УДК 548.73

ТЕРМИЧЕСКОЕ ИССЛЕДОВАНИЕ НОВОГО МИНЕРАЛА БЕЛОМАРИНАИТА KNaSO₄

© 2021 г. М. Г. Белоусова^{*a*, *}, О. Ю. Сапрыкина^{*b*, *c*}, Р. С. Бубнова^{*b*}, А. П. Шаблинский^{*b*}, Л. П. Вергасова^{*a*}, А. Б. Белоусов^{*a*}, С. К. Филатов^{*c*}, **

^аИнститут вулканологии и сейсмологии ДВО РАН, бульвар Пийпа, 9, Петропавловск-Камчатский, 683006 Россия

^bИнститут химии силикатов РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

^сСанкт-Петербургский государственный университет, ИНо3, кафедра кристаллографии, Университетская наб., 7/9, Санкт-Петербург, 199034 Россия

> *e-mail: chikurachki1@gmail.com **e-mail: filatov.stanislav@gmail.com Поступила в редакцию 29.11.2018 г. После доработки 04.08.2020 г. Принята к публикации 20.08.2020 г.

Впервые изучено термическое поведение нового минерала вулканических эксгаляций беломаринаита KNaSO₄ (тригональная сингония, пр. гр. *P3m*1, *a* = 5.6072(3), *c* = 7.1781(4) Å, *V* = 195.45(2) Å³) на природном образце вулканических эксгаляций Трещинного Толбачинского извержения (ТТИ) 2012–2013 гг. и его синтетического аналога – низкотемпературного (НТ) полиморфа KNaSO₄ (пр. гр. *P3m*1) в интервале 30–800°С (терморентгенография) и 30–1000°С (ДСК и ТГ). Минерал устойчив до температуры 470 ± 5°С, при которой он испытывает полиморфное превращение первого рода в высокотемпературную (ВТ) гексагональную модификацию (пр. гр. *P*6₃/*mmc*), стабильную до плавления (840°С по данным ДСК). Термическое расширение обеих модификаций резко анизотропно, а в случае ВТ-фазы – зависимость параметра *a* имеет U-образную форму с минимумом при 620°С. Объемное расширение α_V ВТ-фазы превышает расширение HT-фазы в среднем в 2–2.5 раза.

Ключевые слова: вулканические эксгаляции, новый минерал, беломаринаит, вулкан Толбачик, извержение 2012—2013 гг., высокотемпературный безводный сульфат, термическое расширение **DOI:** 10.31857/S0203030620060127

ВВЕДЕНИЕ

В последние годы осуществляется активное исследование минералов вулканических эксгаляций: поиск и выявление условий их формирования при изменении температуры и состава газов. Извержения вулкана Толбачик 1975-1976 г. и 2012-2013 г. относятся к наиболее изученным извержениям основного состава [Большое трещинное ..., 1984; Belousov et al., 2015]. В эксгаляциях этих извержений часто находят новые минеральные виды. Особое место среди минералов вулканических эксгаляций БТТИ и ТТИ занимают безводные и водные сульфаты. Среди безводных сульфатов, открытых за последние годы, можно выделить такие минералы, как ивсит $Na_3H(SO_4)_2$ [Филатов и др., 2016], бубноваит K₂Na₈Ca(SO₄)₆ [Gorelova et al., 2016], пунинит Na₂Cu₃O(SO₄)₃ [Siidra et al., 2017], дравертит CuMg(SO₄)₂ [Pekov et al., 2017], саранчинаит Na₂Cu(SO₄)₂ [Siidra et al., 2018], ительменит Na₂CuMg₂(SO₄)₄ [Nazarchuk et al., 2018], беломаринаит KNaSO₄ [Filatov et al., 2019], корякит NaKMg₂Al₂(SO₄)₆ [Siidra et al., 2020], натроафтиталит Na₃K(SO₄)₂ [Shchipalkina et al., 2020], метатенардит Na₂SO₄ [Pekov et al., 2020], петровит Na₁₀CaCu₂(SO₄)₈ [Filatov et al., 2020] и добровольскийит Na₄Ca(SO₄)₃ [Shablinskii et al., 2020]. Наиболее полный перечень минералов, установленных на вулкане Толбачик, приводится в обзорной работе [Пеков и др., 2020].

Проба, в которой после ее охлаждения до атмосферных условий был обнаружен беломаринаит [Filatov et al., 2019], была взята 27.05.2013 г. на Толудском лавовом поле на потоке лавы ТТИ, температура которой была около 1000°С. Образец является продуктом дегазации активного лавового потока трахиандезитового состава и оказался новым минеральным видом, который был назван беломаринаитом.

