_____ ГИДРОХИМИЯ, ГИДРОБИОЛОГИЯ, _– Экологические аспекты

УДК 543.51+543.631

ХАРАКТЕРИСТИКА НЕФТЕПРОДУКТОВ В ДОННЫХ ОТЛОЖЕНИЯХ 03. ПЯСИНО МЕТОДОМ ГХ/МС

© 2023 г. Е. С. Бродский^{*a*}, А. А. Шелепчиков^{*a*}, А. Д. Кудрявцева^{*a*}, *, Е. Я. Мир-Кадырова^{*a*}

^аИнститут проблем экологии и эволюции РАН, Москва, 119071 Россия

*e-mail: a.kudryavtseva@sevin.ru Поступила в редакцию 24.05.2022 г. После доработки 09.12.2022 г. Принята к публикации 14.12.2022 г.

Обычно применяемые интегральные методы определения нефтепродуктов, такие как гравиметрический, ИК-фотометрический, флуоресцентный, не учитывают природу определяемых соединений и вклад биогенных углеводородов, для суждения о которых необходим более детальный анализ, который можно осуществить методом ГХ/МС. Для нефтепродуктов в донных отложениях оз. Пясино характерно наличие н-алканов со значительным преобладанием н-алкана C_{17} и небольшим преобладанием н- C_{12} , н- C_{14} , н- C_{16} и н- C_{18} , свидетельствующими о вкладе микроорганизмов и водорослей, а также с преобладанием C_{23} , C_{25} , C_{27} , C_{29} , C_{31} , обусловленным вкладом наземных высших растений. На хроматограмме имеются два максимума неразделенных соединений в областях $C_{10}-C_{21}$ и $C_{22}-C_{33}$. Нефтепродукты в них представляют собой смесь алканов, циклоалканов с 1–4 кольцами в конденсированной системе и ароматических и нафтено-ароматических углеводородов с 1–3 бензольными и 1–2 насыщенными кольцами в конденсированной системе, с алкильными заместителями, содержащими 0–12 (преимущественно 2–8) атомов С.

Ключевые слова: нефтяное загрязнение, донные отложения, углеводородный состав, ГХ/МС, оз. Пясино.

DOI: 10.31857/S0321059623030069, EDN: CYJYHU

введение

Содержание нефтепродуктов (НП) – один из основных показателей загрязнения окружающей среды. Многочисленные разливы нефти и НП при их добыче и транспортировке приводят к постоянному загрязнению почвы и донных отложений, а иногда к катастрофическим последствиям для окружающей среды. В 2020 г. в г. Норильске произошла утечка >21 тыс. т дизельного топлива, значительная часть которого попала в р. Далдыкан, правый приток р. Амбарной, впалающей в крупное оз. Пясино [1]. Согласно спутниковым данным, масштабного попадания загрязнения в оз. Пясино допущено не было [8]. Исследование донных отложений в районе разлива также показало, что заметного проникновения разлившихся НП в водную систему оз. Пясино не произошло [15, 24]. Однако поскольку НП в этой системе были обнаружены, желательно дополнить сведения об их содержании данными об их природе и составе.

Прежде всего следует отметить, что сам термин "нефтепродукты" по определению соответствует не собственно соединениям нефти (т. е. нефтям или техническим продуктам переработки нефти), а совокупности соединений, экстрагируемых неполярным растворителем; так что, хотя многие углеводороды и другие экстрагируемые соединения могут происходить из ненефтяных источников, все экстрагируемые материалы считаются нефтяными загрязнителями [25]. Иногда для них используется термин "углеводородный индекс".

