__ СОВРЕМЕННОЕ СОСТОЯНИЕ И ПЕРСПЕКТИВЫ ГИДРОЛОГИИ _____ Устьев Рек (к 90-летию В.Н. Михайлова)

УДК 551.468

КАРБОНАТНАЯ СИСТЕМА ЭСТУАРИЕВ РЕК СЫРАН И УЛЬБАН (УЛЬБАНСКИЙ ЗАЛИВ ОХОТСКОГО МОРЯ) В ПЕРИОД ЛЕТНЕГО ПАВОДКА¹

© 2022 г. П. Ю. Семкин^{а,} *, П. Я. Тищенко^а, Г. Ю. Павлова^а, П. П. Тищенко^а, С. Г. Сагалаева^a, Е. М. Шкирникова^a, М. Г. Швецова^a

^а Тихоокеанский океанологический институт им. В.И. Ильичева ДВО РАН, Владивосток, 690041 Россия *e-mail: pahno@list.ru Поступила в редакцию 30.11.2021 г. После доработки 12.04.2022 г. Принята к публикации 14.04.2022 г.

В период летнего паводка 2016 г. исследован комплекс химических характеристик, связанных с циклом углерода в эстуариях рек Сыран и Ульбан района Шантарского архипелага с общим расходом воды 194.7 м³/с. Зона смешения при солености <20% – источник CO₂ для атмосферы с рассчитанным потоком CO₂ до 112.7 ммоль м⁻² сут⁻¹. При солености >20% наблюдается резкое увеличение толщины фотического слоя, доминирование фотосинтеза, в результате чего формируется поток CO₂ из атмосферы в воду величиной до 30 ммоль м⁻² сут⁻¹. Представлен модельный поток CO₂ на границе вода/атмосфера при скорости ветра от 2 до 15 м/с для всей зоны смешения, воды которой в целом поглощают атмосферный CO₂. Особенность изученного бассейна, в сравнении с исследованными ранее эстуариями рек Уда и Усалгин района Шантарского архипелага, – сочетание относительно низкого объема водного и твердого стока с относительно высоким потоком фосфора в минеральной и органической формах.

Ключевые слова: речной сток, эстуарий, карбонатная система, биогенные вещества, продукционнодеструкционные процессы.

DOI: 10.31857/S0321059622050145

введение

Эстуариям, в их классическом понимании [34], отводится важная роль в биогеохимических преобразованиях углерода за счет высокой интенсивности продукционно-деструкционных процессов, несмотря на их относительно небольшие площади в масштабе Мирового океана [27]. Воды континентального шельфа поглощают преимущественно СО₂ из атмосферы [25]. Тем не менее воды зоны смешения (ЗС) – в пределах эстуарного барьера с соленостью до 8‰ [11] – обычно перенасыщены СО₂ и являются его источником в атмосферу [6, 28]. Процессы, связанные с микробиальной деструкцией органического вещества (OB), приводят к увеличению СО₂, и, напротив, первичная продукция сопровождается потреблением растворенного СО₂. Параметры карбонатной си-

стемы – H_2CO_3 , HCO_3^- , CO_3^{-2} , pH, общая щелочность (TA), парциальное давление углекислого

газа (рСО₂) и растворенный неорганический уг-

лерод (DIC) (DIC = $[CO_2] + [HCO_3^-] + [CO_3^{-2}])$ – связаны друг с другом набором термодинамических соотношений и отражают направленность и интенсивность биогеохимических процессов в прибрежно-морских акваториях. Поэтому любое изменение одного параметра приводит к новому состоянию равновесия и в свою очередь влияет на химический состав и кислотно-основные свойства вод [12, 15, 31].

Получение сведений об эстуариях, находящихся в разных физико-географических условиях, важно для понимания роли прибрежно-морских бассейнов в глобальном углеродном бюджете. Водные объекты в районе Шантарского региона практически не подвержены антропогенной эвтрофикации, поскольку на берегах данного района расположены только небольшие поселки, промысловые фермы и сезонные предприятия по переработке лососей [9]. Гидрохимические исследования эстуариев этого района позволяют изучать естественные биогеохимические процессы в зоне смешения реки и моря и в определен-

¹ Работа выполнена при поддержке РФФИ (проект 21-55-53015 ГФЕН_а) и в рамках госбюджета (темы 121-21500052-9 и 121021700346-7).

Река	Средний годовой расход воды	Средний расход воды в июле	Расход воды на пике паводка в июле 2016 г.
Уда	823	1736	7931
Ульбан	9.62	20.3	92.7
Сыран	10.6	22.4	102
Тугур	175	369	1686
Усалгин	37.4	78.9	360

Таблица 1. Величины расходов воды (м³/с) для рек Шантарского региона

ной степени распространять полученные знания на подобные водные объекты.

Предыдущие исследования в Шантарском регионе были ограничены измерениями характеристик в речных водах [5, 22, 23] или в отдельных частях 3С реки и моря без учета потоков веществ с речным стоком [2, 36]. Существенно улучшилась биогеохимическая изученность этого района благодаря комплексной экспедиции, проведенной летом 2016 г. [18], некоторые результаты которой представлены в данной статье, другие опубликованы ранее [3, 10, 14, 17].

Цель данной работы — изучить процессы, связанные с биогеохимическим циклом углерода в общей устьевой области рек Сыран и Ульбан в период летнего паводка.

ОБЪЕКТ И МЕТОДЫ

Климат и гидрологический режим

Согласно данным ближайшего к району исследований поста в пос. Чумикан (расстояние от района исследований ~180 км), изучаемый водный объект находится в области с отрицательной среднегодовой температурой воздуха (-3.9° C). Средняя месячная температура воздуха в пос. Чумикан за многолетний период – с 1925 по 1960 г. – в июле и августе составляет 12.0 и 13.5°C соответственно. Средняя за многолетний период дата перехода суточной температуры через 0°C весной – 2 мая, а осенью – 18 октября [13].

