УДК 552.11:549.01+549.6+549.7

МИНЕРАЛОГО-ГЕОХИМИЧЕСКИЕ СВОЙСТВА ПРИКРАТЕРНОЙ ТЕФРЫ ВУЛКАНА ЭРЕБУС (АНТАРКТИДА) ИЗ МАТЕРИАЛОВ ИЗВЕРЖЕНИЯ 2000 г.

© 2020 г. В. И. Силаев^{*a*, *}, Г. А. Карпов^{*b*, **}, В. Н. Филиппов^{*a*}, Б. А. Макеев^{*a*}, С. Н. Шанина^{*a*}, А. Ф. Хазов^{*a*}, К. В. Тарасов^{*b*}

^аИнститут геологии им. Юшкина ФИЦ Коми НЦ УрО РАН, ул. Первомайская, 54, Сыктывкар, 167982 Россия ^bИнститут вулканологии и сейсмологии ДВО РАН, бульвар Пийпа, 9, Петропавловск-Камчатский, 683006 Россия

> *e-mail: silaev@geo.komisc.ru **e-mail: karpovga@ksnet.ru Поступила в редакцию 12.11.2019 г. После доработки 05.02.2020 г. Принята к публикации 31.03.2020 г.

Впервые проведены комплексные петролого-минералого-геохимические исследования прикратерной тефры с крупнейшего на Земле внутриплитного стратовулкана Эребус, характеризующегося уникальной базанит-фонолитовой линией эффузивов. Исследованы гранулометрический и химический составы тефры и содержание в ней микроэлементов, минерально-фазовый состав, капсулированные в тефре литогенные газы, атомарно рассеянное углеродное вещество и изотопный состав в нем углерода. Сделан вывод о том, что исследованную тефру можно трактовать как эксплозивный аналог лавовых анортоклазовых фонолитов, завершающих непрерывную серию магматических дифференциатов, известную как линия Эребуса.

Ключевые слова: Эребус, магматическая линия Эребуса, тефра, анортоклазы, хлоргидроксилапатит, монацит, барит, магнетит, самородные металлы, хлоридные твердые растворы

DOI: 10.31857/S0203030620040057

введение

Эребус (рис. 1) – активный внутриплитный стратовулкан (вулканический остров Росса, 77°32' ю.ш., 167°17' в.д.), расположенный на тонкой (17-25 км) континентальной коре, и приуроченный к краю Западно-Антарктической рифтовой системы [Kyle et al., 1992; Encyclopedia ..., 1999]. Возраст вулкана – 1.3 млн лет, зарегистрированная активность приходится на последние 172 тыс. лет (поздний плейстоцен-настоящее время). В этот период произошло множество, преимущественно, эффузивных извержений с экстремумами активности в интервалах 95 ± 9... 76 ± 4 и $27 \pm 3 \dots 21 \pm 4$ тыс. лет [Harpel et al., 2004; Esser et al., 2004; Kelly et al., 2008]. Соответствующие лавы по составу образуют практически непрерывную серию магматической лифференциации так называемую линию Эребуса – в последовательности: базаниты (оливиновые тефриты) → → фонотефриты → тефрофонолиты → анортоклазовые фонолиты [Iacovino et al., 2013; Iverson et al., 2014]. Доля фонолитовой фракции в серии оценивается в 20–30%. В качестве породообразующих в лавах установлены оливин состава от Fa₅₅₋₈₈ в базанитах до Fa₄₃₋₅₁ в фонотефритах; эгирин-авгит; ульвит-магнетит Mn-Mg-Al-Cr-содержащий; гексагональный пирротин состава Fe_{0.96-1}S, локализующийся в интерстициях магнетита; полевые шпаты состава от ортоклаз-альбитанортита в базанитах до анортит-ортоклаз-альбита в фонолитах; нефелин, накапливающийся в направлении от базанитов до фонотефритов. Использование магнетит-ильменитового термометра дает температуру кристаллизующейся базанитовой лавы в 1081 ± 12°C [Kyle et al., 1992].

В течение последних 40 тыс. лет, т.е. практически на протяжении всего квартера на Эребусе наблюдается устойчиво фонолитовый состав извержений. С 1970-х гг. этот вулкан находится в активной стадии, с постоянным существованием лавового озера в кратере и периодическими выбросами пирокластики [Тазиев, 1987].

Кроме того, на Эребусе выявлены лавовые трахиты, которые считаются особой побочной магматической деривацией, образовавшейся в результате комбинированной ассимиляционнофракционной кристаллизации.

Рис. 1. Антарктида (а); вулканический остров Росса (б) с вулканами Эребус (1, высота 3794 м, кратер диаметром 805 м и глубиной 274 м), Террор (2, 3230 м), Берд (3, 1765 м), Терра-Нова (4, 2130 м); гора (в) и кратер (г) Эребус на рассвете.

На основании петрологических и геохимических данных предполагается, что образование исходных базанитовых расплавов на Эребусе происходит за счет 2% плавления перидотита в пульсирующем выступе (плюме) истощенной астеносферной мантии, расположенном непосредственно под вулканом. Диаметр плюма оценивается примерно в 40 км [Kyle et al., 1992]. Полученные для эффузивных пород Эребуса изотопные коэффициенты 87 Sr/ 86 Sr = $= 0.702984 \pm 0.000028 \ \mu^{143} \text{Nd}/^{144} \text{Nd} = 0.5102 \pm 0.0019$ характерны для кайнозойских западно-антарктических рифтовых вулканов [Panter et al., 2006] и вообще для OIB-базальтов. Предполагается, что каждая генерация базанитов на Эребусе происходит из новой порции мантийных выплавок, последующая фракционная дифференциация базанитового расплава осуществляется при высокой температуре и в относительно сухих условиях [Iverson et al., 2014].

Для лавовых трахитов указывается более высокое значение коэффициента 87 Sr/ 86 Sr = 0.70425, что подтверждает предположение об их образовании в результате комбинированной ассимиляционно-фракционной кристаллизации.

Эксплозивные события в истории Эребуса отмечаются гораздо реже, наиболее надежно датируясь в интервалах 77–56, 46–32, 18–10 тыс. лет. Следы таких извержений обнаружены в ледяных кернах, по которым прослежены до 14 датированных и 20 пока недатированных слоев тефры. Все это свидетельствует о том, что эксплозивная деятельность Эребуса сильно уступает эффузивной активности и происходит дискретно, но в целом на протяжении всей зарегистрированной истории извержений [Harpel et al., 2004]. Самый поздний период эффузивной и эксплозивной активности Эребуса начался в 1972 г., открыв современную эпоху систематических исследований продуктов кайнозойского вулканизма в Антарктике [Kyle, Jazek, 1978; Stothers, Rampino, 1983].

ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЙ

Объектом наших исследований послужила небольшая проба относительно свежего светлоокрашенного пепла, отнесенного к извержению 2000 г. и отобранного Ф.Р. Кайлом на кромке кратера Эребуса. Частицы в образце характеризуются, преимущественно, вытянутой формой, варьируясь по размеру от 200 до 1000 мкм (рис. 2). В ходе исследований пробы применялись следующие методы: оптическая микроскопия (компьютеризированный комплекс OLYMPUS BX51); рентгеновская дифрактометрия (Shimadzu XRD-6000); аналитическая сканирующая электронная микро-

Рис. 2. Морфология и размеры частиц тефры в исследованной пробе с вулкана Эребус.

