РАЗВИТИЕ МЕТОДОВ ГЕОФИЗИЧЕСКОЙ ГИДРОДИНАМИКИ

УДК 551.511.61;532.529.2;536.24

О СУЩЕСТВОВАНИИ В ПОВЕРХНОСТНОМ СЛОЕ АТМОСФЕРЫ ЯРУСА ВЫНУЖДЕННОЙ КОНВЕКЦИИ С ФИКСИРОВАННОЙ НИЖНЕЙ ГРАНИЦЕЙ¹

© 2022 г. А. Н. Вульфсон^{а, b, *}, П. В. Николаев^{с, **}, О. О. Бородин^{а, ***}

^а Институт водных проблем РАН, Москва, 117701 Россия ^b Национальный исследовательский университет "Высшая школа экономики", Москва, 101000 Россия ^c Национальный исследовательский технологический университет "МИСиС", Москва, 119049 Россия *e-mail: vulfson@ipng.ru **e-mail: borodin@ipng.ru **e-mail: borodin@ipng.ru ***e-mail: pvnikolaev@misis.ru Поступила в редакцию 27.09.2021 г. После доработки 27.09.2021 г. Принята к публикации 07.10.2021 г.

В конвективном поверхностном слое атмосферы выделен верхний ярус вынужденной конвекции с фиксированной нижней границей. Показано, что для описания вторых турбулентных моментов в этом ярусе эффективны "линейные" аппроксимации. Эти аппроксимации соответствуют усеченным разложениям в ряд Тейлора по обратной безразмерной высоте, сохраняющим только два слагаемых. Первые слагаемые разложений не учитывают ветер и соответствуют предельным соотношениям теории подобия Монина–Обухова в режиме свободной конвекции. Вторые слагаемые разложений учитывают ветер и его влияние на конвекцию. Существование яруса вынужденной конвекции с фиксированной границей приводит к построению однопараметрического семейства аналитических аппроксимаций турбулентных моментов, зависящих от высоты нижней границы этого яруса. Предложенные аппроксимации дисперсий вертикальной скорости, флуктуаций температуры, флуктуаций влажности и флуктуаций углекислого газа сопоставлены с известными экспериментальными данными как над водной поверхностью, так и над поверхностью суши.

Ключевые слова: поверхностный слой атмосферы, теория подобия Монина–Обухова, линейные аппроксимации универсальных функций.

DOI: 10.31857/S0321059622020158

введение

Поверхностным слоем атмосферы называют тонкий слой воздуха порядка 100 м, прилегающий к подстилающей поверхности суши или водной поверхности. В ситуации, когда воздух нагревается потоком тепла, поступающим в атмосферу с нижней границы, поверхностный слой называют конвективным поверхностным слоем.

Классическая теория подобия поверхностного слоя атмосферы впервые представлена в [4, 5] для аппроксимации первых турбулентных моментов скорости и температуры. В рамках теории Монина—Обухова высота поверхностного слоя *h* считается бесконечной, так как *h* не входит в число определяющих параметров подобия.

Пусть z — высота уровня над подстилающей поверхностью; $L_* < 0$ — параметр длины Монина—Обухова [6]. Введем безразмерную высоту $\xi = z/|L_*|$. Тогда вертикальная протяженность конвективного поверхностного слоя определяется неравенствами $0 \le \xi = z/|L_*| < \infty$.

Заметим, что $|L_*| = 0$ в случае отсутствия ветра и положительного потока тепла H > 0 на подстилающей поверхности [6]. Поэтому область $\xi \ge 1$ соответствует режиму свободной конвекции. Известно, что в области $\xi \ge 1$ теория подобия Монина–Обухова позволяет найти также тур-

¹ Работа выполнена в рамках исследовательского проекта 0147-2019-0001 (государственная регистрация АААА-А18-118022090056-0).

булентные моменты более высокого порядка. В частности, аппроксимации турбулентных моментов второго порядка приведены в работах [13, 21]. Аппроксимации турбулентных моментов поверхностного слоя, соответствующие случаю $\xi = z/|L_*| = \infty$, называют свободно-конвективными пределами.

В настоящей работе в конвективном поверхностном слое атмосферы выделена верхняя часть области $\xi_0 \leq \xi = z/|L_*| < \infty$ с фиксированной нижней границей $\xi_0 \approx 6 \times 10^{-2}$. Следуя подходу [3], для аппроксимации турбулентных моментов в области $\xi_0 \leq \xi < \infty$ использованы универсальные "линейные" формы, состоящие из двух слагаемых. Первые слагаемые "линейных" аппроксимаций соответствуют свободно-конвективным пределам в области $\xi \gg 1$. Вторые слагаемые "линейных" аппроксимаций получены разложением универсальных функций в ряд Тейлора по параметру ξ^{-1} и включают ветер. Поэтому выделенная область $\xi_0 \leq \xi < \infty$ соответствует ярусу вынужденной конвекции.