Суммарное за год количество осадков на станции в с. Удском (расстояние от района исследований ~200 км) изменяется от 410 до 1195 мм за период наблюдений с 2010 по 2021 г. (архив погоды). Среднегодовая норма осадков за этот же период составила 735 мм, а сумма осадков в 2016 г. была 636 мм. Средняя сумма осадков за июль на станции в с. Удском за период с 2010 по 2021 г. составляет 113 мм, в то время как в июле 2016 г. эта величина достигла 208 мм. Таким образом, в июле 2016 г. наблюдалось почти двухкратное превышение среднемесячной нормы, а суммарное количество осадков за год было немного ниже среднемноголетней величины.

ВОДНЫЕ РЕСУРСЫ том 49 № 5 2022

Сезонная изменчивость атмосферных осадков определяет водный режим рек изучаемого региона, в котором выделяется зимняя межень, слабо выраженное весеннее половодье и значительные летние паводки [20]. Наиболее значимые водотоки Ульбанского залива — реки Сыран и Ульбан с площадью водосбора 852 и 753 км² соответственно [20]. Остальные реки залива (Итакан и Талим) имеют суммарную площадь водосбора ~400 км² [20].

Величины средних многолетних расходов за июль и максимальные расходы рек Сыран и Ульбан для 16 июля 2016 г. (табл. 1) рассчитаны по реке-аналогу – по данным наблюдений Гидрометслужбы на р. Уде (уровни и расходы воды на посту "станция Уда" в 1970–1980 гг. и уровни воды на посту "с. Удское" в 1970-1980 и 2008-2019 гг.). Представленные авторами статьи ранее величины максимальных расходов рек Уды и Усалгин [14] были занижены по сравнению с полученными в данной статье на основании скорректированных расчетов. Согласно этим расчетам, в июле 2016 г. на реках Шантарского региона наблюдался затяжной и относительно высокий паводок (табл. 1), при котором расход превышал в ~10 раз среднегодовую величину [20], отметки уровней в пик паводка были близки к наибольшим для многолетнего периода.

Шантарский регион — наиболее ледовитый в Охотском море; соответственно, летний температурный режим вод в исследуемом районе во многом определяется ледовым режимом, а также приливными явлениями и материковым стоком. В зависимости от ледовитости очищение ото льда исследуемого водного объекта может происходить с середины июня до второй половины августа [21]. В данной статье соленость и температура вод (рис. 1) представлены по результатам гидрологического зондирования [18].

Глубины в Ульбанском заливе ≤35 м, ширина залива между выходными мысами – 47 км, длина от вершины до выхода – 80 км (рис. 1). Высота приливов в кутовой части Ульбанского залива достигает 6 м, в результате чего формируются осушки шириной 2–2.5 км [9]. В динамике вод Ульбанского залива на фоне приливных течений

Рис. 1. Район исследований и схема расположения станций. Изолиниями указана соленость (‰).

выделяется антициклоническая циркуляция вод [21, 36].

Комплекс измеряемых характеристик

Представлены следующие данные: соленость, температура, pH, TA, pCO₂ DIC, конценрации биогенных веществ в минеральной форме DIP (dissolved inorganic phosphorus), DSi (dissolved silicate), DIN (dissolved inorganic nitrogen) (NO₂⁻, NO₃⁻, NH₄⁺)), сумма минеральной и органической форм азота и фосфора (N_{общ} = DIN + N_{opr}; P_{общ} = = DIP + P_{opr}), растворенный органический углерод (POУ), гуминовые вещества (ГВ) и взвешенные вещества (BB).

Работы в Ульбанском заливе были проведены 12-14 июля 2016 г. Для зондирования и отбора проб воды применялась шестипозиционная пробоотборная система воды SBE ECO-55 в комплекте с гидрологическим зондом SBE 19 PLUS. оборудованным датчиками давления, температуры, электропроводности, хлорофилла "а" и мутности. Концентрация О2 определялась с помошью оптического датчика кислорода на дополнительном зонде "Rinko-Profiler ASTD102" ("JFE Advantech", Япония), который был откалиброван на основе данных, полученных методом Винклера. На глубинах <15 м работы проводились на моторной лодке, при этом для зондирования использовали зонд "Rinko-Profiler ASTD102", а для отбора проб воды – пятилитровые батометры

Нискина. Пробы воды отбирались с поверхностного (глубина 0-0.5 м) и придонного (0.3-0.7 м от дна) слоев воды и доставлялись на судно. В день отбора определялись: pH, TA, концентрация биогенных веществ в минеральной форме, фильтрация ВВ. Пробы на соленость, N_{обш} и Р_{обш}, РОУ, ГВ, основной солевой состав анализировали в лаборатории гидрохимии ТОИ ДВО РАН. Анализ общего азота и фосфора выполнялся на автоматическом анализаторе "Skalar San++". Содержание РОУ измерено на анализаторе "Shimadzu TOC-VCPN". Концентрации макроионов измеряли методом ионно-обменной хроматогра-"Shimadzu LC-20A". фии на хроматографе Концентрацию ГВ определяли спектрофотометрическим методом на спектрофотометре "Shimadzu UV-3600". Подробное описание методик можно найти в работах [4, 16, 19].

Расчет параметров карбонатной системы

Расчет проводился на основании измерений рН и ТА [1] с учетом концентрации ГВ и с поправкой на органическую щелочность ("Organic alkalinity" (OA)) [15, 16, 19]. рН измеряли при температуре 15 ± 0.05 °C в проточной ячейке объемом ~80 см³ безжидкостного соединения [15].

