УДК 550.34:551.243.8

АКТИВНЫЕ РАЗЛОМЫ И СЕЙСМИЧНОСТЬ КУЛУ-ТЕНЬКИНСКОГО РАЙОНА (МАГАДАНСКАЯ ОБЛАСТЬ) ПО РЕЗУЛЬТАТАМ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ

© 2020 г. А. Н. Глухов^{а,} *, Б. М. Седов^а

^аСеверо-Восточный комплексный научно-исследовательский институт ДВО РАН им. Н.А. Шило, ул. Портовая, 16, Магадан, 685000 Россия *e-mail: gluhov 76@list.ru Поступила в редакцию 12.12.2019 г. После доработки 16.01.2020 г. Принята к публикации 27.02.2020 г.

По материалам космических съемок выделены активные неотектонические разломы. Участки сгущения их сети разломов совпадают с зонами концентрации эпицентров землетрясений, включая наиболее сильные из них (К ≥ 10). Они приурочены к местам пересечения глубинных разломов СВ и СЗ ориентировки. Кулу-Тенькинский район можно рассматривать как территорию взаимодействия зон динамического влияния разломов, разделяющих Евразиатскую, Северо-Американскую и Тихоокеанскую литосферные плиты.

Ключевые слова: активный разлом, сейсмичность, пересечение. **DOI:** 10.31857/S0203030620030025

введение

Основное количество землетрясений приурочено к разломам, в том числе маркирующим границы литосферных блоков различного ранга [Сапрыгин, 2013; Шерман, 2016; Шерман, Злогодухова, 2011]. Локализация эпицентров близ разрывных нарушений и корреляция между интенсивностью землетрясений, протяженностью и мощностью зон динамического влияния последних установлены достаточно достоверно [Никонов, 2006; Шерман, Злогодухова, 2011]. Таким образом, очаги сильных землетрясений должны представлять собой устойчивые, на протяжении значимых по продолжительности отрезков времени, структуры. Их положение обусловлено определенным сочетанием геолого-геофизических условий.

Традиционно при оценке сейсмичности территорий основной акцент делается на анализ сведений о современных и недавних землетрясениях. Однако достоверные данные о сейсмических событиях исчерпываются временным интервалом в несколько десятилетий. Разломы, являющиеся основным структурным фактором контроля землетрясений, формируют блоковую тектонику региона и контролируют взаимодействие блоков, что в конечном итоге в значительной мере обусловливает их сейсмическую активность. Активные неотектонические разломы играют решающую роль в пространственном размещении землетрясений [Калинина и др., 2013]. Изучение разломной структуры с оценкой тектонической активности разрывов позволяет дать интегральную оценку сейсмичности территории и может быть полезным для цели прогноза землетрясений. Информация о напряженном состоянии земной коры будет способствовать развитию геодинамических концепций эволюции различных структурных элементов подвижных поясов. В прикладном аспекте это даст возможность vcoвершенствовать методику определения рисков, связанных с тектоническими движениями земной коры. В Кулу-Тенькинском районе располагаются два крупных горнодобывающих предприятия (Наталкинский и Павликовский ГМК), поэтому достоверная оценка сейсмической опасности здесь представляется крайне важной. Имеющиеся сведения о сейсмотектонике района нельзя считать исчерпывающими. Поэтому нами предлагается использовать для выделения активных неотектонических разломов материалы дистанционного зондирования (ДЗ).