Рассмотрим семейство турбулентных моментов, в котором индекс *i* характеризует выбранный турбулентный момент. Предложенные линейные аппроксимации позволяют определить для вертикального профиля *i*-го турбулентного момента точку экстремума ξ_{0i} . Существование яруса вынужденной конвекции с фиксированной нижней границей означает, что экстремальные точки всех турбулентных профилей совпадают, т. е. $\xi_{0i} = \xi_0$. Заметим, что в области $0 < \xi < \xi_0$ "линейные" аппроксимации моментов не соответствуют экспериментальным данным и теряют физический смысл. Поэтому экстремальную точку ξ_0 следует рассматривать как нижнюю границу яруса вынужденной конвекции.

Существование параметра ξ_0 , общего для всех турбулентных профилей, значительно уменьшает количество неопределенных коэффициентов в "линейных" аппроксимациях. Можно показать, что априорное задание экстремальной точки ξ_0 позволяет вычислить все неопределенные коэффициенты "линейных" аппроксимаций. Иными словами, понятие яруса вынужденной конвекции с фиксированной границей приводит к построению однопараметрического семейства аппроксимаций, зависящего от неопределенного параметра ξ_0 . Априорное значение ξ_0 следует задавать так, чтобы реализовать условие приемлемого соответствия экспериментальным данным. Величина $\xi_0 \approx 6 \times 10^{-2}$ реализует это условие.

Аналитическое построение универсального однопараметрического семейства "линейных"

ВОДНЫЕ РЕСУРСЫ том 49 № 2 2022

аппроксимаций, соответствующих натурным измерениям вторых турбулентных моментов яруса вынужденной конвекции, является основным результатом представленной работы.

ЛОКАЛЬНЫЕ ПАРАМЕТРЫ ДИНАМИЧЕСКОЙ СКОРОСТИ, ПОТОКА ПЛАВУЧЕСТИ

Пусть t — время; x, y, z — декартова системы координат, расположенная на подстилающей поверхности z = 0, при этом ось z направлена противоположено ускорению силы тяжести g.

Допустим, что u = u(x, y, z, t), v = v(x, y, z, t) и w = w(x, y, z, t) – компоненты вектора скорости вдоль осей x, y и z соответственно. Предположим, что $\overline{u} = \overline{u}(z)$ – средняя величина горизонтальной скорости вдоль оси x; $\overline{v} = 0$ и $\overline{w} = 0$ – средние значения горизонтальной и вертикальной скорости вдоль осей y и z соответственно. Равенство $\overline{w} = 0$ следует из уравнения неразрывности системы теории конвекции [1, 19] и условий периодичности на вертикальных границах области. Тогда $u'(x, y, z, t) = u(x, y, z, t) - \overline{u}(z)$, v' = v(x, y, z, t) и w' = w(x, y, z, t) – представляют возмущения скорости вдоль осей x, y и z соответственно.

Будем считать, что T = T(x, y, z, t) – температура воздуха; p = p(x, y, z, t) – давление; $p_0 =$ $= 10^5$ Па – стандартное давление воздуха на подстилающей поверхности; R_d и c_p – соответственно газовая постоянная и удельная теплоемкость сухого воздуха. Пусть $\Theta = T(p/p_0)^{-R_d/c_p}$ – потенциальная температура воздуха; $\Theta_0 = \text{const}$ – постоянное значение средней потенциальной температуры на верхней границе поверхностного слоя [19]. Пульсацию потенциальной температуры $\Theta'_a(x, y, z, t) = \Theta(x, y, z, t) - \Theta_0$ и безразмерную пульсацию потенциальной температу-

ры $\theta_a(x, y, z, t) = \Theta'_a(x, y, z, t) / \Theta_0$ определим в соответствии с [19]. Эти величины близки к флуктуациям и безразмерным флуктуациям температуры *T*. Величину $g\theta_a(x, y, z, t)$ будем называть ло-кальной "адиабатической" плавучестью [22].

В классической теории Монина—Обухова скорость трения $U_* > 0$ задана соотношением

$$U_* = \lim_{z \to 0} \left(-\overline{u' \, w'} \right)^{1/2} > 0, \tag{1}$$

где U_* имеет размерность $[U_*] = M/c$. Определение (1) согласовано с уравнением турбулентной кинетической энергии в одномерном потоке (например, [11]).

Введем параметр "адиабатического" потока плавучести на подстилающей поверхности $gS_{\theta} > 0$ и параметр турбулентной плавучести $g\Theta_{*} < 0$, полагая, что

$$gS_{\theta} = \lim_{z \to 0} \overline{g\theta_a w} > 0, \quad g\Theta_* = \frac{gS_{\theta}}{U_*} < 0, \tag{2}$$

 gS_{θ} и $g\Theta_{*}$ имеют размерности $[gS_{\theta}] = M^{2}/c^{3}$ и $[g\Theta_{*}] = M/c^{2}$.