Аналитические методы, обычно применяемые для определения НП, – в основном ИК-фотометрия, флуоресценция, гравиметрия. Это интегральные методы, дающие определенный сигнал, который на основе калибровки связывается с содержанием НП. Такой подход может давать большие расхождения в случае выбора неправильного калибровочного стандарта (расхождение в величинах калибровочного коэффициента может достигать порядка); тем более эти методы не могут оценить вклад биогенных соединений, который иногда может быть довольно большим [7]. Детальную информацию о составе экстрагируемых соединений, включающую распределение углеводородов по группам (алканы, циклоалканы, ароматические соединения) и распределение групп

N⁰	Характеристика
1	р. Пясина (исток), 70°4'4.80" с.ш.; 88°4'6.92" в.д.
2	оз. Пясино, мыс Голый (гл. 1.4 м), 69°58'7.28" с.ш.; 87°31'15.75" в.д.
3	оз. Пясино, мыс Голый (гл. 6.7 м), 69°58′31.88″ с.ш.; 87°30′3.72″ в.д.
4	оз. Пясино, мыс Тонкий – центр, 69°42′55.86″ с.ш.; 87°50′31.98″ в.д.

Таблица 1. Характеристика образцов донных отложений

соединений по молекулярным массам, можно получить с помощью сочетания газовой хроматографии (ГХ) и масс-спектрометрии (ГХ/МС) [2–4, 6].

Идентификация в ГХ/МС осуществляется обычно на основе определяемых характерных компонентов НП. В частности, признаком НП считается обнаружение стеранов, тритерпанов, изопренанов – пристана и фитана в определенном соотношении друг с другом и с соседними н-алканами [18]; а наличие жирных кислот, спиртов, стероидов – признаком вклада биогенных соединений [25]. Для характеристики НП чаще всего используются н-алканы. Для оценки соотношения природных и нефтяных н-алканов используются различные индексы, основанные на соотношении четных и нечетных н-алканов, например индексы NAR (natural n-alkanes ratio) [18] или CPI (Carbon preference index) [23] и др.

Однако оценку вклада всех природных и нефтяных соединений в углеводородный индекс сумму экстрагируемых неполярных соединений осуществить не удается. Выходом из положения может быть анализ "тела" нефти — соединений, заключенных в неразделенном "горбе", а при невозможности разделить эти соединения на индивидуальные — определение группового состава углеводородов и гетероатомных соединений, т. е. не только отдельных соединений, которые характерны для нефти, но и групп соединений сходного строения, составляющих основную массу соединений нефти.

Масс-спектрометрическое определение группового состава НП при положительной ионизации электронами основано, во-первых, на характерных особенностях ионизации и распада молекул соединений нефти под действием электронного удара, при котором образуются молекулярные ионы, а при расщеплении их по связям С–Н и С–С – осколочные [9]. Эти ионы служат аналитическими характеристиками для определения группового состава и молекулярно-массового распределения соединений в этих группах [2, 6].

Другое основание масс-спектрометрического анализа нефти – закономерный характер строения этих соединений. Нефть – очень сложная смесь множества различных соединений, но их распределение подчиняется определенным правилам [12]:

ВОДНЫЕ РЕСУРСЫ том 50 № 6 2023

гомологичность строения с плавным распределением содержания гомологов (в основном, мономодальная кривая);

наличие на хроматограммах пиков н-алканов с плавным распределением интенсивностей;

соотношение н-алканов с четным и нечетным числом атомов С близко к 1;

преобладание метил- и алкилзамещенных моноциклических, бициклических ароматических углеводородов и полиароматических углеводовородов (ПАУ) по сравнению с незамещенными;

непрерывность распределения по степени водородной ненасыщенности;

наличие характерных соединений в определенных соотношениях (изопренаны, стераны, тритерпаны и др.).

Перечисленные признаки могут быть использованы для идентификации НП в анализируемых объектах окружающей среды, так как биогенные углеводороды не подчиняются этим правилам (в частности плавное распределение н-алканов). Таким образом, хотя нет отдельных компонентов или признаков, которые однозначно характеризовали бы анализируемый объект как НП, определенный набор и соотношение этих компонентов характерны для нефти как системы [3].

