН, 1994.
- 6. Варшал Г.М., Велюханова Т.К., Кощеева И.Я., Дорофеева В.А., Баучидзе Н.С., Касимова О.Г., Махарадзе Г.А. Изучение химических форм элементов в поверхностных водах // Журн. аналит. химии. 1983. Т. 38. № 9. С. 1590—1600.
- 7. Васильев И.А., Капанин В.П., Ковтонюк Г.П., Мельников В.Д., Лужнов В.Л., Данилов А.П., Сорокин А.П. // Минерально-сырьевая база Амурской области на рубеже веков / Отв. ред. И.А. Васильев. Благовещенск: Зея, 2000. 168 с.
- 8. Воробьева Н.М., Федорова Е.В., Баранова Н.И. Ванадий: биологическая роль, токсикология и фармакологическое применение // Биосфера. Фонд научных исследований XXI века. 2013. Т 5. № 1. С 77—81.
- 9. *Вуколов Э.А.* Основы статистического анализа. Практикум по статистическим методам и исследованию операций с использованием пакетов STATISTICA и EXCEL. М: Форум, 2008. 464 с.
- Геодинамика, магматизм и металлогения Востока России. Кн. 1 / Под ред. А.И. Ханчука. Владивосток: Дальнаука, 2006. 572 с.
- 11. Гордеев В.В. Геохимия системы река-море: монография. М.: ИП Матушкина И.И., 2012. 452 с.
- 12. ГОСТ 31861—2012. Вода. Общие требования к отбору проб. М.: Стандартинформ, 2013.
- 13. Государственная геологическая карта Российской Федерации. 1: 200000. Сер. Становая. Лист N-52-XIV (Береговой) / Под ред. *Ю.В. Кошкова*. СПб.: ВСЕГЕИ, 2008.
- 14. *Ершов Ю.И.* Закономерности почвообразования и выветривания в зоне перехода от Евразийского континента к Тихому океану. М.: Наука, 1984. 282 с.
- 15. *Иванов В.В.* Экологическая геохимия элементов. М.: Недра, 1994. Кн. 1. 340 с.
- Красюков В.Н., Лапин И.А. Способ определения гумусовых веществ в природных водах. А. с. 1385041.
 БИ. 1988. № 12. С. 175.
- 17. *Кулаков В.В., Кондратьева Л.М., Голубева Е.М.* Геологические и биогеохимические предпосылки повышенного содержания железа и марганца в воде р. Амур // Тихоокеан. геология. 2010. Т. 29. № 6. С. 66—76.
- 18. Лапин И.А., Красюков В.Н. Роль гумусовых веществ в процессах комплексообразования и миграции

- металлов в природных водах // Вод. ресурсы. 1986. № 1. С. 134—145.
- 19. *Левшина С.И*. Растворенное и взвешенное органическое вещество вод Амура и Сунгари // Вод. ресурсы. 2008. Т. 35. № 6. С. 745—753.
- 20. *Левшина С.И*. Роль гумусовых кислот в миграции металлов в речных водах Приамурья // Вод. ресурсы. 2015. Т. 42. № 6. С. 635–646.
- 21. Линник П.Н., Жежеря В.А., Линник Р.П., Иванченко Я.С. Влияние компонентного состава органических веществ на соотношение растворенных форм металлов в поверхностных водах // Гидробиол. журн. 2012. Т. 48. № 5. С. 97—114.
- 22. *Линник П.Н.*, *Набиванец Б.И*. Формы миграции металлов в пресных поверхностных водах. Л.: Гидрометеоиздат, 1986. 269 с.
- 23. Лопатко А.С., Карандашов А.И., Юдина И.М., Пискунов Ю.Г. Состав воды Зейского водохранилища спустя 30 лет с начала его заполнения // Материалы всерос. науч.-практ. конф. "Научные основы мониторинга водохранилищ" (Дружининские чтения. Вып. 2). Хабаровск: ИВЭП ДВО РАН, 2005. С. 69—71.
- 24. *Моисеенко Т.И. Кудрявцева Л.П., Гашкина Н.А.* Рассеянные элементы в поверхностных водах суши. М.: Наука, 2006. 261 с.
- 25. Мордовин А.М., Петров Е.С., Шестеркин В.П. Гидроклиматология и гидрохимия Зейского водохранилища. Владивосток; Хабаровск, 1997. 138 с.
- 26. *Мур Дж. В., Рамамурти С.* Тяжелые металлы в природных водах. М.: Мир, 1987. 288 с.
- 27. Перечень рыбохозяйственных нормативов: предельно допустимых концентраций (ПДК) и ориентировочно безопасных уровней воздействия (ОБУВ) вредных веществ для воды водных объектов, имеющих рыбохозяйственное значение. М.: ВНРИРО, 2010. 304 с.
- 28. *Перминова И.В.* Анализ, классификация и прогноз свойств гумусовых кислот. Дис. ... докт. хим. наук. М.: МГУ, 2000. 360 с.
- 29. ПНД Ф 14.1.2:4.143-98 Количественный химический анализ вод. Методика выполнения измерений массовых концентраций алюминия, бария, бора, железа, кобальта, марганца, меди, никеля, стронция, титана, хрома и цинка в пробах питьевых и сточных вод методом ИСП Спектрофотометрии М.: Аналит. центр "Росса", 2019. 26 с.
- 30. РД 52.24.468-2005 Взвешенные вещества и общее содержание примесей в водах. Методика выполнения измерений массовой концентрации гравиметрическим методом / Разработчики Л.В. Боева, А.А. Назарова. Ростов-на-Дону: Гидрохим. ин-т, 2005. 33 с.
- 31. Ресурсы поверхностных вод СССР. Дальний Восток. Верхний и Средний Амур / Под ред. А.П. Муранова. Л.: Гидрометеоиздат, 1966. Т. 18. Вып. 1. 779 с.