Пусть H – средний поток тепла, поступающий в атмосферу с подстилающей поверхности; ρ_0 – средняя плотность воздуха на подстилающей поверхности; $T_* < 0$ – температурный параметр теории Монина–Обухова. Тогда с учетом (2) получим

$$gS_{\theta} = \left(\frac{g}{\Theta_0}\right) \frac{H}{c_p \rho_0}, \quad g\Theta_* = \left(\frac{g}{\Theta_0}\right) T_*.$$

$$T_* = \Theta_* \Theta_0.$$
(3)

Равенства (3) указывают на пропорциональность определяющих параметров gS_{θ} и $g\Theta_*$ традиционным параметрам теории подобия Монина–Обухова *H* и T_* .

В работе [3] показано, что использование параметров gS_{θ} и $g\Theta_*$ вместо параметров H и T_* более эффективно теоретически и не влияет на обработку и использование экспериментальных данных. Поэтому далее для описания поверхностного слоя сухого воздуха теория подобия использует три базовых параметра: z, gS_{θ} и U_* . Параметр высоты z – переменный, параметры потока плавучести gS_{θ} и динамической скорости U_* – постоянные.

Рассмотрим поверхностный слой влажной атмосферы. Пусть q = q(x, y, z, t) — влажность воздуха; $\overline{q} = \overline{q}(z)$ — средняя величина влажности. Следуя [5] и [18], введем также флуктуацию влажности: $q'(x, y, z, t) = q(x, y, z, t) - \overline{q}(z)$.

Опираясь на аналогию с соотношениями (1), (2), введем параметр модифицированного потока влажности на подстилающей поверхности gS_q и модифицированный параметр влажности gq_* . Тогда получим:

$$gS_q = \lim_{z \to 0} \overline{gqw} = \lim_{z \to 0} \overline{gq'w'} > 0, \quad gq_* = -\frac{gS_q}{U_*} < 0.$$
(4)

Здесь gS_q и gq_* имеют размерности $[gS_q] = M^2/c^3$ и $[gq_*] = M/c^2$.

Из определения (4) следует, что безразмерный параметр q_* идентичен параметру влажности классической теории подобия Монина—Обухова, определенному, например, согласно [18].

Параметры $gS_{\theta} > 0$, $gS_q \ge 0$ и $U_* > 0$ позволяют ввести постоянный параметр длины для влажной атмосферы $L_*^{\nu} < 0$. Тогда, следуя, например, [10] и [18], получим

$$L_{*}^{v} = -\frac{U_{*}^{3}}{k_{v} \left(gS_{\theta} + 0.61gS_{q}\right)},$$
(5)

 $k_v = 0.4 -$ постоянная Кармана.

Далее будет использовано приближение малого модифицированного потока влажности $0 \le gS_q \ll 1.64 \times gS_{\theta}$. Это приближение справедливо:

 а) над достаточно сухими участками суши с интенсивным конвективным потоком тепла и малым испарением;

б) над водными поверхностями в условиях, когда поток плавучести определяется в основном испарением.

В самом деле, пусть $L_W = 2260 \text{ кДж/кг} -$ удельная теплота испарения воды, $c_p = 1.005 \times$ × $10^3 \text{ Дж/(кг K)} -$ удельная теплоемкость сухого воздуха, $\Theta_0 \approx 300 \text{ K} -$ среднее значение потенциальной температуры, тогда $L_W/(c_P\Theta_0) \approx 7.5$. Поэтому можно считать, что $0 \le gS_q \ll$ $\le 1.64 L_W/(c_P\Theta_0) gS_q \approx 1.64 gS_{\theta}$. Полученное неравенство доказывает справедливость сделанного предположения.

В приближении $0 \le gS_q \ll 1.64gS_{\theta}$ модифицированный поток влажности gS_q не входит в определение параметра длины (5), так что $L_*^v = L_*$, где

$$L_* = -\frac{U_*^3}{k_{\rm v}gS_{\theta}}.\tag{6}$$

Соотношение (6) определяет классический параметр длины Монина—Обухова *L*_{*} для сухой атмосферы.

Тем не менее приближение (6) для описания турбулентности влажной атмосферы использовано, например, в работе [9].

Приложение теории подобия для описания конвективного поверхностного слоя влажного воздуха предполагает использование четырех базовых параметров: z, gS_{θ} , gS_{q} и U_{*} . Параметр высоты z – переменный, параметры потоков плаву-

ВОДНЫЕ РЕСУРСЫ том 49 № 2 2022

чести и влажности gS_{θ} , gS_{q} , а также параметр динамической скорости U_{*} – постоянные.

Существенно, что в приближении $0 \le gS_q \ll \le 1.64gS_{\theta}$ поток влажности gS_q как базовый параметр подобия не влияет на вычисление турбулентных моментов, существующих в сухой атмосфере при $gS_q = 0$, и должен быть учтен только при вычислении турбулентных моментов влажности q.

ТЕОРИЯ ПОДОБИЯ МОНИНА–ОБУХОВА И СВОБОДНО-КОНВЕКТИВНЫЕ ПРЕДЕЛЫ ПОВЕРХНОСТНОГО СЛОЯ

Рассмотрим конвективный поверхностный слой сухой атмосферы в условиях свободной конвекции $gS_{\theta} > 0, U_* = 0$. В этом случае существуют только два определяющих параметра — gS_{θ} и *z*.