Задача данной работы — детальная характеристика состава НП в донных отложениях оз. Пясино, в районе, рассматриваемом как возможный путь продвижения НП в результате разлива дизельного топлива в г. Норильске.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Образцы донных отложений (дата отбора 11.08.2020) любезно предоставлены О.П. Таран (Институт химии и химической технологии СО РАН, ФИЦ "КНЦ СО РАН") (табл. 1). Для сравнения анализировали также образец дизельного топлива из разлива в Норильске.

Образец (0.5—1.0 г) помещали в пипетку Пастера, добавляли 2 мкг внутреннего стандарта фенилдекана в растворе метаноле и элюировали 3 мл ДХМ. Элюат упаривали в токе воздуха при комнатной температуре до 100 мкл и анализировали на газовом хроматографе ("Finnigan Trace GC Ultra") с масс-спектрометрическим детектором ("Finnigan PolarisQ") в режиме без деления

Эмпирическая формула	Группа соединений	ДТ	1	2	3	4
$C_n H_{2n+2}$	Алканы	14.2	22.9	24.6	19.7	19.7
$C_n H_{2n}$	Моноциклоалканы	25.4	26.9	28.1	26.1	34.3
$C_n H_{2n-2}$	Бициклоалканы	12.9	19.2	21.5	14.8	18.7
$C_n H_{2n-4}$	Трициклоалканы	6.3	14.7	7.5	8.5	9.6
$C_n H_{2n-6}$	Тетрациклоалканы	_	1.9	0.68	3.2	1.1
$C_n H_{2n-6}$	Алкилбензолы	18.5	8.0	7.6	10.5	7.2
$C_n H_{2n-8}$	Нафтенбензолы	9.8	2.8	4.0	5.7	4.1
$C_n H_{2n-10}$	Динафтенбензолы	6.3	0.63	2.9	4.0	2.8
$C_n H_{2n-12}$	Нафталины	4.9	1.0	0.9	2.1	1.1
$C_n H_{2n-14}$	Аценафтены/бифенилы	0.58	0.8	0.5	1.7	0.6
$C_n H_{2n-16}$	Флуорены	0.31	0.72	0.3	1.5	0.4
$C_n H_{2n-18}$	Фенантрены	0.19	0.24	0.5	1.0	0.4
$C_n H_{2n-20}$	Нафтенофенантрены		_	0.1	0.3	_
$C_n H_{2n-22}$	Флуорантены/пирены		_	0.04	0.3	_
$C_n H_{2n-10} S$	Бензотиофены	0.45	_	0.6	0.6	_
$C_n H_{2n-16} S$	Дибензотиофены	0.08	0.13	0.2	0.2	_
Сумма, мкг/г			33.9	169.5	68.3	77.5
С ₁₀ -С ₂₂ , мкг/г			18.8	118.9	33.0	26.2
С ₂₃ -С ₃₂ , мкг/г			15.1	54.5	34.5	51.3
н-алканы, мкг/г		8.1	5.2	8.2	3.8	4.3

Таблица 2. Групповой состав НП в дизельном топливе (ДТ) и в экстрактах донных отложений, % мас. отн.

потока с началом продувки инжектора 0.1 мин; температура инжектора 260°С; расход газа-носителя гелия 1 мл/мин. Колонка DB-5MS длиной 25 м, внутренним диаметром 0.25 мкм и толщиной пленки неподвижной фазы 0.25 мкм. Начальная температура термостата хроматографа 60°С (2 мин). Далее – нагрев до 310°С со скоростью 10°С/мин и выдержка при этой температуре 10 мин. Температура интерфейса 230°С, температура источника ионов масс-спектрометра 220°С, диапазон масс 40–500 а.е.м., количественная оценка проводилась по методу внутреннего стандарта.