скопия (JSM-6400 с ЭД и волновым спектрометрами); масс-спектрометрия с индуктивно-связанной плазмой (Perkin Elmer ELAN 9000; рентгенофлуоресцентный анализ (Shimadzu XRF-1800); изотопная спектрометрия (Delta V+ (Finnigan) с элементным анализатором Flash EA-HT 1112 и газовым коммутатором Confo IV); газовая хроматография ("Цвет-800" с пиролитической приставкой). Анализ на микроэлементы проводился в ЦКП "Геоаналитик" Института геологии и геохимии УрО РАН (г. Екатеринбург), остальные определения осуществлены в ЦКП "Геонаука" Института геологии ФИЦ Коми НЦ УрО РАН (г. Сыктывкар).

ГАБИТУС И РАЗМЕРЫ ЧАСТИЦ

По морфологии и размеру частицы в исследуемом образце пепла подразделяются на четыре типа (табл. 1). К *первому* типу отнесены наиболее крупные, вытянутые (с коэффициентом удлинения 2.5–3) субпризматические формы, представляющие собой сростки множества волосоподобных субиндивидов толщиной 10–30 мкм (рис. 3а–3е). В торцах таких частиц наблюдаются довольно глубокие полости, субпараллельно ориентированные своими осями по длине субиндивидов и очень похожие на газовые пузыри, образующиеся при дегазации застывающих расплавов (см. рис. 3д, 3е). Вытянутость таких полостей вдоль простирания

Тип частиц	Частицы	Длина, мкм	Ширина, мкм	Коэффициент вытянутости
Ι	Субпризматические	1396 ± 612 (44%)	475 ± 227 (48%)	2.79 ± 0.3 (11%)
	Волосовидные субин-дивиды, толщина		21 ± 11 (53%)	
	Пузырьки	22 ± 19 (86%)	$14 \pm 15 \ (107\%)$	2.3 ± 1.5 (65%)
II	Угловато-комковатые	716 ± 290 (49%)	471 ± 243 (89%)	1.49 ± 0.13 (9%)
	Пузырьки	113 ± 74.6 (66%)	42.6 ± 15.9 (37%)	2.68 ± 1.54 (57%)
III	Рогульчатые	569 ± 155 (27%)	397 ± 70 (18%)	1.42 ± 0.14 (10%)
	Крупные пузырьки	25 ± 2 (8%)	15 ± 9 (65%)	2.5 ± 1.9 (76%)
	Мелкие пузырьки	2.6 ± 1.25 (48%)	$1.7 \pm 1.14~(67\%)$	1.68 ± 0.37 (22%)
IV	Пластинчатые	573 ± 346 (60%)	302 ± 177 (59%)	4.66 ± 4.15 (89%)

Таблица 1. Морфологические типы и размеры частиц в исследованном образце тефры

субиндивидов-волокон в частицах вполне согласуется с выдвинутой идеей их происхождения. *Второй* тип образуют несколько более мелкие и менее вытянутые (коэффициент удлинения 1.3— 1.7) угловато-комковатые частицы с гладкостенными изометричными и овальными полостями, еще более похожими на пузыри, потерявшие со временем газы.

В качестве *третьего* типа выступают многочисленные рогульчатые частицы (рис. 4а–4е), по размеру и степени удлинения сопоставимые с угловато-комковатыми частицами. Для них тоже характерны пузырьки, но контрастные по размеру — от относительно крупных в 20—30 мкм вытянутых до мелких в 1—5 мкм более овально-округлых. Наконец, к *четвертому* типу мы отнесли едва ли не преобладающие по частоте встречаемости пластинчатые формы с мелко ступенчатыми латеральными плоскостями (см. рис. 4ж—4м). На таких частицах пузырьки встречаются очень редко.

Следует подчеркнуть, что приведенные выше данные по исследуемому образцу тефры хорошо согласуются с данными [Kyle, Jazek, 1978; Iverson et al., 2014] по пеплам из кернов со станции Бэрд (Земля Мэри Бэрд) на западном антарктическом ледяном покрове, полученных с высоты 2154 м.

Рис. 3. Частицы субпризматические (а–е) и угловато-комковатые (ж–м) с признаками микровезикулярности. СЭМ-изображения в режиме вторичных (а, в, д, ж, и, л) и упруго отраженных (б, г, е, з, к, м) электронов.

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 4 2020

Рис. 4. Частицы рогульчатые (а–е) и пластинчатые (ж–м). СЭМ-изображения в режиме вторичных (а, в, д, ж, и, м) и упруго отраженных (б, г, е, з, к, л) электронов.

ХИМИЗМ, МИКРОЭЛЕМЕНТЫ И ЛИТОГЕННЫЕ ГАЗЫ

По валовому химическому составу исследуемая тефра отвечает анортоклазовому фонолиту с сильной прямой корреляцией (r = 0.61) между содержаниями Na₂O и K₂O (табл. 2). При этом она отличается от лавовых фонолитов несколько большей щелочностью. Тем не менее, анализируемая тефра вполне вписывается в генеральную линию кристаллизационной дифференциации лав Эребуса (рис. 5). Анализ стеклофазы в тефре показал, что она гораздо более кислая, чем валовый состав, варьируясь в последовательности: кислые фонолиты → щелочные трахиты → трахиты — трахириодациты — трахидациты — трахириолиты. Кроме того, в единичных случаях обнаруживается стеклофаза трахиандезитового состава. Таким образом, выявляется значительная дифференцированность химического состава тефры на более кислую, чем в целом фонолит, стеклофазу и микролитовую полевошпатовую фракцию.

В составе исследуемой тефры обнаружен 51 микроэлемент, включая 14 лантаноидов (табл. 3). Суммарное содержание микроэлементов колеблется в пределах 3765-4425 г/т, сумма лантаноидов составляет 626 ± 106 г/т. По ассортименту микроэлементов исследуемая тефра аналогична лавовым вулканитам на Эребусе, которые демонстрируют довольно плавный и непрерывный рост концентраций и изменение пропорций в пользу щелочных, щелочноземельных и редкоземельных элементов в направлении от базанитов к фонолитам [Kelly et al., 2007]. По средней сумме микроэлементов тефра примерно совпадает с лавовыми фонолитами, но превосходит базаниты, фонотефриты-тефрофонолиты и трахиты соответственно в 1.34, 1.23 и 1.43 раза. По сумме лантаноидов тефра превосходит базаниты, фонотефриты и тефрифонолиты в 1.6 раз, а лавовые фонолиты – в 1.3 раза. Тренд хондритнормированных концентраций лантаноидов в тефре в целом близок к таковому в лавах от базанитов до фонолитов, но отличается присутствием на кривых тефры небольшого Еu-минимума. На спайдер-диаграмме для тефры выявляется дефицит совместимого с базальтоидами Sr и, напротив, значительный избыток несовместимых элементов – Rb, Zr, Y, Th, U, тяжелые лантаноиды (рис. 6). На диаграммах Th– Hf–Ta [Wood, 1980] и Ta/Yb–Th/Yb [Boynton, 1984], а также на диаграмме Zr–Zr/Y точка состава тефры определенно попадает в поля внутриплитной геодинамической обстановки.