В соответствии с [21] выражения для вторых моментов вертикальной скорости и плавучести имеют следующий вид:

$$\overline{w^{2}} = \lambda_{ww} (gS_{\theta})^{2/3} z^{2/3}, \ \overline{(g\theta_{a})^{2}} = \lambda_{\theta\theta} (gS_{\theta})^{4/3} z^{-2/3}, \ (7)$$

где λ_{ww} и $\lambda_{\theta\theta}$ – постоянные коэффициенты.

Над поверхностью суши со слабой растительностью и водной поверхностью будем использовать коэффициенты $\lambda_{ww} = 1.8$ и $\lambda_{\theta\theta} = 1.8$. Эти значения получены по данным измерений как над прериями Миннесоты [14], так и над Восточно-Китайским морем [16].

Построение соотношений (7) с использованием статистической модели ансамбля спонтанных конвективных струй приведено в работах [2, 23, 24].

Рассмотрим конвективный поверхностный слой сухой атмосферы в условиях слабого ветра: $0 \neq U_* \ll 1$. В этом случае существуют базовые параметры *z*, gS_{θ} и U_* .

Для построения свободно конвективных пределов теории Монина–Обухова будем считать, что моменты вертикальной скорости и плавучести в условиях слабого ветра – $0 \neq U_* \ll 1$ – такие же, как и при его отсутствии – $U_* = 0$.

Пусть σ_w , σ_θ – дисперсии вертикальной скорости и флуктуации потенциальной температуры. Тогда преобразование (7) с учетом (2), (6) приводит к равенствам

$$\begin{cases} \frac{\overline{w}^{2}}{U_{*}^{2}} = \frac{\sigma_{w}^{2}}{U_{*}^{2}} = \alpha_{ww}^{2} (z/|L_{*}|)^{2/3} \\ \frac{\overline{(g\theta_{a})^{2}}}{(g\Theta_{*})^{2}} = \frac{\overline{(\theta_{a})^{2}}}{\Theta_{*}^{2}} = \frac{\overline{(\Theta_{a}')^{2}}}{|T_{*}|^{2}} = \alpha_{\theta\theta}^{2} (z/|L_{*}|)^{-2/3}. \end{cases}$$
(8)

ВОДНЫЕ РЕСУРСЫ том 49 № 2 2022

Здесь $\alpha_{ww}^2 = k_v^{-2/3} \lambda_{ww}, \ \alpha_{\theta\theta}^2 = k_v^{2/3} \lambda_{\theta\theta}$ — положительные постоянные [25].

Над поверхностью суши со слабой растительностью и водной поверхностью $\lambda_{ww} = 1.8$, $\lambda_{\theta\theta} = 1.8$ и $k_v = 0.4$, поэтому значения постоянных составляют $\alpha_{ww} = 1.82$ и $\alpha_{\theta\theta} = 0.99$, независимо от типа подстилающей поверхности.

Рассмотрим конвективный поверхностный слой влажной атмосферы. В этом случае существуют базовые параметры z, gS_{θ} , gS_{q} и U_{*} . Очевидно, что в приближении $0 \le gS_{q} \ll 1.64 \times gS_{\theta}$ соотношения для моментов (7), (8) справедливы и в условиях влажного воздуха.

Известно, что перенос влажности и перенос потенциальной температуры подчиняются одному и тому же динамическому уравнению. Это обстоятельство приводит к предположению подобия профилей моментов потенциальной температуры и влажности [8]. Тогда для второго турбулентного момента флуктуации влажности справедливо соотношение, аналогичное аппроксимации момента плавучести (8):

$$\frac{(\mathbf{g}q')^{2}}{(\mathbf{g}q_{*})^{2}} = \frac{(q')^{2}}{|q_{*}|^{2}} = \frac{\sigma_{q}^{2}}{|q_{*}|^{2}} = \alpha_{qq}^{2} \left(z/|L_{*}| \right)^{-2/3}.$$
 (9)

Здесь σ_q – дисперсия флуктуации влажности; $\alpha_{aa} \approx \alpha_{\theta\theta}$ – положительная постоянная.

Зависимости (8), (9) представляют свободноконвективные пределы вертикальной скорости, плавучести и влажности. Будем считать далее, что над водной поверхностью и поверхностью суши со слабой растительностью значения постоянных параметров в асимптотических соотношениях (8), (9) составляют $\alpha_{ww} = 1.8$, $\alpha_{\theta\theta} = 1.0$ и $\alpha_{qq} = 1.2$.