Распределение н-алканов по числу атомов С рассчитывали по площади соответствующих хроматографических пиков на хроматограмме по набору ионов, характерных для алканов [2] (m/z 43, 57, 71, 85, 99, 113), эта сумма сравнительно мало меняется в зависимости от молекулярной массы, ее величина составляет 0.45–0.55 полного ионного тока. Расчет группового состава проводили, используя величины суммарных площадей пиков характеристических ионов, интегрированных по всей хроматограмме, рассчитанные вклады каждой группы в полный ионный ток (ПИТ) нормировали к величине ПИТ [2]. Молекулярно-массовое распределение рассчитывали по характерным группам пиков молекулярных ионов (М), ионов (М-1) и (М-15) [4].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Суммарное содержание углеводородов в донных отложениях составило от 34 до 170 мкг/г (табл. 2), что в целом согласуется с результатами, полученными в [24].

Вид хроматограммы дизельного топлива показан на рис. 1. Это характерная хроматограмма НП: на ней виден "горб" неразделенных пиков и линейка пиков н-алканов, в промежутках между которыми видны пики некоторых изоалканов и циклоалканов. Распределение н-алканов (рис. 2а) имеет характерный плавный вид от C_{10} до C_{25} , индекс CPI = 0.94.

На рис. 3 показана хроматограмма по ПИТ образца 1, типичная для изученных донных отложений. Хроматограмма имеет два явно выраженных "горба" неразделенных пиков в областях $C_{10}-C_{21}$ и $C_{22}-C_{33}$, еще один более слабый "горб" проявляется в области $C_{18}-C_{22}$. Наличие таких "горбов" может быть признаком загрязнения по НП. Распределение н-алканов (рис. 2б) также характери-

Рис. 1. Масс-хроматограммы образца дизельного топлива по ПИТ и характерным ионам алканов.

зуется двумя "горбами": $C_{10}-C_{21}$ и $C_{22}-C_{33}$. Однако в обеих областях отсутствует характерное для НП плавное распределение: в интервале $C_{10}-C_{21}$ превалируют н- C_{17} и н- C_{13} , а также выделяются четные н- C_{12} , н- C_{14} , н- C_{16} и н- C_{18} . В области $C_{22}-C_{33}$ наблюдается преобладание н-алканов с нечетным числом атомов С. Индекс СРІ принимал значения от 3 до 5.5.

Отклонение от равномерного распределения н-алканов, характерного для нефти, обычно объясняется их биогенным происхождением [5, 19]. Так, н-алкан с 17 углеродными атомами в большом количестве содержится в морском фитопланктоне [17, 20], а преобладание $H-C_{27}$, $H-C_{29}$ и $H-C_{31}$ характерно для высших растений [20]. В качестве признака вклада наземных растений также может приниматься преобладание нечетных налканов над четными в области $>C_{23}H_{48}$ [14]. Что касается четных н-алканов от C_{12} до C_{22} , показано, что подобное распределение встречается в морских донных отложениях и связано с прямым поступлением из микроорганизмов [21]. В частности, сообщалось о преобладании четных н-ал-

ВОДНЫЕ РЕСУРСЫ том 50 № 6 2023

канов в диапазоне $C_{12}-C_{22}$ с максимумом при C_{16} в прибрежных отложениях Макассарского пролива [22], с максимумами при C_{18} , C_{20} и C_{22} – в прибрежных отложениях зал. Габес [10], в Мексиканском заливе, проливах Смита и Девисовом [21]. Следует отметить, что такое распределение наблюдалось также в речных и озерных экосистемах, включая объекты с нефтяным загрязнением, при этом различные комбинации микроорганизмов могут объяснить некоторые вариации распределения четных н-алканов [13, 16].

Для остальных проанализированных образцов донных отложений характерно аналогичное распределение с вариациями вклада тех или иных групп н-алканов (рис. 2). Только в образце 2 распределение н-алканов, в отличие от других образцов, показывает существенное загрязнение по НП в области элюирования дизельного топлива, тем не менее оно не соответствует картине свежего загрязнения разлившимся дизельным топливом. Данный образец характеризуется также наибольшим абсолютным содержанием определяемых углеводородов, при этом 70% приходится на

Рис. 2. Распределение н-алканов в образце дизельного топлива (разлив в Норильске) (а) и донных отложений № 1 (б), № 2 (в), № 3 (г), № 4 (д) (нормировка к сумме).