ГЕОЛОГО-СЕЙСМОЛОГИЧЕСКИЙ ОЧЕРК

Кулу-Тенькинский район приурочен к границе Куларо-Нерского турбидитового террейна Яно-Колымского орогенного пояса с Вилигинским террейном задугового бассейна, входящим в состав Охотско-Корякского орогенного пояса [Геодинамика ..., 2006]. В геологическом строении района принимают участие терригенные и вулканогенно-терригенные толщи перми, триаса и юры. Главными дизьюнктивными структурами являются Иньяли-Дебинский, Чай-Юрьинский, Тенькинский, Верхнекулинский и Челомджинский глубинные разломы северо-западного простирания (рис. 1). Они являются долгоживущими (начиная с палеозоя) [Имаева и др., 2017]. По морфологии и кинематике это сбросы, взбросы или их серии, с крутым падением плоскостей смещения на северо-восток; местами разрывы выполаживаются, переходя в надвиги. Протяженность разломов превышает 100 км, амплитуда горизонтального смещения составляет 5-15 км, вертикального – 0.5–1 км. Ширина зон разломов достигает 20 км, а ширина отдельных швов – 200–600 м. Глубинные разломы северо-восточной и субширотной ориентировки (Майско-Ульбейский, Хейджано-Мылгинский, Детринский, Омчанский, Хурэнский) связаны с формированием Охотско-Чукотского вулканогенного пояса. Это преимущественно сбросы и сдвиги; максимальный размах вертикальных движений по ним определяется глубиной контролируемых вулканоструктур — 1.5—2 км. По всей видимости, глубинные разломы различного простирания связаны с активными границами плит: северо-восточного – Евразийской и Тихоокеанской, северо-западного - Евразийской и Северо-Американской [Тимофеев и др., 2012].

Сотрясаемость района работ в соответствии с картами OCP-97-A (10%) – 7 баллов, в соответствии с OCP-97-B (5%) – 8 баллов и OCP-97-C (1%) – 9 баллов [Уломов, Шумилина, 1999]. За период инструментальных наблюдений (1924–2018 гг.) в районе пос. Омчак, на удалении 2–150 км, произошли 1172 местных землетрясений с энергетическими классами K = 5.3-14.3 (данные Геофизической службы РАН, www.ceme.gsras.ru). Самое сильное зафиксированное землетрясение с энергетическим классом K = 14.3 произошло 2 августа 2010 г. на границе с Якутией (Саха), в верховьях реки Кулу. По своему местоположению оно названо Верхнекулинским.

МЕТОДИКА ИССЛЕДОВАНИЙ

Повторяющиеся сейсмические события приурочены к определенным крупным активным разломам [Никонов, 2006; Шерман, 2016]. То есть, очаги сейсмичности, проявленные активными на всем протяжении позднего плейстоцена—голоцена разломами, должны сохранять свое положение на протяжении следующих десятков и сотен лет. Выявление и изучение современных разломов является объектом сейсмотектонических исследований (далее СТИ). В настоящее время эти исследования, наряду с собственно сейсмологическими, выделены в отдельный вид

работ в составе инженерно-геологических изысканий [Овсюченко, Рогожин, 2013]. Их целью является оценка опасности сейсмических явлений для проектируемых объектов строительства. Наиболее опасными из сейсмических явлений являются сейсмотектонические разрывы и медленные смещения по разломам. Потому основные задачи СТИ сводятся к выявлению активных разломов и построению сейсмотектонической модели и зон возможных очагов землетрясений на основе сейсмогеологических данных. Под активными (неотектоническими) подразумеваются разломы, смещающие либо деформирующие отложения позднеплейстоцен-голоценового (100-30 тыс. лет) возраста [Трифонов и др., 1993].

Материалы космических съемок поверхности Земли (фотографических, телевизионных, тепловых, лазерных, радиолокационных), традиционно объединяемые термином "дистанционное зондирование" длительное время успешно применяются для целей выделения активных разломов, которые находят отражение в современном рельефе, и детального сейсмического районирования. Это эффективный и производительный метод, позволяющий получить значительный объем информации без проведения полевых работ [Верещака и др., 1990]. Материалы ДЗ отражают участки повышенной трещиноватости, зоны разломов различных рангов и глубин заложения с соответствующими сейсмодислокациями, которые являются, либо могут являться местами возникновения сильных землетрясений [Овсюченко, 2010]. Использование признаков морфотектоники в результате анализа ДЗ делает возможным выделение по комплексу дешифрировочных признаков линеаментов, непосредственно являющихся активными разломами либо их отрезками, или структурных элементов рельефа, отражающих существование таких структур [Лунина, 2010].