ЛИНЕЙНЫЕ АППРОКСИМАЦИИ ВТОРЫХ ТУРБУЛЕНТНЫХ МОМЕНТОВ СКОРОСТИ, ФЛУКТУАЦИИ ТЕМПЕРАТУРЫ И ФЛУКТУАЦИИ ВЛАЖНОСТИ В ЯРУСЕ ВЫНУЖДЕННОЙ КОНВЕКЦИИ

Рассмотрим универсальные функции турбулентных моментов в подслое вынужденной конвекции: $\zeta_0 \leq z/|L_*| < \infty, \xi_0 \approx 6 \times 10^{-2}.$

Без ограничения общности можно считать, что уравнения для вторых моментов вертикальной скорости, "адиабатической" плавучести и влажности в слое вынужденной конвекции $\zeta_0 \leq z/L_* < \infty, \xi_0 \approx 6 \times 10^{-2}$ могут быть записаны в форме

$$\frac{\left|\frac{w^{2}}{U_{*}^{2}}\right|^{2}}{\left|\frac{w^{2}}{U_{*}^{2}}\right|^{2}} = \frac{\sigma_{ww}^{2}\left(z/\left|L_{*}\right|\right)^{2/3}F_{ww}^{2}\left(z/\left|L_{*}\right|\right), \quad \lim_{z/\left|L_{*}\right|\to\infty}F_{ww}^{2}\left(z/\left|L_{*}\right|\right) = 1$$

$$\frac{\left|\frac{w^{2}}{U_{*}^{2}}\right|^{2}}{\left|\frac{w^{2}}{U_{*}^{2}}\right|^{2}} = \frac{\sigma_{\theta\theta}^{2}\left(z/\left|L_{*}\right|\right)^{-2/3}F_{\theta\theta}^{2}\left(z/\left|L_{*}\right|\right), \quad \lim_{z/\left|L_{*}\right|\to\infty}F_{\theta\theta}^{2}\left(z/\left|L_{*}\right|\right) = 1$$

$$\frac{\left|\frac{w^{2}}{U_{*}^{2}}\right|^{2}}{\left|\frac{w^{2}}{u^{2}}\right|^{2}} = \frac{\sigma_{\theta\theta}^{2}\left(z/\left|L_{*}\right|\right)^{-2/3}F_{\theta\theta}^{2}\left(z/\left|L_{*}\right|\right), \quad \lim_{z/\left|L_{*}\right|\to\infty}F_{\theta\theta}^{2}\left(z/\left|L_{*}\right|\right) = 1.$$
(10)

Здесь $F_{ww}^2(z/|L_*|)$, $F_{\theta\theta}^2(z/|L_*|)$, $F_{qq}^2(z/|L_*|)$ – гладкие функции; α_{ww}^2 , $\alpha_{\theta\theta}^2$, α_{qq}^2 – постоянные коэффициенты.

Следуя [3], будем раскладывать функции $F_{ww}(z/|L_*|), F_{\theta\theta}(z/|L_*|)$ и $F_{qq}(z/|L_*|)$ в ряд Тейлора по

параметру $(z/|L_*|)^{-1}$. Ограничимся линейным разложением Тейлора функций $F_{ww}(z/|L_*|)$, $F_{\theta\theta}(z/|L_*|)$, $F_{qq}(z/|L_*|)$ по параметру $(z/|L_*|)^{-1}$. Тогда дисперсии σ_w , σ_{θ} и σ_q примут форму

$$\begin{cases} \frac{\mathbf{\sigma}_{w}}{U_{*}} = \alpha_{ww} \left(z/|L_{*}| \right)^{1/3} \left[1 + \beta_{ww} \left(z/|L_{*}| \right)^{-1} \right], & \zeta_{ww} \leq z/L_{*} < \infty \\ \frac{\mathbf{\sigma}_{\theta}}{|T_{*}|} = \alpha_{\theta\theta} \left(z/|L_{*}| \right)^{-1/3} \left[1 - \beta_{\theta\theta} \left(z/|L_{*}| \right)^{-1} \right], & \zeta_{\theta\theta} \leq z/L_{*} < \infty \\ \frac{\mathbf{\sigma}_{q}}{|q_{*}|} = \alpha_{qq} \left(z/|L_{*}| \right)^{-1/3} \left[1 - \beta_{qq} \left(z/|L_{*}| \right)^{-1} \right], & \zeta_{qq} \leq z/L_{*} < \infty. \end{cases}$$

$$\tag{11}$$

Безразмерные параметры ζ_{ww} , $\zeta_{\theta\theta}$ и ζ_{qq} обозначают границы яруса вынужденной конвекции для профилей вертикальной скорости, флуктуаций потенциальной температуры и флуктуаций влажности. Безразмерные параметры $\alpha_{ww} > 0$, $\alpha_{\theta\theta} > 0$ и $\alpha_{qq} > 0$ соответствуют предельным значениям при свободной конвекции и считаются известными. Безразмерные параметры $\beta_{ww} > 0$, $\beta_{\theta\theta} > 0$ и $\beta_{qq} > 0$ характеризуют линейные разложения и являются неопределенными.