С позиции теории геохимической дифференциации по Ю.Г. Щербакову [Щербаков, 1965, 1976, 1982] в рамках лавовой линии Эребуса в направлении от базанитов к фонолитам выявляется сильный и упорядоченный тренд увеличения концентрации центробежных и дефицитно-центробежных элементов, компенсирующий уменьшение концентрации центростремительных и минимально центробежных элементов. Это, безусловно, подтверждает факт образования линии Эребуса в результате единого процесса магматической дифференциации. Лавовые трахиты на этом фоне обнаруживают противоречивые свойства. По концентрации центробежных и минимально-центробежных элементов они отвечают фонотефритам и тефрифонолитам, а по концентрации центростремительных и минимальноцентробежных элементов – фонолитам. Такой результат не является неожиданным, поскольку соответствует ранее сделанным выводам американских вулканологов о специфичном происхождении трахитов на Эребусе.

Массовое проявление в микроскульптуре частиц исследуемой тефры пузырьков дегазации свидетельствует о значительной газонасыщенности первоначального расплава. Проведенный нами анализ выявил в составе литогенной газовой фазы широкую ассоциацию компонентов, включающую как неорганические газы, так и множе-

№ п/п	SiO ₂	TiO ₂	ZrO ₂	Al ₂ O ₃	Fe ₂ O ₃	Y ₂ O ₃	ZnO	MnO	MgO
1	52.25	0.78	0.17	21.45	6.07	0.01	0.02	0.31	1.06
2	58.20	1.05	Н. о.	18.51	5.87	Н. о.	Н. о.	0.38	Н. о.
3	59.03	1.15	»	17.72	6.27	»	*	Н. о.	»
4	61.41	1.09	*	17.28	5.93	»	*	0.40	»
5	64.53	0.94	*	15.01	5.55	»	»	0.45	*
6	58.31	1.57	*	17.76	7.18	»	»		*
7	64.76	1.10	*	10.81	5.75	*	*		*
8	70.30	1.19	*	11.52	3.99	»	»	0.37	*
9	74.96	1.14	*	9.91	3.53	»	»	0.47	»
10	75.40	1.42	*	8.69	3.90	»	»	Н. о.	»
11	56.84	1.08	»	17.2	6.66	»	»	0.41	»
12	57.13	1.10	*	18.61	7.56	*	*	Н. о.	*
13	57.92	1.11	»	17.86	7.46	*	*	»	*
14	59.55	1.35	*	17.50	6.04	»	*	»	*
15	71.77	1.32	*	7.84	7.67	»	»	»	*
16	85.98	1.36	*	4.98	4.08	»	»	»	*
17	86.56	1.63	*	4.23	3.98	»	»	0.41	»
18	59.51	1.36	*	16.58	8.45	*	»	Н. о.	»
19	57.26	1.38	*	17.75	7.12	»	»		»
20	57.18	1.18	*	17.89	7.66	»	»	0.51	»
21	58.43	1.21	»	18.24	6.63	*	»	0.39	»
22	57.76	1.22	»	18.89	6.82	*	»	0.55	»
23	57.94	0.92	*	17.35	6.39	*	»	Н. о.	»
24	58.22	1.10	*	18.16	7.09	*	*	»	»
25	58.12	1.29	»	17.92	7.74	*	*	»	*
26	58.75	1.26	*	17.75	6.95	»	*	0.48	*
27	59.55	1.30	*	19.36	6.36	*	*	Н. о.	*
28	57.26	1.66	*	17.75	8.09	»	*	*	*
29	56.51	1.41	*	16.99	7.76	»	»	»	»
30	62.63	1.14	*	14.53	6.0	»	»	»	»
31	62.73	1.44	*	13.65	5.93	»	»	0.44	»
32	59.14	1.50	*	16.85	7.63	»	»	0.43	»
33	58.48	1.03	*	18.14	6.86	*	*	Н. о.	»

Таблица 2. Валовый химический состав пепла (1) и химический состав в нем стеклофазы (2–33), мас. %

Таблица 2. Окончание

№ п/п	CaO	SrO	Na ₂ O	K ₂ O	Rb ₂ O	Nb ₂ O ₅	P_2O_5	SO ₃	Cl
1	2.88	0.02	7.08	7.19	0.35	0.28	0.35	0.28	Н. о.
2	1.94	Н. о.	8.51	5.29	Н. о.	Н. о.	Н. о.	Н. о.	0.25
3	1.90	*	7.57	6.36	»	*	»	*	Н. о.
4	1.85	*	6.50	5.54	*	*	»	*	
5	1.70	»	6.66	4.92	»	»	*	»	0.24
6	2.02	»	6.94	6.22	»	»	*	»	Н. о.
7	2.22	»	9.66	5.44	»	»	*	»	0.26
8	1.66	»	5.47	4.20	»	»	»	1.02	0.28
9	1.31	*	4.90	3.48	»	*	»	Н. о.	0.30
10	1.12	*	5.21	3.32	»	*	*	0.62	0.32
11	2.06	*	9.08	5.76	»	»	0.72	Н. о.	0.19
12	1.96	»	7.56	5.80	»	»	Н. о.	»	0.28
13	2.15	»	7.04	6.22	»	»	»	»	0.24
14	1.79	*	7.79	5.98	*	*	*	*	Н. о.
15	3.57	*	3.69	2.40	*	*	*	1.43	0.31
16	0.50	*	Н. о.	1.97	*	*	*	0.60	0.53
17	0.41	*		1.58	*	*	*	0.69	0.51
18	1.84	*	5.91	6.35	*	*	*	Н. о.	Н. о.
19	2.13	*	7.51	6.29	*	*	*	0.27	0.29
20	2.26	*	6.73	6.59	*	*	*	Н. о.	Н. о.
21	2.04	*	7.05	5.73	*	*	*	*	0.28
22	2.12	*	6.71	5.93	*	*	*	*	
23	2.37	*	8.77	6.05	*	*	*	*	0.21
24	2.17	*	6.53	6.47	»	»	*	»	0.26
25	2.28	*	6.15	6.50	*	»	*	*	Н. о.
26	1.80	*	6.57	6.18	»	»	»	*	0.26
27	1.83	»	6.83	5.46	»	»	»	»	Н. о.
28	2.23	*	6.24	6.53	»	»	*	»	0.24
29	2.07	*	2.07	6.81	*	*	*	*	Н. о.
30	1.65	*	9.08	4.97	*	*	*	*	*
31	2.39	»	6.36	5.32	»	»	»	1.42	0.32
32	1.91	»	5.51	7.03	»	»	»	Н. о.	Н. о.
33	1.76	»	7.24	6.49	*	»	»	*	*

Примечание. Результаты анализа приведены к 100%; Н. о. – не обнаружено.

Рис. 5. Диаграмма TAS [Петрографический кодекс, 2008], иллюстрирующая химизм продуктов эффузивной и эксплозивной фаций извержений вулкана Эребус.

Поля на диаграмме: 1 – пикриты; 2, 3 – пикриты соответственно умеренно-щелочные и щелочные; 4 – фондиты; 5– 8 – пикробазальты соответственно ультраосновные, умеренно-щелочные, щелочные, основные; 9 – базальты; 10 – трахибазальты; 11 – базальты щелочные; 12 – андезибазальты; 13 – трахиандезибазальты; 14 – фонотефриты; 15 – андезиты; 16 – трахиандезиты; 17 – тефрифонолиты; 18 – дациты низкощелочные; 19 – дациты; 20 – трахидациты; 21 – трахиты; 22 – трахиты щелочные; 23 – фонолиты; 24 – риодациты низкощелочные; 25 – трахиодациты; 26 – трахириодациты; 27 – риодациты шелочные (пантеллериты); 28 – риолиты низкощелочные; 29 – риолиты; 30 – трахириолиты; 31 – риолиты шелочные (комендиты). Объекты: 1 – лавы генеральной линии Эребуса; 2 – лавовые фонолиты; 3– 5 – данные по исследуемому образцу тефры, соответственно валовый состав, стеклофаза в частицах, микролиты полевых шпатов.