Задачами проведенного нами анализа материалов ДЗ явились характеристика структурно-тектонической обстановки района, картирование активных тектонических нарушений и исследование их связи с сейсмичностью. Использовались материалы ДЗ двух видов. Первый – трехмерные цифровые модели рельефа SRTM, размещенные в открытом доступе на интернет-портале GeoMaрАрр (www.geomapapp.org). Второй вид использованных материалов ДЗ – космические снимки LANDSAT, находящиеся на интернет-портале Геологической службы США (www.glovis.usgs.gov). Снимки полихроматические, разрешением 450 м, в формате GeoTIFF. Растровые изображения импортировались в программы GTM Pro и AutoCAD, где они привязывались к координатной сетке.

При дешифрировании материалов ДЗ для выделения активных (неотектонических) разломом использовались критерии, разработанные

Рис. 1. Карта активных разломов Кулу-Тенькинского района по результатам дешифрирования МДЗ. 1–3 – террейны (1 – Вилигинский задугового бассейна, 2 – Куларо-Нерский пассивной континентальной окраины, 3 – Иньяли-Дебинский краевого морского бассейна); 4 – Охотско-Чукотский вулканогенный пояс; 5–6 – региональные глубинные разломы: 5 – домезозойского заложения, 6 – мезозойского заложения; 7 – эпицентры землетрясений с К от 5 (*a*) до 14 и более (*b*); 8–11 – активные разломы: 8 – показанные на геологических картах и выраженные на цифровой модели SRTM уступами, 9 – выраженные на цифровой модели SRTM уступами, 10 – выраженные на космоснимках сбросовыми фасетами, 11 – выраженные Z-образными изгибами русел водотоков; 12 – Z-образные изгибы русел водотоков.

С.Д. Шведовым [2009], с учетом классификации разломов, как факторов динамики рельефа [Верещака и др., 1990]: 1) уступы, отрезки долин прямолинейной формы, 2) сбросовые фасеты — склоны треугольной формы, 3) деформации (уступы) в голоценовых отложениях, 4) Z-образные изгибы русел водотоков III—IV порядков. Проявление разломов, выделенных ранее геолого-геофизическими методами, в деформациях молодых отложений и форм рельефа, позволяет предварительно наметить места реализации со-

временных тектонических напряжений [Рогожин и др., 2013]. В соответствии с этим положением на первом этапе работы с "Геологической карты ..." [1999] были перенесены показанные там разломы. Затем на трехмерных моделях рельефа SRTM трассировались отрезки данных разломов, выраженных в рельефе. Далее на изображениях SRTM дешифрировались прочие выраженные в рельефе линеаменты, прежде всего те, которые проявлены в аллювиальных отложениях долин. На космоснимках LANDSAT по Z-образным изгибам ру-

Рис. 2. Активные разломы на трехмерной цифровой модели рельефа SRTM водораздела Кулу–Интриган (а), окрестностей рудника им. Матросова (б).

1 – разломы, показанные на геологических картах и выраженные на цифровой модели SRTM уступами; 2 – выраженные на цифровой модели SRTM уступами; 3 – выраженные Z-образными изгибами русел водотоков; 4 – Z-образные изгибы русел водотоков; 5 – выраженные на космоснимках сбросовыми фасетами; 6 – глубинные разломы; 7 – эпицентры землетрясений с К > 10.