Существование яруса вынужденной конвекции с фиксированной границей ζ_0 , соответствующей точке экстремума профилей, приводит к соотношениям

$$\begin{cases} \zeta_{ww} = \zeta_{\theta\theta} = \zeta_{qq} = \zeta_{0} \\ \frac{d}{d\zeta} \sigma_{w} \Big|_{\zeta = \zeta_{0}} = \frac{d}{d\zeta} \sigma_{\theta} \Big|_{\zeta = \zeta_{0}} = \frac{d}{d\zeta} \sigma_{q} \Big|_{\zeta = \zeta_{0}} = 0. \end{cases}$$
(12)

При априорно заданном параметре ζ_0 уравнения системы (12) позволяют вычислить коэффициенты $\zeta_{ww}, \zeta_{\theta\theta}, \zeta_{qq}$ и $\beta_{ww}, \beta_{\theta\theta}, \beta_{qq}$. Поэтому аппроксимации (11), (12) образуют однопараметрическое семейство аналитических аппроксимаций, зависящее от ζ_0 .

Далее над поверхностью суши со слабой растительностью и над водной поверхностью будем использовать следующие коэффициенты: $\alpha_{ww} = 1.8$, $\beta_{ww} = 0.03$; $\alpha_{\theta\theta} = 0.97$, $\beta_{\theta\theta} = 0.016$ и $\alpha_{qq} = 1.2$, $\beta_{qq} = 0.016$.

СОПОСТАВЛЕНИЕ "ЛИНЕЙНЫХ" АППРОКСИМАЦИЙ ДИСПЕРСИЙ ВЕРТИКАЛЬНОЙ СКОРОСТИ, ПЛАВУЧЕСТИ И ВЛАЖНОСТИ С ЭКСПЕРИМЕНТАЛЬНЫМИ ДАННЫМИ

Сопоставление "линейной" аппроксимации дисперсии вертикальной скорости (11) с параметрами $\alpha_{ww} = 1.8$, $\beta_{ww} = 0.03$ и данных измерений над океаном [12, 15] в области $\zeta_0 \leq z/|L_*| < \infty$, $\zeta_0 = 6 \times 10^{-2}$ представлено на рис. 1а. Сопоставление "линейной" аппроксимации дисперсии вертикальной скорости (11) с параметрами $\alpha_{ww} = 1.8$, $\beta_{ww} = 0.03$ и данных измерений над сушей [7] в области $\zeta_0 \leq z/|L_*| < \infty$, $\zeta_0 = 6 \times 10^{-2}$ представление тикальной скорости (11) с параметрами $\alpha_{ww} = 1.8$, $\beta_{ww} = 0.03$ и данных измерений над сушей [7] в области $\zeta_0 \leq z/|L_*| < \infty$, $\zeta_0 = 6 \times 10^{-2}$ представлено на рис. 16.

Сопоставление линейной аппроксимации безразмерной дисперсии пульсации потенциальной

Рис. 1. Сравнение "линейной" аппроксимации теории подобия (11) с коэффициентами $\alpha_{ww} = 1.8$, $\beta_{ww} = 0.03$ и данных измерений дисперсии вертикальной скорости над океаном (а) и над сушей (б) в области $\zeta_0 \le z/|L_*| < \infty$, $\zeta_0 = 6 \times 10^{-2}$. Сплошная линия соответствует аппроксимации (11). Треугольники, крестики и кружки соответствуют данным измерений [7, 12, 15] соответственно.

температуры σ_{θ}/T_* в форме (11) при $\alpha_{\theta\theta}^2 = 0.95$, $\beta_{\theta\theta} = 0.016$ с натурными данными [17] представлено на рис. 2.

Сопоставление "линейной" аппроксимации дисперсии флуктуации влажности (11) с параметрами $\alpha_{qq} = 1.2$, $\beta_{qq} = 0.016$ и данных измерений над океаном [12, 15] в области $\zeta_0 \leq z/|L_*| < \infty$ представлено на рис. За. Сопоставление "линейной" аппроксимации дисперсии флуктуации влажности (11) с параметрами $\alpha_{qq} = 1.2$, $\beta_{qq} = 0.016$ и данных измерений над сушей [17, 20]

Рис. 2. Сопоставление линейной аппроксимации теории подобия (11) с эмпирическими значениями дисперсии плавучести σ_{θ}/T_* согласно измерениям [17]. Сплошная линия соответствует аппроксимации (11) с коэффициентами $\alpha_{\theta\theta}^2 = 0.97$, $\beta_{\theta\theta} = 0.016$.

ВОДНЫЕ РЕСУРСЫ том 49 № 2 2022

в области $\zeta_0 < z/|L_*| < \infty$, $\zeta_0 = 6 \times 10^{-2}$ показано на рис. Зб.

Результаты сравнения, представленные на рис. 1–3, указывают на существование мощного яруса вынужденной конвекции в области $\zeta_0 \leq z/|L_*| < \infty$, $\zeta_0 = 6 \times 10^{-2}$.

"ЛИНЕЙНАЯ" АППРОКСИМАЦИЯ ВТОРОГО ТУРБУЛЕНТНОГО МОМЕНТА ФЛУКТУАЦИИ КОНЦЕНТРАЦИИ НЕЙТРАЛЬНОГО ГАЗА В ЯРУСЕ ВЫНУЖДЕННОЙ КОНВЕКЦИИ

Допустим, что с подстилающей поверхности в поверхностный слой атмосферы равномерно поступает некоторый нейтральный газ, не вступающий в химические реакции с воздухом, например углекислый газ.