ЭДС измеряли с точностью до 0.1 мВ pH-метром "EA-920 Orion" с двумя высокоомными входами. Измерительными электродами были стеклянные комбинированный pH-электрод (OrionTM 8102) и натровый электрод Гомельского завода (ЭСЛ-51-07). Значения pH_T по шкале "total hydrogen concentration scale" [29] рассчитывали на основе измеренной ЭДС ячейки [38]. Ячейка калибровалась в шкале pH Питцера с помощью буферного раствора TRIS–TRISHCl–NaCl, состав которого следующий: $m_{TRIS} = m_{TRISHCl} = 0.04 \text{ моль/(кг-H}_2\text{O}), m_{NaCl} = 0.4 \text{ моль/(кг-H}_2\text{O})$ [38]. Ошибка измерений pH при данном подходе оценивалась в пределах ±0.004 ед. pH.

ТА определяется уравнением

$$TA = [HCO_{3}^{-}] + 2[CO_{3}^{2^{-}}] + [B(OH)_{4}^{-}] + [OH^{-}] + + [HPO_{4}^{2^{-}}] + 2[PO_{4}^{2^{-}}] + [SiO(OH)_{3}^{-}] + + [HS^{-}] + 2[S^{2^{-}}] + [NH_{3}] + + ... - [H^{+}] - [HF] - [H_{3}PO_{4}] - [HSO_{4}^{-}].$$
(1)

Уравнение (1) включает в себя вычитание концентраций ионов водорода, гидросульфата, плавиковой и фосфорной кислот, поскольку это уравнение применяется к результатам титрования щелочности при низких значениях pH (<4). Однако использование метода Бруевича (1944 г.) прямым титрованием в открытой ячейке соляной кислотой (0.02N) со смешанным индикатором (метиловый красный + метиленовый голубой) позволяет пренебречь вкладами этих членов.

Вклад ОА в ТА оценивался по измерениям концентрации ГВ:

$$OA = f_{\rm HS}C_{\rm HS}K_{\rm HS}/(a_{\rm H} + K_{\rm HS}), \qquad (2)$$

 $f_{\rm HS}$ — множитель перед концентрацией ГВ, получен из расчета: 1 г углерода ГВ дает 18 ммоль щелочности; $K_{\rm HS} = 10^{-7.3}$ — константа диссоциации ГВ [38]; $C_{\rm HS}$ — концентрация ГВ в пробе, гС/л. Измеренная ТА по методу Бруевича корректировалась на присутствие ОА, обусловленной ГВ:

$$TA_{corr} = TA - OA.$$
(3)

Дальнейшие расчеты параметров карбонатной системы (DIC, pCO_2 , $pH_{in situ}$) выполнены с использованием TA_{corr} и pH_T на основе общеизвестной схемы и известных констант диссоциации в шкале "total hydrogen concentration scale" [30, 31].

Расчет потока СО2 на границе вода/атмосфера

Поток CO₂ (*F*), ммоль CO₂ M^{-2} сут⁻¹, на границе вода—атмосфера был рассчитан согласно [39]:

$$F = kK_0(pCO_{2 \text{ water}} - pCO_{2 \text{ air}}), \qquad (4)$$

где k — скорость переноса CO₂, см ч⁻¹; K_0 — растворимость CO₂ при определенной температуре и солености, моль кг⁻¹ атм⁻¹ [40]; pCO_{2(water)} — величина, рассчитанная по измеренным величинам рН и TA в пробах воды [15, 16, 19]; pCO_{2 air} — величина, принятая авторами статьи в 403 мкатм для

ВОДНЫЕ РЕСУРСЫ том 49 № 5 2022

данного региона в 2016 г. Для расчета k существует набор эмпирических уравнений, при использовании которых рассчитанный F может отличаться более чем в два раза при скорости ветра 3.4 м/с [24]. Зафиксирована скорость ветра U с помощью судовой метеостанции и рассчитана kна основе эмпирической функции, предложенной в статье [39] и использованной в недавних публикациях для расчета F в сходных климатических условиях в Беринговом море [33, 37]:

$$k = 0.251 U^2 (\text{Sc}/660)^{-1/2},$$
(5)

где U – скорость ветра, м/с; Sc – число Шмидта для CO₂, рассчитанное на основе уравнения, предложенного в работе [37]:

$$Sc = 2116.8 - 136.25t + 4.7353t^{2} - - 0.092307t^{3} + 0.0007555t^{4},$$
(6)

где *t* — температура, °C, измеренная в поверхностном слое воды в момент отбора проб.

В расчетах использовали принятое для морской воды Sc = 660.

РЕЗУЛЬТАТЫ

Характеристики речной воды

В гидрохимическом составе исследованных рек отмечены низкие концентрации DIN, но относительно высокие концентрации N_{oful} для р. Ульбан (табл. 2). В р. Сыран наблюдаются повышенные по отношению к р. Ульбан концентрации DIP и P_{oful} (табл. 2). Речные воды характеризуются относительно высокими величинами pCO₂ и POУ. Главный компонент POУ – ГВ. В р. Сыран получена относительно высокая концентрация взвеси (табл. 2).

Параметры карбонатной системы в ЗС

В процессе продукци–деструкции ОВ происходит перераспределение параметров карбонатной системы воды.

Наибольшая величина pCO₂ (2579 мкатм) наблюдалась при солености 1.5%, которой соответствует наименьшая величина pH (6.87) (рис. 2а, 2б). С увеличением солености величина pCO₂ уменьшается, а при солености >20‰ она становится ниже равновесной с атмосферой, достигая минимума в 181 мкатм (рис. 2а, 2б).