сел водотоков и сопровождающим их линеаментам дешифрировались новейшие сдвиги, а по линеаментам, сопровождаемым фасетами, — сбросы. Также по космоснимкам LANDSAT по возможности корректировалось плановое положение выделенных трехмерных моделях рельефа SRTM линеаментов. На полученную в результате карту активных неотектонических разломов были вынесены эпицентры землетрясений с $K \ge 5$ [Алешина и др., 2015] и главные структурные швы — долгоживущие региональные разломы, выделенные по геолого-геофизическим данным.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Осевые части (швы) региональных глубинных разломов в рассматриваемом районе слабо проявлены новейшими дислокациями, однако контроль ими сейсмических очагов сомнений не вызывает. На удалении не более 25 км от глубинных

Рис. 3. Изображение на космоснимках LANDSAT активных разломов (показано пунктиром). а – сбросовой кинематики, выраженного сбросовыми фасетами (водораздел рек Кулу–Харан), б – сдвиговой кинематики, выраженного Z-образным изгибом русла водотока (верховья р. Детрин).

разломов располагаются 88% землетрясений с K > 12 (см. рис. 1, рис. 2). Район наибольшего сгущения сети активных разломов охватывает верховья рек Омчак—Кулу—Интриган. Пространственно он совпадает с зонами концентрации эпицентров землетрясений, включая наиболее сильные из них ($K \ge 10$). В тектоническом отношении рай-

он сгущения сети активных разломов соответствует участку сопряжения зон влияния Тенькинского, Верхне-Кулинского, Майско-Ульбейского и Челомджинского региональных разломов. В кинематическом отношении среди активных разломов близ эпицентров землетрясений преобладают субвертикальные смещения. Динамическое взаимодействие разломов контрастно проявлено различной ориентировкой новейших сдвигов (рис. 3). С учетом преимущественно северо-восточного простирания большинства новейших сбросов, создается впечатление существования здесь структуры "pull-apart" в начальной стадии формирования [Seminsky, 2012]. Активность в новейшее время проявляли Хатыннахский, Хурэнский и Омчанский глубинные разломы. Чай-Юрьинский и Тенькинский глубинные разломы на большем своем протяжении не проявляли существенной активности в новейшее время. Около 90% активных разломов, выраженных сбросовыми фасетами (имеющими, главным образом, сбросовзбросовую кинематику), имеют СВ простирание. соответствующее СЗ ориентировке вектора регионального сжатия [Имаева и др., 2017]. Разломы, выраженные Z-образными изгибами русел (преимущественно сдвиговой кинематики), имеют северо-восточную и северо-западную ориентировку примерно в равной пропорции.

Наиболее сейсмически активные очаги с максимальными концентрациями эпицентров и значениями К соответствуют узлам сочленения активных разломов северо-восточного и северо-западного простирания. На удалении не более 25 км от таких узлов локализованы 63% землетрясений с K > 12. С ними совпадают также участки с наибольшей плотностью новейших разрывов. Наиболее ярким примером является участок в среднем и верхнем течениях р. Кулу. Известно, что очаги наиболее сильных землетрясений (K > 14) приурочены к местам пересечения глубинных разломов [Рогожин, 2000]. С полученными данными согласуются результаты тектонофизических исследований на месторождении Наталка [Кондратьев и др., 2018], которые показали существование двух векторов главных деформаций, соответствующих двум геодинамическим этапам северо-восточному (ранний) и северо-западному (поздний). Все это отражает сложную геодинамическую обстановку в зоне взаимодействия литосферных плит. Межплитные границы на континентах представляют собой широкие (до сотен километров) тектонические зоны [Тимофеев и др., 2012]. При этом Кулу-Тенькинский район можно рассматривать как территорию взаимодействия зон динамического влияния разломов, разделяющих Евразиатскую, Северо-Американскую и Тихоокеанскую плиты.

Крупные золотодобывающие предприятия – Наталкинский и Павликовский ГМК – располагаются за пределами районов сейсмической активности, на расстоянии более 35 км от ближайшего высокосейсмичного очага. Сопоставление трехмерных моделей рельефа SRTM территорий, занимаемых горнорудными предприятиями и участков сгущения эпицентров землетрясений, в том числе наиболее сильных (К > 12) показывает

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 3 2020

принципиальное различие плотностей и пространственной ориентировки активных разломов (см. рис. 2).