Опираясь на аналогию с соотношениями (4), введем параметр модифицированного потока концентрации на подстилающей поверхности gS_c и модифицированный параметр концентрации gc_* . Тогда получим

$$gS_c = \lim_{z \to 0} \overline{gcw} = \lim_{z \to 0} \overline{gcsw'} > 0, \quad gc_* = -\frac{gS_c}{U_*} < 0.$$
(13)

Здесь gS_c и gc_* имеют размерности $[gS_c] = M^2/c^3$ и $[gc_*] = M/c^2$.

Пусть σ_c – дисперсия флуктуации концентрации нейтрального газа, тогда по аналогии с (11) получим

Рис. 3. Сравнение "линейной" аппроксимации теории подобия (11) с коэффициентами $\alpha_{qq} = 1.2$, $\beta_{qq} = 0.016$ и данных измерений флуктуации влажности над океаном (а) и над сушей (б) в области $\zeta_0 \leq z/|L_*| < \infty$, $\zeta_0 = 6 \times 10^{-2}$. Сплошная линия соответствует аппроксимации (11). Треугольники, крестики, кружки и квадратики соответствуют данным измерений [7, 12, 15, 20].

$$\frac{\sigma_c}{c_*} = \alpha_{cc} \left(z / \left| L_* \right| \right)^{-1/3} \left[1 - \beta_{cc} \left(z / \left| L_* \right| \right)^{-1} \right],$$

$$\zeta_{cc} \leq z / L_* < \infty.$$
(14)

Неопределенный безразмерный параметр ζ_{cc} означает границу яруса вынужденной конвекции для профиля флуктуации концентрации углекислого газа. Безразмерный параметр $\alpha_{cc} > 0$ характеризует свободно конвективный предел и считается известным. Неопределенный безразмерный параметр $\beta_{cc} > 0$ характеризует линейное разло-

Рис. 4. Сравнение "линейной" аппроксимации теории подобия (14) с коэффициентами $\alpha_{ss} = 1.2$, $\beta_{cc} = 0.016$ и данных измерений дисперсии флуктуации концентрации углекислого газа в области $\zeta_0 \leq z/|L_*| < \infty$, $\zeta_0 = 6 \times 10^{-2}$. Сплошная линия соответствует аппроксимации (14). Треугольники, крестики, кружки и квадратики соответствуют данным измерений [20].

жение. Значения коэффициентов ζ_{cc} и β_{cc} могут быть вычислены на основе (12), откуда следует, что $\zeta_{cc} = \zeta_0$ и $\beta_{cc} = \beta_{\theta\theta} = \beta_{qq}$.

Сравним "линейную" аппроксимацию для дисперсии флуктуации концентрации углекислого газа (14) с известными данными наблюдений. Сопоставление (14) с параметрами $\alpha_{cc} = \alpha_{qq} = 1.2$, $\beta_{cc} = \beta_{qq} = 0.016$ и данных измерений [20] в области $\zeta_0 \leq z/|L_*| < \infty$, $\zeta_0 = 6 \times 10^{-2}$ представлено на рис. 4.

Результаты сравнения, представленные на рис. 4, указывают на существование мощного яруса вынужденной конвекции в области $\zeta_0 \leq z/|L_*| < \infty$, $\zeta_0 = 6 \times 10^{-2}$. Очевидно, что аппроксимация (14) дополняет однопараметрическое семейство аппроксимаций (11), (12).

ЗАКЛЮЧЕНИЕ

Анализ экспериментальных данных [12, 15, 17] показывает, что в конвективном поверхностном слое (как над морем, так и над сушей) существует мощный ярус вынужденной конвекции с фиксированной нижней границей.

Сопоставление аппроксимаций с данными наблюдений показывает, что "линейные" аппроксимации (11), (12), (14) убедительно соответствуют известным экспериментальным данным о дисперсиях вертикальной скорости, флуктуаций потенциальной температуры, влажности и концентрации углекислого газа.

Ярус вынужденной конвекции может быть выделен в наблюдаемых профилях вторых турбулентных моментов вертикальной скорости, флуктуации потенциальной температуры, влажности и концентрации углекислого газа.

Профили дисперсий флуктуаций потенциальной температуры, влажности и концентрации углекислого газа являются подобными.