Наибольшая величина pH (8.34) обнаружена в придонных водах на глубине ~15 м при солености 30‰. В водах 3С р. Ульбан величины pH систематически ниже, чем в водах 3С р. Сыран.

ТА – консервативный параметр в отношении солености (рис. 2в), он рассматривается как мера буферной емкости бассейна [15]. Эта мера важна,

СЕМКИН и др.

,	, ,	, ,	1 2	, ,			
Река	DIP	Р _{общ}	Si	NO_2^-	NO_3^-	NH_4^+	N _{общ}
Сыран	3.56	5.4	128.2	0.28	0.02	4.5	12.4
Ульбан	1.56	1.9	163.7	0.23	0.37	3.8	19.4
	ТА	pH	DIC	pCO ₂	РОУ	ГВ	BB
Сыран	473	7.17	554	1565	5.2	4.2	169
Ульбан	401	7.02	497	2007	9.5	7.8	42

Таблица 2. Гидрохимические характеристики нижнего течения рек Сыран (14.07.2016) и Ульбан (26.07.2016) (DIP, P_{общ}, N_{общ}, Si, NO₂⁻, NO₃⁻, NH₄⁺ – мкмоль/л; pH – pH_{in situ} в шкале общей концентрации ионов водорода [29]; TA – мкмоль/кг; DIC – мкмоль/кг; POУ – мгС/л; ГВ – мгС/л; BB – мг/л)

так как область наибольшей интенсивности продукционно-деструкционных процессов – эстуарный барьер [11] – приходится на воды с относительно низкой соленостью и, соответственно, меньшей буферной емкостью по отношению к морским водам. Поэтому на фоне консервативной зависимости щелочности от солености параметры рН и рСО₂ часто имеют гораздо больший диапазон изменчивости в 3С, чем в морских водах [8, 15], что демонстрирует рис. 2.

Зависимость DIC—соленость отличается от зависимости ТА—соленость более значимым разбросом точек относительно линии линейной регрессии, что объясняется продукционными и деструкционными процессами в эстуарии, поскольку один из компонентов DIC — растворен-

Рис. 2. Зависимость параметров карбонатной системы воды от солености. Пунктирная линия – равновесное с атмосферой pCO₂ (403 мкатм). *1*, *2* – поверхностный и придонный слои воды соответственно в 3С р. Сыран, *3*, *4* – поверхностный и придонный слои воды соответственно в 3С р. Ульбан.

Рис. 3. Зависимость биогенных веществ от солености. *1*, *2* – поверхностный и придонный слои соответственно в ЗС р. Сыран; *3*, *4* – поверхностный и придонный слои соответственно в ЗС р. Ульбан.

ный CO_2 — не является компонентом TA. В диапазоне солености 20—24‰ происходило изъятие углерода из водной среды в поверхностном слое, что проявляется в отклонении DIC от линейной зависимости относительно солености (рис. 2г).

Биогенные вещества в ЗС

Поступление основных биогенных веществ в значительной степени контролирует первичную продукцию прибрежных вод и, соответственно, параметры карбонатной системы. Для исследуемого бассейна (рис. 3) отмечены следующие закономерности: вдоль ЗС происходит снижение концентрации минеральных и органических форм биогенных веществ; при солености 3–15‰ характерно повышение DIN; при солености 20–30‰ наблюдалось почти полное изъятие DIN и DIP в поверхностном слое воды; при солености >30‰ в придонных водах наблюдалось повышение DIN, DIP, Р_{общ} и N_{общ}.

ОБСУЖДЕНИЕ

Изменение параметров карбонатной системы обуславливают пять главных причин: нагрев охлаждение воды, адвекция вод разного химиче-

ВОДНЫЕ РЕСУРСЫ том 49 № 5 2022

ского состава, продукция—деструкция OB, обмен CO_2 на границе вода/атмосфера и осаждение растворение карбоната кальция. В данной статье обсуждаются первые четыре фактора как наиболее значимые для эстуариев.

Влияние речного стока

Судя по распределению солености, верхний 10-метровый слой Ульбанского залива подвержен речному распреснению вплоть до линии входных мысов (рис. 1). Это связано с тем, что для району Шантарского архипелага присущ продолжительный муссонный дождевой сезон с большм речным стоком. Площадь ЗС с диапазоном солености 0.1–30‰ определена от входных мысов в Ульбанский залив (Укурунру и Тукурну) (рис. 1) с помощью изображения "Google Earth" и составила 2200 км² при условии затопленных приливных осушек.

Потоки растворенных и взвешенных веществ, поставляемых реками Сыран и Ульбан в залив, можно рассчитать по соотношению:

$$F_i = QC_i, \tag{7}$$

 F_i — поток вещества *i*; *Q* — расход воды в реке; C_i — концентрация вещества *i* в речных водах. Рассчи-

Таблица 3.	Суточные потоки (T/cyT) на пике паводка (16.07.2016) с речным стоком (M^{3}/c) растворенного неорга
нического	фосфора FDIP, азота FDIN, кремния FDSi, общего фосфора FP _{обш} и азота FN _{обш} , органического уг
лерода FPC	ОУ и взвешенного вещества FBB

Река	Расход	FDIP	FР _{общ}	FDSi	FDIN	FN _{общ}	FРОУ	FBB
Сыран и Ульбан	194.7	1.36	1.95	68.4	1.08	3.7	122	1825.8
Уда	7931	4.25	6.37	2525	23.024	137.185	4385.5	13705
Усалгин	360	1.08	4.42	109.7	2.14	6.75	614	2830

танные потоки веществ со стоком рек Сыран и Ульбан при данном расходе и средней для двух рек концентрации веществ (табл. 2) представлены в табл. 3 совместно с потоком веществ в исследованных ранее реках. Также в табл. 3 приведены скорректированные потоки веществ со стоком рек Уды и Усалгин, рассчитанные ранее на основании заниженной величины расхода воды [14].