Минерал представляет собой древовидные (скелетные) образования бледно-сине-зеленого цвета, и относится к тригональной сингонии (P3m1), параметры элементарной ячейки a = 5.6072(3), c =

Минерал	Формула	Пр. гр.	a, Å	$c, \mathrm{\AA}$	<i>V</i> , Å ³	Ссылка
Афтиталит	$K_3Na(SO_4)_2$	<i>P</i> -3 <i>m</i> 1	5.680(1)	7.309(3)	204.2(1)	1
Беломаринаит	KNa(SO ₄)	<i>P</i> 3 <i>m</i> 1	5.6072(3)	7.1781(4)	195.45(2)	2
Натроафтиталит	$KNa_3(SO_4)_2$	<i>P</i> –3 <i>m</i> 1	5.6014(3)	7.1507(5)	194.30(1)	3
Мёнит	$(NH_4)K_2Na(SO_4)_2$	<i>P</i> –3 <i>m</i> 1	5.7402(3)	7.435(1)	212.16(1)	4
Метатенардит	Na ₂ SO ₄	<i>P</i> 6 ₃ / <i>mmc</i>	5.347(1)	7.088 (2)	175.48(7)	5
	$\alpha - K_2 SO_4 (740^{\circ}C)$	<i>P</i> 6 ₃ / <i>mmc</i>	5.917(4)	8.182(4)	248.3(1)	6
Бубноваит	$K_2Na_8Ca(SO_4)_6$	P31c	10.804(3)	22.011(6)	2225(2)	7
Ханксит	Na ₂₂ K(SO ₄) ₉ (CO ₃) ₂ Cl	$P6_{3}/m$	10.490(1)	21.240(1)	2024(1)	8
Добровольскийит	$Na_4Ca(SO_4)_3$	<i>R</i> 3	15.7223(2)	22.0160(5)	4713.1(2)	9

Таблица 1. Кристаллографические данные беломаринаита и сходных минералов и химических соединений

Примечание. 1 – [Okada, Osaka, 1980]; 2 – [Filatov et al., 2019]; 3 – [Shchipalkina et al., 2020]; 4 – [Chukanov et al., 2015]; 5 – [Pekov et al., 2020]; 6 – [Arnold et al., 1981]; 7 – [Gorelova et al., 2016]; 8 – [Kato, Saalfield, 1972]; 9 – [Shablinskii et al., 2020].

= 7.1781(4) Å, V = 195.45(2) Å³. Структура минерала была впервые описана на синтетическом образце в работе [Okada, Osaka, 1980] и уточнена на природном образце [Filatov et al., 2019]. Сопоставление кристаллографических данных для беломаринаита и сходных с ним минералов и химических соединений приведено в табл. 1. Минерал утвержден Комиссией по новым минералам, названиям и классификации минералов Международной Минералогической Ассоциации 4 апреля 2018 г. Эталонный образец нового минерального вида был передан в Минералогический музей Санкт-Петербургского государственного университета (номер по каталогу 1/19678).

В кристаллической структуре беломаринаита имеются две симметрично независимые позиции атомов K, две позиции атомов Na, две S и четыре O [Okada, Osaka, 1980; Filatov et al., 2019]. Катионы K(1) и K(2) координированы двенадцатью и десятью атомами кислорода со средними длинами связей 3.06 и 2.87 Å соответственно. Na(1) координирован шестью атомами кислорода с образованием октаэдра со связями, характерными для Na–O (2.284–2.403 Å). Na(2) координирован десятью атомами кислорода с экстремально удлиненными связями (в среднем 2.8 Å). Структура, как это типично для сульфатов, островная с изолированными тетраэдрами SO₄.

ВТ-полиморфы Na_2SO_4 и K_2SO_4 изоструктурны, их кристаллические структуры уточнены в гексагональной сингонии, пр. гр. $P6_3/mmc$ при повышенных температурах вплоть до 420 и 640°С в работах [Naruse et al., 1987; Arnold et al., 1981] соответственно. В системе $Na_2SO_4-K_2SO_4$ в области высоких температур существует ряд непрерывных твердых растворов на основе этих гексагональных полиморфов, температура полиморфного перехода для эквимолярного состава соответствует приблизительно 470°С, начало плавления — около 880°С [Eysel et al., 1985; Китагі, Secco, 1983], полиморфный переход данных твердых растворов типа упорядочение – разупорядочение в этой системе обсуждается также в работе [Китагі, Secco, 1983]. Сведения о термическом расширении низкотемпературного полиморфа KNaSO₄ приведены только в интервале 300–500 К по данным дилатометрии [Kassem et al., 2007].

Термическое поведение минерала высокотемпературного генезиса представляет несомненный интерес. В настоящей работе исследование термического поведения природного и синтетического образцов KNaSO₄ проводили *in situ* методами терморентгенографии поликристаллов и термического анализа в атмосфере воздуха.

ЭКСПЕРИМЕНТ

Термический анализ (ДСК и ТГ). Исследование природного образца беломаринаита проводили на приборе Netzsch STA 449–F3–Jupiter в керамическом тигле на воздухе при средней скорости нагревания 10°С/мин. Поскольку образец долгое время находился на воздухе, сначала его нагревали в интервале температур 30–800°С, охлаждали и повторно нагревали в интервале 30–1000°С. Температуру фазовых превращений определяли по максимуму пиков на кривой ДСК (рис. 1).