Рис. 6. Нормированные концентрации микроэлементов в исследуемом образце тефры. 1 – по данным [Kyle et al., 1992]; 2 – по данным авторов.

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 4 2020

Эле-			Ted	þpa			Ла	BbI	
Mehtbi	1	2	я	4	среднее \pm СКО	5	6	7	×
Li	17	31	28	30	26.5 ± 6.455	Не опр.	Не опр.	Не опр.	Не опр.
Rb	260	140	138	141	169.75 ± 60.179	40.333 ± 0.577	70.4 ± 11.442	102.8 ± 3.194	146.5 ± 20.506
II	0.5	Не обн.	Не обн.	Не обн.	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.
Cs	1.3	1.6	1.79	1.93	1.655 ± 0.273	0.393 ± 0.012	0.696 ± 0.149	1.22 ± 0.102	2.815 ± 1.237
Be	5.4	10	10	11	9.1 ± 2.51	Не опр.	Не опр.	Не опр.	Не опр.
Sr	230	279	261	253	255.75 ± 20.32	1286.667 ± 161.769	1157.7 ± 185.796	869.6 ± 87.928	47 ± 48.043
Ba	310	500	460	449	429.75 ± 82.786	606.667 ± 106.359	820.7 ± 154.726	1086.4 ± 65.198	557.5 ± 358.503
Co	21	2	2	2.3	6.825 ± 9.451	Не опр.	Не опр.	Не опр.	Не опр.
Ni N	2	Не обн.	Не обн.	Не обн.	Не опр.	28.667 ± 29.771	10.2 ± 6.529	7 ± 1.225	8 ± 1.414
Cu	9	*	*	*	1.5 ± 3	29.333 ± 11.846	25.7 ± 15.355	10.6 ± 1.342	8.5 ± 0.707
Zn	90	173	160	167	147.5 ± 39	109.667 ± 4.933	113.8 ± 15.411	128.4 ± 24.724	222.5 ± 65.76
Pb	4	14	9	7	7.75 ± 4.349	3.5 ± 0.5	3.7 ± 0.949	3.9 ± 0.742	23.5 ± 10.607
Cd	0.5	Не обн.	Не обн.	Не обн.	Не опр.	He onp.	He onp.	Не опр.	Не опр.
Sn	5	*	۲	*	0.125 ± 0.25	۵	۵	*	۵
Mo	19	*	*	*	4.75 ± 9.5	۵	۵	۵	*
Ag	8	*	*	*	2 ± 4		*	*	*
≻	70	99	76	83	73.75 ± 7.411	40.667 ± 3.512	44.9 ± 5.131	59.2 ± 7.463	81.5 ± 44.849
Z	1600	1419	1592	1580	1547.75 ± 86.226	356 ± 8.185	568.7 ± 104.045	921 ± 37.596	1027 ± 82.024
qZ	390	362	414	407	393.25 ± 23.143	122.667 ± 10.408	175.9 ± 20.475	251.6 ± 10.237	245 ± 18.385
а С	23	33	31	34	30.25 ± 4.992	21.333 ± 0.577	23.8 ± 1.317	28 ± 0.707	32 ± 1.414
Ge	0.8	Не обн.	Не обн.	Не обн.	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.
Sc	3.5	*	5	4.9	3.35 ± 2.336	14.2 ± 5.283	6.452 ± 3.363	3.272 ± 0.93	4.13 ± 1.895
>	5	*	2	2.4	2.35 ± 2.055	220.667 ± 61.256	69.3 ± 49.867	18 ± 10	9 ± 1.414
Ċ	0.2	*	Не обн.	Не обн.	Не опр.	55.333 ± 65.286	13.25 ± 20.291	2.3 ± 0.447	1.5 ± 0.707
Hf	20	2.95	31.3	30.8	21.263 ± 13.275	8.003 ± 0.435	11.94 ± 2.582	20.2 ± 1.134	23.35 ± 2.616
Ta	15	21.4	23.1	23.1	20.65 ± 3.851	7.13 ± 0.493	10.263 ± 1.319	14.7 ± 0.561	13.55 ± 1.485
≥	3.2	Не обн.	Не обн.	Не обн.	Не опр.	He onp.	Не опр.	Не опр.	Не опр.

48

Таблица 3. Микроэлементы в тефре и лавах Эребуса, г/т

Окончание	
Э.	
Габлица	

Эле-			Ţ	фра			JIa	BbI	
Mehtbi	1	2	3	4	среднее ± СКО	5	6	7	8
Th	19.6	27.5	29.8	30.4	26.825 ± 4.98	6.967 ± 0.321	12.39 ± 2.088	18.46 ± 0.673	23.4 ± 2.828
D	9	7.3	8.8	9.1	7.8 ± 1.435	1.833 ± 0.208	3.62 ± 0.987	5.54 ± 0.684	7.4 ± 0.707
La	110	161	153	166	147.5 ± 25.567	75.433 ± 4.844	99.59 ± 12.095	119.02 ± 12.515	148.55 ± 23.122
Ce	220	304	294	319	282 ± 41.857	161.467 ± 10.484	203.25 ± 22.887	248.22 ± 27.437	296.75 ± 40.093
Pr	22	33	32	34	30.25 ± 5.56	Не опр.	He onp.	Не опр.	He onp.
ΡN	70	109	103	113	98.75 ± 19.62	76 ± 9	87.3 ± 11.567	95.4 ± 13.465	127 ± 25.456
Sm	12	17.8	17.7	19.3	16.7 ± 3.218	13.393 ± 0.82	55.619 ± 88.293	14.628 ± 2.107	19.015 ± 2.807
Eu	2.4	3.71	3.56	3.72	3.347 ± 0.636	3.94 ± 0.27	3.922 ± 0.412	4.69 ± 0.429	3.135 ± 0.318
Gd	11	13.05	13.56	15.4	13.252 ± 1.809	*	۵	*	*
Tb	1.4	2.1	2.24	2.45	2.047 ± 0.455	1.483 ± 0.133	1.58 ± 0.199	1.882 ± 0.24	2.525 ± 0.488
Dy	6	12.7	12.7	13.8	12.05 ± 2.098	Не опр.	Не опр.	Не опр.	Не опр.
Но	1.7	2.52	2.56	2.75	2.387 ± 0.456	*	۵	۶	*
Er	5	7.2	7.39	7.76	6.831 ± 1.247	*	۶	۶	*
Tm	0.7	1.1	1.13	1.19	1.03 ± 0.223	*	۶	۶	*
Yb	4.8	7.3	7.16	7.4	6.66 ± 1.24	2.86 ± 0.31	3.593 ± 0.576	5.352 ± 0.524	7.095 ± 1.11
Lu	0.7	1.11	1.12	1.15	2.595 ± 2.937	0.44 ± 0.04	0.533 ± 0.81	0.808 ± 0.006	1.05 ± 0.17
Ч	800	Не обн.	Не обн.	Не обн.	He onp.	Не опр.	He onp.	He onp.	Не опр.
S	0.8	*	*	*	*	*	*	۶	۲
Te	1.8	*	*	*	۲	*	۶	۶	۲
$\mathbf{A}_{\mathbf{S}}$	6.2	*	*	*	۲	0.833 ± 0.289	1.35 ± 0.412	1.1 ± 0.0548	2.85 ± 1.343
Se	0.9	*	*	*	۵	Не опр.	Не опр.	Не опр.	Не опр.
Sb	0.4	*	*	*	۵	0.067 ± 0.029	0.14 ± 0.084	0.27 ± 0.045	0.4 ± 0.141
Bi	0.009	*	*	*	*	Не опр.	Не опр.	Не опр.	He onp.
В	8	*	*	*	*	*	*	*	*