Граница яруса вынужденной конвекции ζ_0 не зависит от выбора турбулентного момента и является одной и той же для моментов вертикальной скорости, флуктуации потенциальной температуры, влажности и концентрации углекислого газа. Кроме того, величина ζ_0 не зависит от выбора подстилающей поверхности, и она одна и та же как над сушей, так и над водной поверхностью.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Вульфсон А.Н.* Уравнения глубокой конвекции в сухой атмосфере // Изв. АН СССР. Физика атмосферы и океана. 1981. Т. 17. № 8. С. 873–876.
- Вульфсон А.Н., Бородин О.О. Ансамбль динамически идентичных термиков и вертикальные профили турбулентных моментов конвективного приземного слоя атмосферы // Метеорология и гидрология. 2009. № 8. С. 15–26.
- 3. Вульфсон А.Н., Николаев П.В. Линейные аппроксимации вторых турбулентных моментов конвективного приземного слоя атмосферы в области вынужденной конвекции // Изв. РАН. Физика атмосферы и океана. 2018. Т. 54. № 5. С. 556–565.
- 4. *Монин А.С., Обухов А.М.* Безразмерные характеристики турбулентности в приземном слое атмосферы // ДАН СССР. 1953. Т. 93. № 2. С. 223–226.
- Монин А.С., Обухов А.М. Основные закономерности турбулентного перемешивания в приземном слое атмосферы // Тр. Геофиз. ин-та АН СССР. 1954. Т. 24. С. 163–187.
- Монин А.С., Яглом А.М. Статистическая гидромеханика. т. 1. Теория турбулентности. СПб.: Гидрометеоиздат, 1992. 757 с.
- Andreas E.L., Hill R.J., Gosz J.R., Moore D.I., Otto W.D., Sarma A.D. Statistics of surface-layer turbulence over terrain with metre-scale heterogeneity // Boundary-Layer Meteorol. 1998. V. 86. № 3. P. 379–408.
- Brutsaert W. Evaporation into the atmosphere: theory, history and applications. Dordrecht Holland: D. Reidel Publ. Company, 1982. 302 p.
- Cava D., Katul G.G., Sempreviva A.M., Giostra U., Scrimieri A. On the anomalous behaviour of scalar fluxvariance similarity functions within the canopy sublayer of a dense alpine forest // Boundary-Layer Meteorol. 2008. V. 128. № 1. P. 33–57.

ВОДНЫЕ РЕСУРСЫ том 49 № 2 2022

- Dyer A.J., Hicks B.B. Flux-gradient relationships in the constant flux layer // Q. J. R. Meteorol. Soc. 1970. V. 96. № 410. P. 715–721.
- 11. *Edson J.B., Fairall C.W.* Similarity Relationships in the Marine Atmospheric Surface Layer for Terms in the TKE and Scalar Variance Budgets // J. Atmos. Sci. 1998. V. 55. № 13. P. 2311–2328.
- 12. *Fujitani T.* Turbulent Transport Mechanism in the Surface Layer over the Tropical Ocean // J. Meteorol. Soc. Japan. Ser. II. 1992. V. 70. № 4. P. 795–811.
- Kader B.A., Yaglom A.M. Mean fields and fluctuation moments in unstably stratified turbulent boundary layers // J. Fluid Mech. 1990. V. 212. P. 637–662.
- Kaimal J.C., Wyngaard J.C., Haugen D.A., Coté O.R., Izumi Y., Caughey S.J., Readings C.J. Turbulence Structure in the Convective Boundary Layer // J. Atmos. Sci. 1976. V. 33. № 11. P. 2152–2169.
- Leavitt E., Paulson C.A. Statistics of Surface Layer Turbulence over the Tropical Ocean // J. Phys. Oceanogr. 1975. V. 5. № 1. P. 143–156.
- Lenschow D.H., Wyngaard J.C., Pennell W.T. Mean-Field and Second-Moment Budgets in a Baroclinic, Convective Boundary Layer // J. Atmos. Sci. 1980. V. 37. № 6. P. 1313–1326.
- Liu X., Tsukamoto O., Oikawa T., Ohtaki E. A Study of Correlations of Scalar Quantities in the Atmospheric Surface Layer // Boundary-Layer Meteor. 1998. V. 87. № 3. P. 499–508.
- McBean G.A. The variations of the statistics of wind, temperature and humidity fluctuations with stability // Boundary-Layer Meteorol. 1971. V. 1. № 4. P. 438– 457.
- Ogura Y., Phillips N.A. Scale Analysis of Deep and Shallow Convection in the Atmosphere // J. Atmos. Sci. 1962. V. 19. № 2. P. 173–179.
- Ohtaki E. On the similarity in atmospheric fluctuations of carbon dioxide, water vapor and temperature over vegetated fields // Boundary-Layer Meteorol. 1985. V. 32. № 1. P. 25–37.
- 21. *Priestley C.H.B.* Turbulent transfer in the lower atmosphere. Chicago: Univ. Chicago Press, 1959. 561 p.
- 22. *Turner J.S.* Buoyancy Effects in Fluids. Cambridge: Cambridge Univ. Press, 2009. 368 p.
- 23. Vulfson A., Borodin O., Nikolaev P. Convective Jets: Volcanic Activity and Turbulent Mixing in the Boundary Layers of the Atmosphere and Ocean // Physical and Mathematical Modeling of Earth and Environment Processes. Berlin: Springer, 2018. P. 71–83.
- 24. Vulfson A.N., Nikolaev P.V. An integral model of a convective jet with a pressure force and forms of vertical fluxes in the atmospheric surface layer // J. Phys. Conf. Ser. 2018. V. 955. № 1. P. 012013.
- 25. Wyngaard J.C., Cote O.R., Izumi Y. Local free convection, similarity and the budgets of shear stress and heat flux // J. Atmos. Sci. 1971. V. 28. № 7. P. 1171–1182.