Рис. 3. Масс-хроматограммы образца донных отложений № 1 по ПИТ (сверху) и характеристическим ионам алканов (снизу).

диапазон C₁₂-C₂₂ (табл. 2). В [15] также показан вклад автохтонных и аллохтонных биогенных алканов в оз. Пясино, а о нефтяной природе загрязнения, предположительно, из других источников — таких как бочки горюче-смазочных материалов и водный транспорт – свидетельствовал состав полиароматических углеводовородов (ПАУ). При этом отмечено, что состав алифатических углеводородов не соответствовал аналогичному в дизельном топливе даже в донных отложениях наиболее загрязненных разливом территорий Норило-Пясинской водной системы, предположительно за счет их быстрой трансформации [15]. В [24] отмечено преобладание н-С₂₂-С₃₄ в донных отложениях оз. Пясино. Однако в одном образце в легкой части был обнаружен максимум на $H-C_{15}$ и в двух – на $H-C_{13}$ [24]. Следует отметить, что преобладание н-C₁₅ характерно для некоторых видов водорослей [11].

Таким образом, отличное от равномерного распределение н-алканов указывает на вклад различных биогенных источников, а о возможном загрязнении антропогенными НП свидетельству-

ВОДНЫЕ РЕСУРСЫ том 50 № 6 2023

ет только наличие на хроматограммах характерных "горбов" неразделенных соединений. При этом наличие нескольких таких "горбов" может быть обусловлено либо загрязнением несколькими видами НП, либо постепенным видоизменением и фракционированием первоначальных продуктов. Для проверки "горбов" на соответствие нефтяным углеводородам необходимо провести анализ хроматограмм по характерным ионам гомологов и групп соединений и определение группового состава НП [2, 4].

Хроматограммы по наборам характерных ионов групп углеводородов — алканов, моноцикло-, бицикло-, трицикло- и тетрациклоалканов, алкилбензолов, нафтенбензолов, динафтенбензолов, алкилнафталинов, алкилфенантренов и т. д. как и хроматограммы по ПИТ, имеют плавные "горбы" в соответствующих областях элюирования. Молекулярно-массовые распределения ароматических углеводородов, которые можно определить благодаря относительно большой интенсивности пиков их молекулярных ионов, показывают наличие гомологических рядов с плавным распределением. На рис. 4 представлены БРОДСКИЙ и др.

Рис. 4. Распределение групп соединений по числу атомов С в молекуле в образце 1 донных отложений (нормировка к сумме): алкилбензолы (а), нафтенбензолы (б), динафтенбензолы (в), нафталины (г), фенантрены (д).

молекулярно-массовые распределения ароматических углеводородов в образце 1 донных отложений. Они содержат 0-12 атомов С в алкильных заместителях и отличаются относительно малым содержанием первых членов гомологических рядов, максимум числа атомов С в алкильных заместителях приходится на 2-8. Все эти признаки соответствуют "нефтяной" природе соединений в неразделенных "горбах".

Результаты определения группового состава представлены в табл. 2. Компоненты нефтяного загрязнения донных отложений в районе оз. Пясино представляют собой смесь алканов, циклоалканов с 1–4 кольцами в конденсированной системе и ароматических углеводородов с 1–3 бензольными и 1–2 насыщенными кольцами в конденсированной системе.