ЗАКЛЮЧЕНИЕ

Полученные результаты демонстрируют контроль размещения сейсмических очагов и парагенетически связанных с ними активных неотектонических разломов зонами пересечения региональных тектонических нарушений. Ранее исследователи Гвишиани и др., 1986; Гельфанд и др., 1973; Соловьев и др., 2014] на примере Памира, Тянь-Шаня и Кавказа показали, что сильные землетрясения приурочены к пересечениям зон активных линеаментов, разделяющих однородные блоки земной коры. О.В. Новикова и А.В. Горшков [2018] выделили подобные зоны как самостоятельные локальные тектонически активные структуры - высокосейсмичные пересечения – с поперечником в первые десятки километров. Дальнейшее применение подобного подхода к изучению сейсмичности Северо-Востока Азии представляет несомненный интерес.

СПИСОК ЛИТЕРАТУРЫ

Алешина Е.И., Годзиковская А.А., Гунбина Л.В., Коломиец М.В., Седов Б.М. Сводный каталог землетрясений Северо-Востока России с древнейших времен по 1974. Обнинск, Магадан: ГС РАН, 2015. 152 с.

Верещака Т.В., Зверев А.Т., Сладкопевцев С.А., Судакова С.С. Визуальные методы дешифрирования. М.: Недра, 1990. 341 с.

Гвишиани А.Д., Горшков А.И., Кособоков В.Г., Раниман Е.Я. Морфоструктуры и места землетрясений Большого Кавказа // Изв. АН СССР. Физика Земли. 1986. № 9. С. 45–55.

Гельфанд И.М., Губерман Ш.А., Извекова М.Л. Распознавание мест возможного возникновения сильных землетрясений. Памир и Тянь-Шань // Вычислительные и статистические методы интерпретации сейсмических данных М.: Наука, 1973. С. 107–133.

Геодинамика, магматизм и металлогения Востока России / В 2 кн. Владивосток: Дальнаука, 2006. Кн. 1. С. 1–572.

Геологическая карта и Карта полезных ископаемых Охотско-Колымского региона. Масштаб 1 : 500 000. Объяснительная записка в 4-х книгах. Книга I. Магадан, 1999. 181 с.

Имаева Л.П., Гусев Г.С., Имаев В.С., Ашурков С.В., Мельникова В.И., Середкина А.И. Геодинамическая активность новейших структур и поля тектонических напряжений северо-востока Азии // Геодинамика и тектонофизика. 2017. Т. 8. № 4. С. 737–768.

https://doi.org/10.5800/GT-2017-8-4-0315

Калинина Л.Ю., Смирнов В.Н., Кондратьев М.Н. Анализ пространственной связи землетрясений с сетью рельефообразующих разрывных нарушений на юго-восточном фланге сейсмического пояса Черского // Вестник СВНЦ ДВО РАН. 2013. № 3. С. 18–23. Кондратьев М.Н., Ползуненков Г.О., Акинин В.В. Этапы деформаций на золоторудном месторождении Наталка // Материалы VII Межрегиональной конференции молодых ученых. Магадан: ООО "Типография", 2018. С. 20–22.

Лунина О.В. Формализованная оценка степени активности разломов в плиоцен-четвертичное время (на примере Байкальской рифтовой зоны) // Геология и геофизика. 2010. Т. 5. № 4. С. 525–539.

Никонов А.А. Современные движения земной коры. М.: КомКнига, 2006. 192 с.

Новикова О.В., Горшков А.И. Высокосейсмичные пересечения морфоструктурных линеаментов Черноморско-Каспийского региона // Вулканология и сейсмология. 2018. № 6. С. 23–31.

Овсюченко Н.И. Опыт использования материалов дистанционного зондирования Земли в оценке сейсмической опасности // Сфера-Нефтегаз. Научно-исследовательские разработки. 2010. № 2. С. 90–93.