МИНЕРАЛОГО-ГЕОХИМИЧЕСКИЕ СВОЙСТВА ПРИКРАТЕРНОЙ ТЕФРЫ

Компоненты	Нагревание до 400°С	Нагревание в интервале 400-1000°С	Сумма
N ₂	Не обн.	24.41/1.39	24.41/0.45
H ₂ O	3569/98.179	1479/84.18	5048/93.56
CO ₂	66.11/1.819	181.64/10.32	247.75/4.59
CO	Не обн.	38.96/2.21	38.96/0.72
CH ₄	0.082/0.002	14.09/0.8	14.172/0.26
C_2H_4	Не обн.	8.77/0.5	8.77/0.16
C ₂ H ₆	»	2.67/0.15	2.67/0.05
C ₃ H ₆	»	6.58/0.37	6.58/0.12
C_3H_8	»	1.72/0.1	1.72/0.03
C_4H_8	»	1.10/0.06	1.10/0.02
nC_4O_{10}	»	0.21/0.01	0.21/0.004
iC_4O_{10}	»	1.04/0.06	1.04/0.02
Сумма	3635.192/100	1760.19/100	5395.382/100

Таблица 4. Состав газовых пиролизатов, полученных при нагревании образца тефры с Эребуса

Примечание. Содержания газов в пиролизате: перед чертой – в г/т, за чертой – в мас. %.

ство углеводородов в диапазоне алканов и алкенов C_1-C_4 (табл. 4). Судя по экспериментальным данным [Iacovino et al., 2013], способность лав линии Эребуса растворять вулканические газы действительно высокая, но быстро падающая с уменьшением давления уже в диапазоне 700–400 МПа. При этом именно в лавовых фонотефритах содержание растворенных газов становится минимальным – примерно на уровне 0.2–0.3% по H₂O и 0.05–0.2% по CO₂, что почти совпадает с полученными нами данными по тефре – H₂O примерно 0.15%, (CO + CO₂) – 0.02%. Несколько более низкие значения содержания газов в исследуемой тефре отражают, очевидно, ее эксплозивное происхождение.

С петрологических позиций состав литогенных газов, выявленных в тефре с Эребуса, коррелируется с составом газов в продуктах коровомантийных взаимодействий, причем со значительным приближением к собственно мантийным образованиям. На это указывают значительная доля в пиролизате угарного газа (рис. 7а) и преобладание углеводородов С2-С4 над метаном (см. рис. 7б). Кроме того, тефра с Эребуса по составу углеводородов в пиролизате близка к андезибазальтовым лавам Толбачинского извержения 2012-2013 гг. (см. рис. 7в), что свидетельствует об обусловленности состава литогенных газов в продуктах вулканизма не столько составом и фациальной природой последних, сколько глубинностью источников вещества.

МИНЕРАЛЬНО-ФАЗОВЫЙ СОСТАВ

На рентгеновской дифрактограмме тефры с Эребуса в области углов 20 22°-37° регистрируется широкая полоса излучения (FWHM = 11°), максимум которого приходится на 26.7°, что соответствует d/n = 3.3 Å. Это отвечает вулканическому стеклу. В области экстремума полосы наблюдаются два узких рефлекса – 3.34 и 3.22 Å, указывающие на незначительную примесь соответственно кварца и полевого шпата. Таким образом, рентгеновские данные в сочетании с результатами аналитической СЭМ свидетельствуют о том, что исследуемая тефра в основном сложена стеклом среднего-кислого состава. В качестве незначительной примеси в этом стекле присутствует множество микроминералов, в число которых, кроме полевых шпатов и кварца, входят кислородные соли, магнетит, рутил, пирит, самородные металлы, хлориды. Все эти минералы образуют парагенезис, весьма характерный именно для эксплозивной фации кайнозойского вулканизма [Карпов и др., 2017].

Полевые шпаты в исследуемой тефре (табл. 5) представлены спорадически встречающимся Са-содержащим ортоклазом и резко преобладающим анортоклазом состава $(Na_{0.61-0.69}K_{0.24-0.31}Ca_{0.06-0.08})[Al_{0.89-0.92}Fe_{0.15-0.18}O_8].$ По минальному составу последний минерал является анортит-ортоклаз-альбитом (мол. %): альбит 60-70, ортоклаз 25-30, анортит 3-8, что вполне соответствует области полной смесимости миналов. Как известно [Kelli et al., 2007], присутствующий в лавах анортоклаз характеризуется гораздо более переменным составом: в базанитах имеет место ортоклаз-альбит-анортит, а в фоноли-

Рис. 7. Петрологические аспекты происхождения литогенных газов в тефре с Эребуса. а – пропорции неорганических газов в мантийно-коровых производных (А – мантийные производные (алмазы), Б – продукты мантийно-коровых взаимодействий (минералы алмазосодержащих парастерезисов), В – коровые производные) [Петровский и др., 2008]; б – то же самое для углеводородных газов; в – пропорции углеводородных газов в пиролизатах, полученных при нагревании до 400°С (1) и в диапазоне 400–1000°С лав ТТИ-50 [Силаев и др., 2019] (2). Звездочкой показан состав литогенных газов в исследованной тефре.

тах — анортит-ортоклаз-альбит, но с существенно большим содержанием анортита (до 23 мол. %), чем в фонолите тефры.

Циркон в тефре обнаружен в стеклофазе в виде единичных включений, часто в форме типичных для него пирамидально-призматических кристаллов размером (6.9 ± 7.4) × (3.7 ± 2.7) мкм (рис. 8а, 8б). Состав циркона (табл. 6) рассчитывается на формулу ($Zr_{0.97-0.99}Hf_{0-0.01}$)[SiO₄].

В группу фосфатов входят апатит и монацит. Первый минерал – *хлоргидраксилапатит* состава $(Ca_{9.75-10.06}Sr_{0-0.35}Mn_{0-0.21})_{9.89-10.06}[P_{5.64}S_{0-0.36}O_{24}]$ (OH)_{1.66-2.34}Cl_{0-0.59}, образующий очень мелкие преимущественно овальные выделения размером (0.9 ± 0.6) × (0.14 ± 0.21) мкм (см. рис. 8в, 8г). Второй фосфат в тефре – *La-Ce-Nd монацит* – встречается в срастаниях с рутилом и ортоклазом в виде изометричных зерен размером (5–7) × (3–4) мкм (см. рис. 8д, 8е). **Sr-содержащий барит** состава ($Ba_{0.93-0.95}Sr_{0.05-}_{0.07}$)[SO₄] большей частью отмечается в виде гомогенных зерен неправильной формы размером (4.34 ± 1.45) × (3.4 ± 1.85) мкм. Некоторые зерна барита имеют агрегатное строение, будучи сложенными множеством плотно сросшихся субиндивидов угловато-овальной формы и размером (0.51 ± 0.38) × (0.13 ± 0.05) мкм.