Соотношения расходов рек (Уда : Усалгин : Сыран и Ульбан), приведенных в табл. 3, -1:22:41. Это же соотношение приблизительно сохраняется для FDSi (1:23:37) и в меньшей степени для FN_{обш} (1:10:21); для FPOУ соотношение – 1:7:36; т. е. поток этих веществ в основном определяется объемом водного стока, и их поставка в ЗС рек Сыран и Ульбан будет наименьшей по отношению к ЗС в других заливах Шантарского региона. Потоки остальных веществ со стоком рек Уда : Усалгин : Сыран и Ульбан соотносятся так: FDIN - 1 : 11 : 21; FBB - 1 : 4.8 : 7.5; FDIP -1:3.9:3.1; FP_{общ} – 1:1.4:3.2. Таким образом, поток минерального и органического фосфора со стоком Сырана и Ульбана сравним с потоком этих веществ со стоком Уды – крупнейшей реки данного района. При этом поток взвеси, ограничивающей толщину фотического слоя, со стоком Уды в 7.5 раз превышает поток со стоком Сырана и Ульбана, а объем водного стока Уды в 41 раз превышает расход воды Сырана и Ульбана. Полученные на основании рассчитанных потоков веществ соотношения, вероятно, характерны только для паводкового периода и могут существенно изменяться на протяжении летних месяцев.

Баланс продукция-деструкция ОВ

Обратная зависимость между pCO_2 и AOU = = $[O_2]_{pab} - [O_2]_{изм}$ (Apparent oxygen utilization – кажущееся потребление кислорода) на протяжении всей 3С (рис. 4а) свидетельствует о том, что содержание CO₂ контролируется в основном балансом продукции–деструкции OB. Скорость потребления O₂ при аэробном бактериальном окислении определяется концентрацией OB в воде, поэтому на ранней стадии 3С, при высоких значениях pCO₂, наблюдается также наибольшая величина AOU.

Размыв берегов в результате сильных течений и больших колебаний уровня из-за приливов способствует повышению мутности вод. Органические соединения и глинистые минералы в воде главные естественные сорбенты для формирования флоккул в сорбционной системе маргинального фильтра [7]. В ЗС рек Сыран и Ульбан высокие концентрации этих веществ в речных и эстуарных водах на фоне интенсивной динамики вод, вероятно, способствуют экстремумам мутности при солености 1-3‰ (рис. 4б). Толщина фотического слоя резко возрастала для вод с соленостью >20‰ (рис. 4в) и была сравнима с глубиной бассейна. Поток взвеси в ЗС, вплоть до солености 20‰, приводит к тому, что фотический слой ограничен и скорость деструкции превосходит скорость продукции ОВ. В этом случае потребление СО₂ при биологической продукции, несмотря на достаточно высокие концентрации биогенных веществ в среде, ограничено из-за ограничения фотического слоя (рис. 4). Для двух других приемных бассейнов Шантарского региона (Удская губа и зал. Николая) переход равновесных значений *p*CO₂ происходит при большей солености – 24‰ [14].

Химический состав РОУ условно можно разделить на два класса – ГВ и негуминовые вещества (НГВ), содержание которых следующее: $H\Gamma B = POY - \Gamma B$. По мере роста солености концентрации ГВ и РОУ снижаются (рис. 4г, 4д). Этот факт объясняется тем, что реки Ульбан и Сыран в нижнем течении протекают через торфяники [9], поэтому вклад ГВ в содержание РОУ на начальном этапе смешения речных и морских вод составляет 80-90% (рис. 4е). С увеличением солености доля ОВ негуминовой природы возрастает, что, возможно, связано с поступлением в среду полисахаридов, выделяемых фитопланктоном при фотосинтезе [32]. Интенсификация фотосинтеза в поверхностном слое вод с соленостью 20–25‰, судя по параметрам карбонатной системы (рис. 2), сопровождается неконсервативной зависимостью от солености доли негуминовой составляющей в РОУ (рис. 4е).

Таким образом, доминирование аэробного окисления на начальном этапе 3С приводит к увеличению AOU, pCO_2 , DIC, DIN, DIP, ГВ и к уменьшению pH in situ, а доминирование фото-

Рис. 4. Зависимость pCO₂ от AOU (а), концентрация взвеси (б), толщина фотического слоя (в), POV (г), ГВ (д) и процентное содержание НГВ в POV вдоль зоны смешения. *1*, *2* – поверхностный и придонный слои воды соответственно в 3С р. Сыран, *3*, *4* – поверхностный и придонный слои воды соответственно в 3С р. Ульбан.

синтеза микроводорослей — к противоположной картине при солености >20% (рис. 2–4).

Соотношения DIN, DIP и DSi в прибрежных водах используются в качестве индикаторов лимитирования первичной продукции и потенциального распространения микроводорослей [4]. DIN лимитирует продукцию OB, если DIN/DIP < 16, тогда как отношение > 16 указывает на то, что DIP лимитирующий элемент [35]. Пониженное соотношение DIN/DIP наблюдалось на большей части 3С, за исключением узкого диапазона 20– 25.5‰, где данное соотношение достигало 9 (рис. 5а). Это указывает на то, что первичная

ВОДНЫЕ РЕСУРСЫ том 49 № 5 2022

продукция в 3С может быть ограничена DIN. Соотношения DIP/DSi и DIN/DSi контролируются главным образом поставкой силикатов с речным стоком. При интенсификации фотосинтеза в водах с соленостью >20‰ становится существенным биологическое потребление силикатов диатомовыми водорослями (рис. 5б, 5в). Максимальные соотношения DIP/DSi и DIN/DSi в придонных водах с соленостью >30‰, вероятно, могут быть связаны с дополнительным потоком азота и фосфора из донных отложений в процессе деструкции осевшего на дно автохтонного OB.