Овсюченко А.Н., Рогожин Е.А. Сейсмотектонические исследования в составе инженерно-геологических изысканий: задачи, содержание, результаты // Проектирование и инженерная практика. 2013. № 1. С. 42–49.

Рогожин Е.А. Тектоника очаговых зон сильных землетрясений Северной Евразии конца XX столетия // Российский журнал наук о Земле. 2000. Т. 2. № 1. http://eos.wdcb.ru/jour-

nals/rjes/rus/v02/rje99029/rje99029.htm

Рогожин Е.А., Овсюченко А.Н., Лутиков А.И. Оценка сейсмической опасности для Калининграда в детальном масштабе // Проектирование и инженерная практика. 2013. № 2. С. 22–26.

Сапрыгин С.М. К проблеме сейсмичности разломов Сахалина // Тихоокеанская геология. 2013. Т. 32. № 2. С. 73–77.

Соловьев А.А., Гвишиани А.Д., Горшков А.И. Распознавание мест возможного возникновения землетрясений: Методология и анализ результатов // Физика Земли. 2014. № 2. С. 3–20.

Тимофеев В.Ю., Ардюков Д.Г., Соловьев В.М., Шибаев С.В., Петров А.Ф., Горнов П.Ю., Шестаков Н.В., Бойко Е.В., Тимофеев А.В. Межплитные границы Дальневосточного региона России по результатам GPS измерений, сейсморазведочных и сейсмологических данных // Геология и геофизика. 2012. Т. 53. № 4. С. 489–507.

Трифонов В.Г., Кожурин А.И., Лукина Н.В. Изучение и картирование активных разломов // Сейсмичность и сейсмическое районирование Северной Евразии. Т. 1. М.: ОИФЗ РАН, 1993. С. 196–206.

Уломов В.И., Шумилина Л.С. Комплект карт общего сейсмического районирования территории Российской Федерации – ОСР-97. Масштаб 1:8000000. Объяснительная записка и список городов и населенных пунктов, расположенных в сейсмоактивных районах. М.: ИФЗ РАН, 1999. 57 с.

Шведов С.Д. Неотектонические разломы Северо-Востока России // Чтения памяти академика К.В. Симакова // Тезисы докладов Всероссийской научной конференции, Магадан, 25–27 ноября 2009 г. Магадан: СВНЦ ДВО РАН, 2009. С. 101–102.

Шерман С.И. Тектонофизические признаки формирования очагов сильных землетрясений в сейсмических зонах Центральной Азии // Геодинамика и тектонофизика. 2016. Т. 7. № 4. С. 495–512.

https://doi.org/10.5800/GT-2016-7-4-0219

Шерман С.И., Злогодухова О.Г. Сейсмические пояса и зоны Земли: формализация понятий, положение в литосфере и структурный контроль // Геодинамика и тектонофизика. 2011. Т. 2. Вып. 1. С. 1–34.

Seminsky K.Zh. Internal structure of fault zones: spatial and temporal evolution studies on clay models // Geodynamics & Tectonophysics. 2012. V. 3(3). P. 183–194.

Active Faults and Seismicity of the Kulu-Ten'ka Area (Magadan Region, Russia) by Satellite Data

A. N. Glukhov^{1, *}, and **B. M. Sedov**¹

¹North-East Interdisciplinary Scientific Research Institute Far East Branch, Russian Academy of Sciences named after N.A. Shilo, Portovaya str., 16, Magadan, 685000 Russia *e-mail: gluhov76@list.ru

By satellite data delineated of active neotectonic faults. The areas with high density of that coincide with earthquake epicenter swarms. The active faults controlled by intersectings of deep regional faults north-east and north-west direction. We argued Kulu-Ten'ka region as a territory of interaction of regional faulting zones, divided of the Eurasian, North-American and Pacific lithosphere plates.

Keywords: active faults, seismicity, intersection.