Магнетит в тефре встречается довольно часто и в разных формах – от хлопьевидных скоплений мезонанометровых частиц (рис. 9а, 9б) до обособленных зерен размером (2.01 \pm 2.9) × (1.39 \pm 1.87) мкм (см. рис. 9в, 9г). В единичных зернах размером 6– 8 мкм наблюдается нанопористость (см. рис. 9д, 9е). Состав минерала (табл. 7) характеризуется формулой (Fe_{0.94-1}Mn_{0-0.06})(Fe_{1.28-1.99}Ti_{0-0.64}Al_{0-0.29})₂O₄. Расчеты состава на миналы приводит к выводу о присутствии в исследуемой тефре четырех разновидностей магнетита, а именно (в последовательности уменьшения частоты встречаемости) гер-

N⁰	SiOa	AlaOa	FeaOa	CaO	Na ₂ O	K ₂ O	Эмпирические		Миналы	
п/п	5102	11203	10203	Cuo	r tu ₂ o	1120	формулы	Альбит	Анортит	Ортоклаз
1	64.96	17.23	4.36	1.33	7.94	4.18	$(Na_{0.69}K_{0.24}Ca_{0.06})_{0.99}$	70	6	24
							$[Al_{0.92}Fe_{0.15}Si_{2.94}O_8]$			
2	64.95	17.23	4.36	1.33	7.94	4.19	$(Na_{0.69}K_{0.24}Ca_{0.06})_{0.99}$	68.8	6.4	24.8
2	(1.00	16.67	5.27	1.(1	6.04	5.22	$[AI_{0.92}Fe_{0.15}SI_{2.93}O_8]$	(1.2	7.0	21
3	64.09	16.67	5.37	1.61	6.94	5.32	$(Na_{0.61}K_{0.31}Ca_{0.08})$	61.2	7.8	31
							$[AI_{0.89}Fe_{0.18}S1_{2.93}O_8]$			
4	63.80	18.61	0.60	0.75	Н. о.	16.24	$(K_{0.96}Ca_{0.04})$	Нет	3.7	96.3
							$[Al_{1.02}Fe_{0.02}Si_{2.96}O_8]$			

Таблица 5. Химический (мас. %) и минальный (мол. %) составы полевых шпатов

Рис. 8. Выделения акцессорных силикатов и фосфатов в тефре. Минералы: ЦРК – циркон, АП – апатит, МОН – монацит. СЭМ-изображения в режимах вторичных (а, в, д) и упруго-отраженных (б, г, е) электронов.

цинит-магнетита, магнетита, ульвит-магнетита, магнетит-ульвита.

Характерной примесью в тефре выступают многочисленные включения самородных металлов размером $(3.9 \pm 1.9) \times (1.9 \pm 1)$ мкм и коэффициентом удлинения 2.2 ± 0.8 (рис. 10). Среди таких включений преобладает *латунь* состава $Cu_{0.55-0.59}Zn_{0.37-0.4}Fe_{0.02-0.06}Pb_{0-0.01}$ (табл. 8). Кроме латуни, изредка встречается Cu—Fe-содержащая *самородное олово*. Следует подчеркнуть, что самородно-металлическая минерализация весьма характерна именно для эксплозивной фации вулка-

низма [Карпов и др., 2017]. Особенное значение имеет обнаружение в тефре изометричных частиц *хлоридов* (см. рис. 3д, 3е), часто локализованных вблизи пузырьков дегазации. Размер частиц варьируется в пределах $(3.5 \pm 1.57) \times (2.7 \pm 1)$ мкм. По составу это твердые растворы на основе сильвина (см. табл. 8): (0.77-0.8) KCl + (0.17-0.2) NaCl + + 0.03 CaCl₂.

Следует подчеркнуть, что в исследованном эксплозивном фонолите мы не обнаружили нефелина, присутствие которого в эффузивных тефрифонолитах и фонолитах с Эребуса ранее от-

№ п/п	SiO ₂	ZrO ₂	HfO ₂	MnO	CaO	BaO	SrO	P ₂ O ₅	SO ₃	Cl	Эмпирические формулы
1	32.59	65.78	1.63	Н. о.	Н. о.		$(Zr_{0.98}Hf_{0.01})_{0.99}[SiO_4]$				
2	33.06	66.94	Н. о.	»	»	»	»	»	»		Zr _{0.99} [SiO ₄]
3	33.54	66.46	»	»	*	»	»	»	»		Zr _{0.97} [SiO ₄]
4	Н. о.	Н. о.	»	»	56.14	»	»	42.80	»	4.06	Ca _{9.98} [P ₆ O ₂₄](OH) _{1.96} Cl _{0.3}
5	Н. о.	»	»	»	56.37	»	*	43.36	»	0.27	Ca _{9.89} [P ₆ O ₂₄](OH) _{1.7} Cl _{0.07}
6	Н. о.	»	»	»	53.0	»	3.56	40.35	1.05	2.04	$(Ca_{9.75}Sr_{0.35})_{10.1}[P_{5.86}S_{0.14}O_{24}]OH)_{1.75}Cl_{0.59}$
7	Н. о.	»	»	»	57.46	»	Н. о.	42.54	Н. о.	Н. о.	Ca _{10.06} [P ₆ O ₂₄](OH) _{2.12}
8	Н. о.	»	»	»	56.72	»	*	43.01	»	0.27	$Ca_{10.03} [P_6O_{24}](OH)_{1.98}Cl_{0.08}$
9	Н. о.	»	»	»	56.18	»	»	42.89	»	0.93	$Ca_{9.96}[P_6O_{24}](OH)_{1.66}Cl_{0.26}$
10	Н. о.	»	»	1.37	49.39	»	»	46.65	2.59	Н. о.	$(Ca_{9.78}Mn_{0.21})_{9.99}[P_{5.64}S_{0.36}O_{24}](OH)_{2.34}$
11	Н. о.	»	»	Н. о.	Н. о.	61.98	3.22	Н. о.	34.8	»	$(Ba_{0.93}Sr_{0.07})[SO_4]$
12	Н. о.	»	»	»	»	62.14	3.16	»	34.7	»	(Ba _{0.94} Sr _{0.07})[SO ₄]

Таблица 6. Химический состав циркона (1–3), апатита (4–10) и барита (11, 12)

Рис. 9. Выделения разновидностей магнетита (МГ) в тефре. СЭМ-изображения в режимах вторичных (а, в, д) и упруго отраженных (б, г, е) электронов.

мечалось американскими вулканологами. Возможно, в нашем случае сыграли роль небольшой объем и очень сильная стекловатость проанализированного образца.

УГЛЕРОДНОЕ ВЕЩЕСТВО

Обнаружение в составе литогенных газов тефры с Эребуса углеводородов свидетельствует о вероятности нахождения в ее составе и конденсированного углеродного вещества. Проведенный методом кулонометрического титрования по величине pH (Ан-7529М) анализ показал, что валовое содержание углерода в исследуемом образце колеблется в пределах 0.02–0.05 мас. %, что на порядок превышает содержание в тефре углеводородных газов. Следовательно, в тефре Эребуса имеется преобладающая примесь негазового углеродного компонента. Анализ изотопного состава этого компонента (6 определений) привел к следующему значению изотопного коэффициента: $\delta^{13}C_{PDB} = -26.47 \pm 0.34\%$. Этот результат лежит в пределах полученных нами данных для так называемой атомно-дисперсной формы углерода [Haggerty, 1999] в современных вулканах Камчатки и Тихоокеанского вулканического огненного кольца, а также для органоидов вулкано-атмоэлектрогенного происхождения [Силаев и др., 2016; Силаев и др., 2018].