СЕМКИН и др.

мер, исследования азиатских, европейских и североамериканских эстуариев показали яркий контраст потоков СО2 из-за разной скорости ветра в прибрежных районах [26]. Авторы настоящей работы проводили исследования при низких скоростях ветра (<4 м/с) (табл. 4), поэтому данный фактор был малозначим. Растворимость СО₂ сильно зависит от температуры, и при ее снижении от 20 до 0°С увеличивается почти вдвое. Поэтому на границе вода/атмосфера для охотоморских эстуариев с низкой температурой воды получены относительно высокие значения потоков СО₂ при относительно небольшой величине Др-СО₂ и малой скорости ветра (табл. 4) по сравнению с более теплыми водными объектами [26].

Из данных табл. 4 следует, что средняя величина FCO₂ из атмосферы в воды с соленостью от 20 до 30‰, распространенных на площади бассейна $\sim 20 \times 10^8 \text{ м}^2$ (рис. 1), составляет 20.2 ммоль м⁻² сут⁻¹. Суммарный сток СО2 из атмосферы в воду для данной части 3C составит ~41 × 10⁶ моль сут⁻¹ $(20 \times 10^8 \text{ м}^2 \times 20.2 \text{ ммоль м}^{-2} \text{ сут}^{-1})$ при средней скорости ветра 2.7 м/с. Для площади бассейна с соленостью поверхностных вод до 20% (~2 × × 10⁸ м²) средняя величина потока составляет 64.4 ммоль M^{-2} сут⁻¹, а суммарный *F*CO₂ в атмосферу — $\sim 12.8 \times 10^6$ моль сут⁻¹ (2 $\times 10^8$ м² \times \times 64.4 ммоль м⁻² сут⁻¹). Таким образом, воды 3С в период паводка в целом поглощают атмосферный СО₂, поскольку площадь вод бассейна с доминированием продукции ОВ в 10 раз превосходит площадь с доминированием деструкции ОВ.

Влияние скорости ветра на потоки СО₂ можно оценить по уравнениям (4), (5), используя FCO_2 , рассчитанные на основе реальной величины ΔpCO_2 (табл. 4) и гипотетического набора скоростей ветра: 5, 7, 10, 15 м/с (табл. 5). В этом расчете предполагается, что величина ΔpCO_2 с ростом скорости ветра существенно не меняется, поскольку величины рСО2 в поверхностном и в придонном слоях воды приблизительно равны, а приливное перемешивание компенсирует отток (либо поступление) СО2 на границе вода/атмосфера. Результаты, представленные в табл. 5, демонстрируют более чем 40-кратное увеличение суммарного потока СО₂ в атмосферу и почти 20кратное увеличение стока СО2 в воду при возрастании скорости ветра от 2 до 15 м/с.

выводы

В середине лета на пике высокого паводка исследован комплекс химических характеристик, связанных с циклом углерода, на всем протяжении зон смешения рек Сыран и Ульбан.

Рис. 5. Соотношения биогенных веществ вдоль ЗС. 1, 2- поверхностный и придонный слои воды соответственно в ЗС р. Сыран; 3, 4 - поверхностный и придонный слои воды соответственно в ЗС р. Ульбан.

Поток СО2 в системе вода-атмосфера

Широкий диапазон изменения рСО₂ в ЗС рек Сыран и Ульбан (181-2579 мкамт) характерен для многих эстуариев и не является экстремальным [25]. Наряду с разностью величин парциального давления CO₂ моря и атмосферы (ΔpCO_2) определяющие факторы увеличения потока СО₂ - скорость ветра, интенсивность перемешивания различных водных масс и температура воды. Напри-

мости \mathbf{X} (моль $\mathbf{k}^{(-1)}$) и поток FCO_2 на границе вода/атмосфера (ммоль $\mathbf{M}^{(-2)}$)						
S	t	$\Delta p CO_2$	U	k	K	FCO ₂
0.06	13.77	1604.7	2.2	1.03	0.051	83.6
0.09	14.22	1928.3	2.2	1.04	0.050	99.9
0.14	10.96	1162.5	2.2	0.95	0.056	61.9
0.35	14.31	1758.4	2.2	1.04	0.050	91.0
0.67	14.30	1845.3	2.2	1.04	0.050	95.6
0.67	12.22	1340.7	2.2	0.98	0.054	70.8
1.52	14.33	2176.3	2.2	1.04	0.050	112.7
2.07	14.61	1781.3	2.2	1.05	0.049	91.9
2.60	12.52	1092.1	2.2	0.99	0.053	57.5
3.80	12.62	1113.9	2.2	0.99	0.053	58.6
4.41	14.98	1575.4	2.2	1.06	0.048	80.9
8.34	12.49	750.3	2.2	0.99	0.053	39.5
14.29	11.95	216.2	2.2	0.98	0.046	9.7
18.01	12.12	64.1	2.2	0.98	0.046	2.9
19.59	15.49	230.2	2.2	1.07	0.040	10.0
20.79	12.21	-172.2	4.0	3.25	0.046	-25.5
21.82	6.90	-221.6	3.3	1.89	0.054	-22.8
21.94	10.63	-152.2	2.2	0.94	0.048	-6.9
22.30	10.35	-156.0	2.2	0.93	0.049	-7.1
22.37	9.30	-183.5	4.0	2.99	0.050	-27.6
22.38	11.08	-129.4	2.2	0.95	0.047	-5.8
22.44	6.45	-220.9	3.0	1.54	0.055	-18.7
23.42	5.02	-220.1	3.0	1.48	0.057	-18.6
24.41	9.70	-143.5	3.0	1.70	0.050	-12.1
25.22	7.38	-184.2	4.0	2.82	0.053	-27.8
27.43	1.91	-221.3	3.3	1.62	0.062	-22.4
28.71	5.17	-194.5	4.0	2.64	0.057	-29.3
29.00	3.53	-188.5	4.0	2.51	0.060	-28.2
30.33	4.30	-201.7	4.0	2.57	0.058	-30.3