выводы

Углеводороды в донных отложениях оз. Пясино характеризуются наличием на хроматограммах двух максимумов неразделенных соединений в областях $C_{10}-C_{21}$ и $C_{22}-C_{33}$. Отклонение распределения н-алканов от равномерного, характерного для НП, со значительным преобладанием в первой области н-алкана C_{17} и небольшим н- C_{12} , н- C_{14} , н- C_{16} и н- C_{18} , а во второй области – C_{23} , C_{25} , C_{27} , C_{29} , C_{31} , обусловленным их биогенным происхождением, свидетельствует о вкладе микроорганизмов, водорослей и наземных высших растений.

НП в "горбе" неразделенных соединений представляют собой смесь алканов, циклоалканов с 1-4 кольцами в конденсированной системе и ароматических углеводородов с 1-3 бензольными и 1-2 насыщенными кольцами в конденсированной системе и, по-видимому, отражают загрязнение несколькими видами НП. Алкильные заместители ароматических углеводородов содержат до 12 (преимущественно 2-8) атомов С.

Авторы выражают благодарность О.П. Таран (ФИЦ КНЦ СО РАН, ИХХТ СО РАН – обособленное подразделение ФИЦ КНЦ СО РАН) за предоставление образцов донных отложений; АО "Норильско-Таймырская энергетическая компания" – за предоставление образца разлившегося дизельного топлива.

СПИСОК ЛИТЕРАТУРЫ

- 1. Борсук О.И. Экологическая катастрофа в Норильске // Среда, окружающая человека: природная, техногенная, социальная. Брянск, 2021. С. 142– 146.
- Бродский Е.С. Масс-спектрометрический анализ углеводородов и гетероатомных соединений нефти // Методы исследования состава органических со-

ВОДНЫЕ РЕСУРСЫ том 50 № 6 2023

единений нефти и битумов. М.: Наука, 1985. С. 57–118.

- 3. Бродский Е.С. Системный подход к идентификации органических соединений в сложных смесях загрязнителей окружающей среды // Журн. аналит. химии. 2002. Т. 57. № 6. С. 585–591.
- Бродский Е.С., Шелепчиков А.А., Калинкевич Г.А., Мир Кадырова Е.Я., Жильников В.Г. Определение состава тяжелых и остаточных нефтепродуктов с помощью газовой хроматографии/масс-спектрометрии // Нефтехимия. 2014. Т. 54. № 1. С. 29–37.
- Немировская И.А., Онегина В.Д., Коновалов Б.В. Углеводороды во взвеси и осадках различных районов российского сектора Черного моря // Морской гидрофиз. журн. 2017. № 4. С. 48–60. https://doi.org/10.22449/0233-7584-2017-4-48-60
- 6. Полякова А.А. Молекулярный масс-спектральный анализ нефтей. М.: Недра, 1973. 184 с.
- Практическое руководство по химическому анализу элементов водных экосистем. Приоритетные токсиканты в воде, донных отложениях, гидробионтах / Под ред. *Т.О. Барабашина*. Ростов-на-Дону: Мини Тайп, 2018, 436 с.
- 8. Трошко К.А., Денисов П.В., Лаврова О.Ю., Лупян Е.А., Медведев А.А. Наблюдение загрязнений реки Амбарной, возникших в результате аварии на ТЭЦ-3 города Норильска 29 Мая 2020 г. // Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 3. С. 267–274. https://doi.org/10.21046/2070-7401-2020-17-3-267-274
- Худ А., О'Нил М. Применение масс-спектрометрии для анализа тяжелых нефтяных масел // Успехи масс-спектрометрии / Под ред. М. О'Нила. М.: ИЛ, 1963. С. 175–213.
- Aloulou F, Kallel M., Dammak M., Elleuch B., Saliot A. Even-numbered n-alkanes/n-alkenes predominance in surface sediments of Gabes Gulf in Tunisia // Environ. Earth Sci. 2010. V. 61. P. 837–843. https://doi.org/10.1007/s12665-009-0315-y
- Blumer M., Guillard R.R.L., Chase T. Hydrocarbons of marine phytoplankton // Mar. Biol. 1971. V. 8. P. 183– 189.
- Boduszynski M.M. Composition of heavy petroleums.
 Molecular weight, hydrogen deficiency, and heteroatom concentration as a function of atmospheric equivalent boiling point up to 1400 F (760 C) // Energy & Fuels. 1987. V. 1. P. 2–11.
- Ekpo B., Oyo-ita O., Wehner H. Even-n-alkane/alkene predominances in surface sediments from the Calabar River, SE Niger Delta, Nigeria // Naturwissenschaften. 2005. V. 92. P. 341–346. https://doi.org/10.1007/s00114-005-0639-8
- Elias V.O., Simoneit B.R.T., Cardoso J.N. Even n-alkane predominances on the Amazon Shelf and a Northeast Pacific hydrothermal system // Naturwissenschaften. 1997. V.84. P. 415–420.
- Glyaznetsova Y.S., Nemirovskaya I.A., Flint M.V. Study of the effects of an accidental diesel fuel spill in Norilsk // Doklady Earth Sci. 2021. V. 501. P. 994–999. https://doi.org/10.1134/S1028334X21110052
- 16. *Grimalt J., Albaiges J.* Sources and Occurrence of C_{12} - C_{22} n-alkane distributions with even carbon-number