№ п/п	Fe ₂ O ₂	TiO	AlaOa	MnO	Эмпиринеские формулы		Ми	налы	
J 12 11/11	10203	1102	11203	MIIO	Эмпири теские формулы	Магнетит	Ульвит	Герцинит	Якобсит
1	74.88	21.6	1.16	1.86	$(Mn_{0.06}Fe_{0.94})(Fe_{1.28}Ti_{0.64}Al_{0.08})_2O_4$	26	64	4	6
2	98.34	0.74	Н. о.	0.92	$(Mn_{0.03}Fe_{0.97})(Fe_{1.98}Ti_{0.02})O_4$	95	2	Нет	3
3	91.67	7.16	»	1.17	$(Mn_{0.04}Fe_{0.96})(Fe_{1.79}Ti_{0.21})_2O_4$	75	21	»	4
4	94.76	5.23	»	Н. о.	$(Fe(Fe_{1.84}Ti_{0.16})_2O_4)$	84	16	»	Н. о.
5	98.85	0.4	0.75	*	$Fe(Fe_{1.95}Ti_{0.01}Al_{0.04})_2O_4$	97	1	2	*
6	92.65	0.84	6.51	*	$Fe(Fe_{1.6}Ti_{0.03}Al_{0.29})_2O_4$	82.5	3	14.5	*
7	97.82	H.o.	2.18	*	$Fe(Fe_{1.99}Al_{0.01})_2O_4$	99.5	Нет	0.5	*
8	94.85	»	5.15	*	$Fe(Fe_{1.75}Al_{0.25})_2O_4$	87.5	»	12.5	*
9	96.49	*	3.51	*	$Fe(Fe_{1.81}Al_{0.19})_2O_4$	90.5	*	9.5	*
10	97.27	»	2.72	»	$Fe(Fe_{1.87}Al_{0.13})_2O_4$	93.5	»	6.5	*

Таблица 7. Химический (мас. %) и минальный (мол. %) составы магнетита

Рис. 10. Выделения природной латуни (CuZn) в тефре. СЭМ-изображения в режимах вторичных (а, в) и упруго-отраженных (б, г–е) электронов.

ЗАКЛЮЧЕНИЕ

Впервые проведены комплексные петрологоминералого-геохимические исследования тефры с крупнейшего внутриплитного стратовулкана Эребус в Антарктиде, характеризующегося уникальной базанит-фонолитовой линией эффузивов. Исследованный образец сложен субпризматическими, угловато-комковатыми, рогульчатыми и пластинчатыми частицами, широко варьирующимися по размеру от 0.3×0.1 до 2×0.7 мм. Характерными особенностями частиц являются их микровезикулярность и вытянутость их формы, степень которой отражают значения коэффициента удлинения в пределах от 1.2 до 8. Очевидно, что такой габитус частиц обусловлен эксплозивной природой тефры. По валовому химическому составу тефра соответствует анортоклазовому фонолиту, несколько более щелочному, чем лавовые фонолиты. В фазовом отношении она сложена в основном вулканическом стеклом, широко варьирующим по химическому составу от фонолитов до трахириолитов.

В составе исследованного образца обнаружен 51 микроэлемент, суммарное содержание которых варьируется в пределах 3765—4425 г/т, в том числе сумма лантаноидов составляет 626 ± 106 г/т. По средней сумме микроэлементов тефра близко совпадает с лавовыми фонолитами, но превосходит базаниты, фонотефриты-тефрифонолиты и трахиты соответственно в 1.34, 1.23 и 1.43 раза. По

№ п/п	Na	K	Ca	Cl	Cu	Zn	Sn	Pb	Fe	Ni	Эмпирические формулы
1	5.61	25.72	1.31	49.38	Н. о.	$0.8 \text{KCl} + 0.17 \text{NaCl} + 0.03 \text{CaCl}_2$					
2	6.47	42.45	1.14	49.94	»	»	»	»	»	»	$0.77 \mathrm{KCl} + 0.2 \mathrm{NaCl} + 0.03 \mathrm{CaCl}_2$
3	Н. о.	Н. о.	Н. о.	Н. о.	55.99	38.33	Н. о.	3.59	2.09	Н. о.	Cu _{0.58} Zn _{0.39} Fe _{0.02} Pb _{0.01}
4	»	»	»	»	56.53	37.44	»	0.94	5.09	»	Cu _{0.57} Zn _{0.37} Fe _{0.06}
5	»	»	»	»	54.88	41.96	»	Н. о.	3.16	»	$Cu_{0.55}Zn_{0.41}Fe_{0.04}$
6	»	»	»	»	55.12	41.20	»	»	3.68	»	$Cu_{0.55}Zn_{0.39}Fe_{0.02}Pb_{0.01}$
7	»	»	»	»	59.36	38.25	»	»	2.39	»	$Cu_{0.58}Zn_{0.40}Fe_{0.05}$
8	»	»	»	»	57.60	38.04	»	1.74	1.55	1.07	$Cu_{0.59}Zn_{0.38}Fe_{0.02}Pb_{0.01}$
9	»	»	»	»	56.49	38.88	»	3.04	1.59	Н. о.	$Cu_{0.58}Zn_{0.39}Fe_{0.02}Pb_{0.01}$
10	»	»	»	»	2.04	Н. о.	95.74	Н. о.	2.17	»	$Sn_{0.92}Cu_{0.04}Fe_{0.04}$

Таблица 8. Химический состав хлоридных твердых растворов и металлических сплавов, мас. %

сумме лантаноидов она превосходит базаниты, фонотефриты и тефрифонолиты в 1.6 раз, а лавовые фонолиты в 1.3 раза. В рамках теории геохимической дифференциации Ю.Г. Щербакова исследованная тефра вполне укладывается в единую последовательность магматической дифференциации, известную как линия Эребуса, но с некоторыми поправками на эксплозивную природу тефры. По ряду геохимических критериев тефра тестируется как продукты вулканизма, образовавшиеся именно во внутриплитно-рифтовой геодинамической обстановке.

В качестве примеси к вулканическому стеклу в тефре выявлены и исследованы полевые шпаты анортит-ортоклаз-альбитового и ортоклазового состава; хлоргидроксилапатит; La—Ce—Nd монацит; Sr-содержащий барит; шпинелиды, варьирующие по составу от магнетита до герцинит-магнетита, ульвит-магнетита и магнетит-ульвита; Fe—Pb-содержащая латунь и Cu—Fe-содержащее самородное олово; хлоридные твердые растворы гидрофилит-галит-сильвиного состава.

В составе литогенных газов тефры установлены N_2 , CO, CO₂ и углеводороды C_{1-4} . По составу и пропорциям между компонентами газы в тефре с Эребуса коррелируются с газами в продуктах корово-мантийных взаимодействий, причем со значительным приближением к собственно мантийным образованиям. Изотопный состав углерода в тефре лежит в пределах данных, установленных для так называемой атомно-дисперсной формы углерода в продуктах современного вулканизма Тихоокеанского огненного кольца, а также для органоидов вулкано-атмоэлектрогенного происхождения. В целом исследуемую тефру можно трактовать как эксплозивный почти нацело стекловатый аналог лавовых анортоклазовых фонолитов, завершающих непрерывную серию магматических дифференциатов, известную как линия Эребуса.