Таблица 4. Соленость *S* (‰), температура воды *t* (°C), разность парциального давления $CO_2 - \Delta pCO_2$ (мкатм) между морем и атмосферой, скорость ветра *U* (м/с), скорость переноса газа *k* (см ч⁻¹), коэффициент растворимости *K* (моль кг⁻¹) и поток *F*CO₂ на границе вода/атмосфера (ммоль м⁻² сут⁻¹)

Таблица 5. Модельный *F*CO₂ на границе вода/атмосфера: средний с единицы площади – 1 м² (ммоль м⁻² сут⁻¹) и суммарный для всей 3С (моль сут⁻¹) в исследуемом бассейне при разной скорости ветра (м/с)

Скорость ветра	Средний <i>F</i> CO ₂ в 3C <20‰	Средний <i>F</i> CO ₂ в 3C >20%	Суммарный <i>F</i> CO ₂ в атмосферу	Суммарный <i>F</i> CO ₂ из атмосферы
2.2-4 (табл. 4)	64.5	-20.2	12.8×10^{6}	-41×10^{6}
5	332	-41.9	66×10^{6}	-83×10^{6}
7	652	-87.1	130×10^{6}	-174×10^{6}
10	1331	-177.8	266×10^{6}	-355×10^{6}
15	2995	-400	599×10^{6}	-800×10^{6}

ВОДНЫЕ РЕСУРСЫ том 49 № 5 2022

Деструкционные процессы OB доминируют при солености <20‰, а доминирование продукционных процессов наблюдается при солености >20‰ за счет резкого увеличения толщины фотического слоя практически до дна бассейна.

В зоне смешения вод с доминированием гетеротрофных процессов pCO_2 более чем в 6 раз превышает равновесное pCO_2 с атмосферой. Наименьшее pCO_2 установлено в поверхностном слое воды в диапазоне солености 20-25%, где также наиболее контрастно проявилась неконсервативная зависимость DIC и pH от солености за счет интенсификации фотосинтеза.

Изученные зоны смешения в целом поглощают атмосферный CO₂.

Авторы выражают благодарность экипажу судна НИС "Профессор Гагаринский" рейса № 71 во главе с капитаном Э.А. Гавайлером, участникам лодочных работ В.М. Шулькину (ТИГ ДВО РАН) и А.О. Мизгину (ДВФУ), за ценные советы и консультации признательны В.В. Мельникову (ТОИ ДВО РАН).

СПИСОК ЛИТЕРАТУРЫ

- Бычков А.С., Павлова Г.Ю., Кропотов В.А. Карбонатная система // Химия морской воды и аутигенное минералообразование. М.: Наука, 1989. С. 49– 111.
- Дзюбан А.Н. Первичные продукционные процессы в воде Тугурского залива Охотского моря // Океанология. 2003. Т. 43. №. 3. С. 383–392.
- 3. Жабин И.А., Лукьянова Н.Б., Дубина В.А. Влияние приливного перемешивания и речного стока на термохалинную структуру вод в районе Шантарских островов (Охотское море) // Метеорология и гидрология. 2020. № 10. С. 90–99.
- 4. Звалинский В.И. Недашковский А.П., Сагалаев С.Г. и др. Биогенные элементы и первичная продукция эстуария реки Раздольной // Биология моря. 2005. Т. 31. № 2. С. 107–116.
- Золотухин С.Ф., Махинов А.Н., Канзепарова А.Н. Особенности морфологии и гидрологии нерестовых рек северо-западного побережья Охотского моря // Изв. ТИНРО. 2014. Т. 176. С. 139–154.
- Колтунов А.М., Тищенко П.Я., Звалинский В.И. и др. Карбонатная система Амурского лимана и прилегающих морских акваторий // Океанология. 2009. Т. 49. № 5. С. 649–706.
- Лисицын А.П. Маргинальный фильтр океанов // Океанология. 1994. Т. 34. № 5. С. 735–747.
- 8. *Маккавеев П.Н.* Изменчивость карбонатного равновесия вод Мирового океана: Авт. дис. ... док. геогр. наук. М.: ИО РАН, 2009. 51 с.
- Махинов А.Н., Крюкова М.В., Пронкевич В.В. Ульбанский залив // Природа. 2017. № 8. С. 32–43.
- Мельников В.В., Федорец Ю.В., Семкин П.Ю. и др. Гидробиологические особенности заливов Шантарского района в связи с летним нагулом поляр-

ных китов охотской популяции // Океанология. 2020. Т. 60. № 2. С. 244–249.