preference in sedimentary environments // Geochim. Cosmochim. Acta. 1987. V. 51. № 6. P. 1379–1384. https://doi.org/10.1016/0016-7037(87)90322-X

 Han J., Calvin M. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments // Proc. National Acad. Sci. 1969. V. 64. № 2. P. 436– 443.

https://doi.org/10.1073/pnas.64.2.436

- Mille G., Asia L., Guiliano M., Malleret L., Doumenq P. Hydrocarbons in coastal sediments from the Mediterranean sea (Gulf of Fos area, France) // Mar. Pollution Bull. 2007. V. 54. P. 566–575. https://doi.org/10.1016/j.marpolbul.2006.12.009
- 19. *Nemirovskaya I.A.* Concentration and composition of hydrocarbons in bottom sediments from the Sakhalin shelf // Geochem. Int. 2008 V. 46. № 4. P. 414–421. https://doi.org/10.1134/S001670290804006X
- Nemirovskaya I.A. Hydrocarbons in the water and bottom sediments of the Barents sea during ice cover variability // Geochem. Int. 2020. V. 58. P. 822–834. https://doi.org/10.1134/S0016702920070071
- Nishimura M., Baker E.W. Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediments // Geochim. Cosmochim. Acta. 1986. V. 50. P. 299–305.

- Noor A., Mille G., Liong S., Jawahir B. N-alkane distribution in coastal surficial sediments from Ujungpandang, Indonesia // Mar. Pollution Bull. 1987. V. 18. № 9. P. 505–507.
- Sakari M., Ting L.S., Houng L.Y., Lim S.K., Tahir R., Fazliatul Adnan F.A., Yi J.L.A., Soon Z.Y., Hsia B.S., Dawood Shah M. Urban effluent discharge into rivers; A forensic chemistry approach to evaluate the environmental deterioration // World Applied Sci. J. 2012. V. 20. № 9. P. 1227–1235.
- 24. Taran O.P., Skripnikov A.M., Ionin V.A., Kaigorodov K.L., Krivonogov S.K., Dobretsov N.N., Dobretsov V.N., Lazareva E.V., Kruk N.N. Composition and concentration of hydrocarbons of bottom sediments in the CHPP-3 diesel-fuel spill zone at AO NTEC (Norilsk, Arctic Siberia) // Contemporary Problems Ecol. 2021. V. 14 № 4. P. 335–355.

https://doi.org/10.1134/S1995425521040089

 Wang Z., Yang C., Kelly-Hooper F., Hollebone B.P., Peng X., Brown C.E., Landriault M., Sun J., Yang Z. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments // J. Chromatogr. A. 2009. V. 1216. № 7. P. 1174–1191. https://doi.org/10.1016/j.chroma.2008.12.036