- 32. *Caem Ю.Е., Ревич Б.А., Янин Е.П.* Геохимия окружающей среды. М.: Недра, 1990. 335 с.
- 33. *Труфанов А.И. Коробий Э.Н.* О миграции железа и микроэлементов в природных водах Среднеамурской впадины // Природные воды Дальнего Востока / Под ред. *А.А. Степанова*, *К.П. Караванова*. Хабаровск: ХабКНИИ, 1973. Сб. № 13. С. 106—112.
- 34. *Харитонова В.А., Вах Е.А.* Редкоземельные элементы в поверхностных водах Амурской области. Вест. Томского гос. ун-та. 2015. № 396. С. 232—244.
- 35. Чудаева В.А., Шестеркин В.П., Чудаев О.В. Микроэлементы в поверхностных водах бассейна р. Амур // Вод. ресурсы. 2011. Т. 38. № 5. С. 606—617.
- 36. *Шестеркин В.П.* Солевой состав вод Зейского водохранилища // Вод. хоз-во России. 2015. № 5. С. 32—42.
- 37. BS ISO (British Standard International Organization of Standardization) 8245. Water quality guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC). London: British Standard Institution, 1999.
- 38. Buchwalter D.B., Linder G., Curtis L.R. Modulation of cupric ion activity by pH and fulvic acid as determinants of toxicity in *Xenopus laevis* embryos and larvae // Environ. Toxicol. Chem. 1996. V. 15. № 4. P. 568–573.
- 39. *Gaillardet J., Viers J., Dupre B.* Trace Elements in River Waters // The Treatise on Geochemistry / Eds *J.I. Drever, H.D. Holland, K.K. Turekian.* Oxford: Elsevier-Pergamon, 2004. V. 5. P. 225–272.
- 40. *Guy R.D., Chakrabarti C.L.* Studies of metal-organic interactions in model systems pertaining to natural waters // Can. J. Chem. 1976. V. 54. № 16. P. 2600–2611.
- 41. Lakshman S., Mills R., Fang F. et al. Use of fluorescence polarization to probe the structure and aluminum complexation of three molecular weight fractions of a soil fulvic acid // Anal. Chim. Acta. 1996. № 321. 113—119.
- 42. *Lee J*. Complexation analysis of fresh waters by equilibrium diafiltration // Water Res. 1983. V. 17. № 5. P. 501–510.
- 43. *Levshina S.* An assessment of metal-humus complexes in river waters of the Upper Amur basin, Russia // Environ. Monitoring and Assessment. N. Y.: Springer, 2018. V. 190. № 1. P. 18.
- 44. *Levshina S.I.* Iron Distribution in Surface Waters in the Middle and Lower Amur Basin // Water Resour. 2012. V. 39. № 4. P. 375–383.
- 45. Levshina S., Sirotsky S. Organic Matter Distribution in the Zeya Reservoir, Central Priamurye, Russia // Natural Organic Matter: Structure-Dynamics Innovative Applications. 17th Meeting Int. Humic Substances Society / Eds Y. Deligannakis, I. Konstantinou. Ioannina, Greece, 2014. P. 68–69.
- 46. *Mantoura R.F.C.*, *Dixon A.*, *Riley J.P*. The speciation of trace-metals with humic compounds in natural waters // Thalassia Jugoslavica. 1978. V. 14. № 1–2. P. 127–145.
- 47. Olk D.C., Bloom P.R., Perdue E.M., McKnight D.M., Chen Y., Farenhorst A., Senesi N., Chin Y-P., Schmitt-

- Kopplin P., Hertkorn N., Harir M. Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters // J. Environ. Quality. 2019. V. 48. № 2. P. 217–232.
- 48. *Pauli F.W.* Heavy-metal humates and their behavior against hydrogen sulfide // Soil Sci. 1975. V. 119. № 1. P. 98–105.
- 49. *Saar R.A.*, *Weber J.H.* Complexation of cadmium (II) with water- and soil-derived fulvic acids: effects of pH and fulvic acid concentration // Can. J. Chem. 1979. V. 57. № 11. P. 1263–1268.
- 50. *Sposito G*. Trace metals in contaminated waters // Environ. Sci. Technol. 1981. V. 15. № 4. P. 396–403.
- 51. *Steinberg C*. Species of dissolved metals derived from oligotrophic hards water // Water Res. 1980. V. 14. № 9. P. 1239–1250.
- 52. *Templeton G.D., Chasteen N.D.* Vanadium-fulvic acid chemistry: conformation and binding studies by electron spin probe techniques // Geochim. Cosmochim. Acta. 1980. V. 44. № 5. P. 741–752.