- 11. *Михайлов В.Н., Горин С.Л.* Новые определения, районирование и типизация устьевых областей рек и их частей эстуариев // Вод. ресурсы. 2012. Т. 39. № 3. С. 243–257.
- 12. *Павлова Г.Ю*. Карбонатная система как индикатор биогеохимических процессов в океане: Авт. дис. ... канд. хим. наук. Владивосток: ДВГУ, 2001. 24 с.
- Ресурсы поверхностных вод СССР. Т. 18. Северовосток / Под ред. А.П. Муранова. Л.: Гидрометеоиздат, 1970. 592 с.
- 14. Семкин П.Ю., Тищенко П.Я., Павлова Г.Ю. и др. Влияние речного стока на гидрохимические характеристики вод Удской губы и залива Николая (Охотское море) в летний сезон // Океанология. 2021. Т. 60. № 3. С. 387–400.
- 15. Тищенко П.Я. Кислотно-основное равновесие в морских и эстуарных водах: Автореферат дис. ... док. хим. наук. Владивосток: Ин-т химии ДВО РАН, 2007. 53 с.
- 16. Тищенко П.Я., Вонг Ч.Ш., Волкова Т.И. и др., Карбонатная система эстуария реки Раздольной (Амурский залив Японского моря) // Биология моря. 2005. Т 31. № 1. С. 51–60.
- Тищенко П.Я., Лобанов В.Б., Тищенко П.П. и др. Гидрохимические исследования в заливе Академии (Охотское море) // Океанология. 2022. Т. 62. № 1. С. 98–111.
- 18. Тищенко П.Я., Лобанов В.Б., Шулькин В.М. и др. Комплексные исследования прибрежных акваторий Японского и Охотского морей, находящихся под влиянием речного стока (71-й рейс научно-исследовательского судна "Профессор Гагаринский") // Океанология. 2018. Т. 58. № 2. С 340–342.
- Тищенко П.Я., Чичкин Р.В., Ильина Е.М. и др. Измерение рН в эстуариях с помощью ячейки безжидкостного соединения // Океанология. 2002. Т. 42. № 1. С. 32–41.
- Хабаровский край и Еврейская автономная область: Опыт энцикл. геогр. слов / Под ред. И.Д. Пензина. Хабаровск: Приамурское геогр. ово, 1995. 327 с.
- Хлоев Г.С. Некоторые особенности гидрологического режима Шантарского района // Вопросы океанографии. Тр. ДВНИГМИ. Вып. 011. Л.: Гидрометеоиздат, 1960. С. 70–81.
- 22. Шестеркин В.П. Гидрохимия рек южной части о Феклистова (Шантарские острова) // Тихоокеанская геология. 2015. Т. 34. № 5. С. 108–110.
- 23. Шестеркина Н.М., Таловская В.С. Особенности формирования химического состава водотоков бассейна Тугурского залива Охотского моря // География и природные ресурсы. 2010. № 2. С. 99–105.
- Akhtar Sh., Equeenuddin S.M., Bastia F. Distribution of pCO₂ and air-sea CO₂ flux in Devi estuary, eastern India // Appl. Geochem. 2021. V. 131. 105003.
- 25. *Chen C.T., Borges A.V.* Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmo-

ВОДНЫЕ РЕСУРСЫ том 49 № 5 2022

spheric CO_2 // Deep Sea Res. Pt II. Topical Studies in Oceanog. 2009. V. 56. Iss. 8–10. P. 578–590.

- Chen C.T., Huang T.H., Chen Y.C. et al. Kang Air–sea exchanges of CO₂ in the world's coastal seas // Biogeosci. 2013. V. 10. Iss. 10. P. 6509–6544.
- 27. Crossland C.J., Kremer H.H., Lindeboom H.J. et al. Coastal Fluxes in the Anthropocene. Berlin: Springer, 2005, 231p.
- Cai W.J. Estuarine and coastal ocean carbon paradox: CO₂ sinks or sites of terrestrial carbon incineration? // Annu. Rev. Mar. Sci. 2011. V. 3. P. 123–145.
- Dickson A.G. pH scales and proton-transfer reactions in saline media such as sea water // Geochim. Cosmochim. Acta. 1984. V. 48. P. 2299–2308.
- Dickson A.G., Millero F.J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media // Deep-Sea Res. 1987. V. 34. Iss. 10. P. 1733–1743.
- Dickson A.G., Sabine C.L., Christian J.R. Guide to Best Practices for Ocean CO₂ Measurements. PICES Special Publ. 2007. (3). 191 p.
- Passow U., Shipe R.F., Murray A. et al. The origin of transparent exopolymer particles (TEP) and their role in sedimentation of particulate matter // Cont. Shelf Res. 2001. V. 21. Iss. 4. P. 327–346.
- Pipko I.I., Pugach S.P., Luchin V.A. et al. Surface CO₂ system dynamics in the Gulf of Anadyr during the open

water season // Continental Shelf Res. 2021. V. 217. 104371.

- Pritchard D.W. What is an estuary: a physical viewpoint // Estuaries. Washington: Am. Ass. Adv. Sci., 1967. Publ. 83. P. 3–5.
- Redfield A.C., Ketchum B.H., Richards F.A. The influence of organisms on the composition of seawater // The Sea / Ed. M.N. Hill. N. Y.: Intersci., 1963. V. 2. P. 26–77.
- 36. *Rogachev K.A., Carmack E.C., Foreman M.G.G.* Bowhead whales feed on plankton concentrated by estuarine and tidal currents in Academy Bay, Sea of Okhotsk // Continental Shelf Res. 2008. V. 28. Iss. 14. P. 1811–1826.
- Sun H., Gao Zh., Qi D. et al. Surface seawater partial pressure of CO₂ variability and air-sea CO₂ fluxes in the Bering Sea in July 2010 // Continental Shelf Res. 2020. V. 193. 104031.
- Tishchenko P.Y., Kang D.-J., Chichkin R.V. et al. Application of potentiometric method using a cell without liquid junction to underway pH measurements in surface seawater // Deep Sea Res. Pt I. 2011. 58. P. 778– 786.
- 39. *Wanninkhof R*. Relationship between wind speed and gas exchange over the ocean revisited // Limnol. Oceanogr.: Methods, 2014. V. 12. P. 351–362.
- Weiss R.F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas // Mar. Chem. 1974. V. 2. P. 203–215.