БЛАГОДАРНОСТИ

Авторы благодарят за сотрудничество и ценные рекомендации доктора Ф.Р. Кайла (Институт горного дела и технологий Нью-Мексико, Сокорро, США), профессора Р.Г. Ибламинова (Пермский госуниверситет), кандидата геол.-мин. наук Д.В. Киселёву (Институт геологии и геохимии УрО РАН), кандидата геол.-мин. наук А.А. Соболеву и ведущего инженера-химика И.В. Смолеву (Институт геологии Коми НЦ УрО РАН).

СПИСОК ЛИТЕРАТУРЫ

Карпов Г А., Силаев В.И., Аникин Л.П. и др. Эксплозивная минерализация // Толбачинское трещинное извержение 2012–2013 гг. Новосибирск: Изд-во СО РАН, 2017. С. 241–255. Петровский В.А., Силаев В.И., Сухарев А.Е. и др. Флюидные фазы в карбонадо и их генетическая информативность // Геохимия. 2008. № 7. С. 748–765.

Петрографический кодекс России. Магматические, метаморфические, метасоматические, импактные образования. СПб.: Изд-во ВСЕГЕИ, 2008. 202 с.

Силаев В.И., Аникин Л.П., Вергасова Л.П. и др. Абиогенные органические полимеры в продуктах современного вулканизма // Вестник Пермского университета. Геология. 2016. Вып. 3. С. 21–33.

Силаев В.И., Аникин Л.П., Шанина С.Н. и др. Абиогенные конденсированные органические полимеры в продуктах современного вулканизма в связи с проблемой возникновения жизни на Земле. Сыктывкар: Геопринт, 2018. 128 с.

Силаев В.И., Карпов Г.А., Аникин Л.П. и др. Минерально-фазовый состав парагенезиса в эксплозивных продуктах современных извержений вулканов Камчатки и Курил. Часть І. Алмазы, углеродные фазы, конденсированные органоиды // Вулканология и сейсмология. 2019. № 5. С. 54–67.

Тазиев Г. На вулканах. Суфриер, Эребус, Этна. М.: Мир, 1987. 263 с.

Шербаков Ю.Г. Геохимическая классификация элементов // Докл. АН СССР. 1965. Т. 164. № 4. С. 917–920.

Шербаков Ю.Г. Геохимическая эволюция и рудные формации // Проблемы эндогенного рудообразования и металлогении. Новосибирск: Наука, 1976. С. 217–229.

Шербаков Ю.Г. Периодическая система и космогеохимическое распределение элементов // Геология и геофизика. 1982. № 1. С. 77–87.

Boynton W.V. Geochemistry of the Rare Earth Elements: Meteorite Studies // Rare earth element geochemistry. Amsterdam: Elsevier, 1984. P. 63–114.

Encyclopedia of Volcanoes / Eds H. Sigurdsson, B. Houghton, H. Rymer et al. Academic Press, 1999. P. 1172–1177.

*Esser R.P., Kyle Ph.R., McIntosh W.C.*⁴⁰Sr/³⁹Sr dating of the Eruptive history of Mount Erebus, Antarctica: Volcano evolution // Bull. Volcanol. 2004. V. 66. P. 671–686.

Haggerty St. E. A Diamond Trilogy: Superplumes, Supercontinets and Supernovae // Sciences. 1999. V. 285. P. 851–860.

Harpel C.J., Kyle Ph.R., Esser R.P. et al. ⁴⁰Ar/³⁹Ar dating of the eruptive history of the Mount Erebus, Antarctica: summit flows, tephra, and caldera collapse // Bull. Volcanol. 2004. V. 66. P. 687–702.

Iacovino K., Moore G., Roggensack K. et al. H₂O–CO₂ Solubility in mafic alkaline Magma: Applications to volatile sources and degassing behavior at Erebus volcano, Antarctica // Contrib. Mineral. Petrol. 2013. V. 166. P. 845–860.

Iverson N. A., Kyle Ph. R., Dungar N.W., McIntosh W.C. Eruptive history and magmatic stability of Erebus volcano, Antarctica: Insights from englcial tephra // Geochemistry, Geophysics, Geosystems. 2014. № 15. P. 1–23.

Kelly P.J., Dunbar N.W., Kyle Ph.R., McIntoch W.C. Refinement of the late Quaternary geologic historyof erebus volkano using ⁴⁰Sr/³⁹Sr and ³⁶Cl determinations // J. Volcanol. and Geotherm. Res. 2008. V. 177. P. 569–577.

Kelly P.J., Kyle Ph.R., Dunbar N.W., Sims K.W.W. Geochemistry and Mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972–2004 and comparison with

older levas // J. Volcanol. and Geotherm. Res. For Submission to Special Issie on Erebus Vulcano. 2007. P. 1–56.

Kyle Ph.R., Jazek A. Composition of three Tephra layers from the Byrd Slation Ice Core, Antarctica // J. Volcanol. and Geotherm. Res. 1978. V. 4. P. 225–232.

Kyle Ph.R., Moore J.A., Thirlwall M.F. Petrologic Evolution of Anorthoclase Phonolite Lavas at Miount Erebus Ross Island, Antarctica // J. Petrol. 1992. V. 33. № 4. P. 849–875. Panter K.S., Blusztayn J., Hart S.R. et al. The Origin of HIMU in the SW Pacific: Evidence from Intra plate Volcanism in Southern New Zealand and Subantarctic Islands // J. Petrol. 2006. V. 47. P. 1673–1704.

Stothers R.B., Rampino M.R. Volcanic eruptions in the Mediterranean before A.D.630 // J. Geophys. Res. 1983. V. 88. P. 6357–6370.

Wood D.A. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province // Earth Planet. Sci. Lett. 1980. V. 50. P. 11–30.

Mineralogical-Geochemical Properties of Near-Crater Tephra of the 2000 Eruption of Erebus Volcano (Antarctica)

V. I. Silaev^{1, *}, G. A. Karpov^{2, **}, V. N. Filippov¹, B. A. Makeev¹, S. N. Shanina¹, A. F. Khazov¹, and K. V. Tarasov²

¹Institute of Geology, Komi Science Center, Ural Branch of RAS, Pervomayskaya str., 54, Syktyvkar, 167982 Russia ²Institute of Volcanology and Seismology FEB RAS, bul'var Piipa, 9, Petropavlovsk-Kamchatsky, 683006 Russia *e-mail: silaev@geo.komisc.ru

**e-mail: karpovga@ksnet.ru

For the first time complex petrologic-mineralogic-geochemical study of near-crater tephra of the biggest inplate stratovolcano on Earth, Erebus, were made. The volcano is characterized by unique basanite-phonolitic rocks. Granulometric, chemical, mineralogical analysis, analysis of encapsulated lithogenic gases in tephra, diffused organic material and isotope of carbon in it were conducted. Concluded has been the possibility of interpreting the tephra studied as an explosive analogue of lava anorthoclasic phonolites representing the endmembers of the continuous magmatic differentiates' series known as the Erebus series.

Keywords: Erebus, Erebus magmatic series, tephra, anorthoclase, chlorhydroxsylapatite, monazite, barite, magnetite, native metal, chloride solid solution