Терморентгенография. Исследования проводили с использованием дифрактометра Rigaku Ultima IV (CuK α_{1+2} , 40 kV, 30 mA, геометрия на отражение, высокоскоростной энергодисперсионный детектор DTEX/ULTRA) с высокотемпературной камерой "SHT–1500". Диапазон углов дифракции 20 составлял 10°–80°. Образец готовили на подложке осаждением из гептановой суспензии. Коэффициенты термического расширения определяли с использованием программного комплекса Theta To Tensor [Бубнова и др., 2013].

Рис. 1. Кривые ДСК и ТГ для беломаринаита.

Методом терморентгенографии исследовали беломаринаит и его синтетический аналог. Синтетический аналог был получен путем нагревания механической эквимолярной смеси сульфатов калия и натрия до 800°С. При 700°С образец становился гексагональным гомогенным твердым раствором. Этот гомогенный твердый раствор был исследован в процессе охлаждения с 800°С до комнатной температуры с шагом 20°С. Поскольку синтетический образец изучался при охлаждении, природный беломаринаит сначала был нагрет до 800°С с шагом по температуре 100°С, и только после этого проводили исследование в процессе охлаждения с более мелким шагом 10°С.

РЕЗУЛЬТАТЫ

Данные термического анализа (ДСК/ТГ). На кривой ТГ наблюдается незначительная потеря массы (1.2%) в интервале температур 700–1000°С. На кривой ДСК отмечаются три эффекта (см. рис. 1), которые согласуются с литературными данными для синтетического образца. В работе [Kassem et al., 1993] высказано предположение, что первому широкому экзотермическому пику (123°С) соответствует фазовый переход второго рода, наши данные терморентгенографии не подтверждают этот эффект (рис. 2). При температуре 446°С происходит полиморфный переход из HTфазы в высокотемпературную фазу, а при 840°С высокотемпературная фаза плавится.

Полиморфный тригонально-гексагональный переход по данным терморентгенографии. Терморентгеновские съемки, как сказано в разделе "Эксперимент", проводили при охлаждении от 800°С. Они оказались подобными для природного и синтетического образцов. На дифракционных картинах природного и синтетического образцов наблюдались пики ВТ-фазы KNaSO₄ при охлаждении до 470 \pm 5 и до 480 \pm 10°C соответственно (см. рис. 2). При дальнейшем охлаждении происходил переход в НТ-модификацию KNaSO₄ через двухфазную область — при 470°C наблюдались пики обеих фаз, ниже были обнаружены пики только тригонального беломарината — переход обратим, как отмечалось в работе [Eysel et al., 1985].

Различие в температуре фазового перехода по данным термического анализа и терморентгенографии (~20°С) может быть связано с нестандартным сочетанием режимов эксперимента: быстрое нагревание в термическом анализе и медленное охлаждение в процессе терморентгенографии.

По данным изучения системы [Eysel et al., 1985; Китагі, Secco, 1983] ВТ-модификация KNaSO₄ представляет собой твердый раствор сульфатов натрия и калия. Дифракционная картина ВТ-модификации KNaSO₄ соответствует ВТ-фазам Na₂SO₄ [Naruse et al., 1987] и K₂SO₄ [Arnold et al., 1981], кристаллизующимся в пр. гр. $P6_3/mmc$.

Термическое расширение полиморфных модификаций. Графики изменения параметров и объема элементарной ячейки обеих полиморфных модификаций в функции от температуры показаны на рис. 3. Поскольку процесс термического расширения обратим и не имеет гистерезиса, мы можем обсуждать графики изменения параметров и объема элементарной ячейки при нагревании, хотя съемки проводили при охлаждении от 800°С (см. раздел "Эксперимент"). У обеих фаз параметры и объем элементарной ячейки увеличиваются с ростом температуры. Резко анизотропный характер НТ-фазы обусловлен стремлением величины параметров ее ячейки достигнуть величи-

Рис. 2. Термическое фазовое превращение при охлаждении в беломаринаите. Горизонтальной линией обозначена температура фазового перехода.

ны параметров ВТ-фазы. Однако завершается полиморфный переход, не достигнув равенства параметров и объема ($a_{\rm HT} = 5.6568(8)$ Å $\neq a_{\rm BT} = 5.666(2)$ Å, $c_{\rm HT} = 7.492(1)$ Å $\neq c_{\rm BT}$ 7.597(1) Å и $V_{\rm HT} = 208.3(3)$ Å³ $\neq V_{\rm BT} = 210.54(6)$ Å³ при 470 ± 5°C). То есть параметры совершают незначительные скачки, следовательно, это переход первого термодинамического рода с незначительным скачком объема ($\Delta V = 2.2 \text{ Å}^3$). Направленность полиморфного тригонально-гексагонального превращения согласуется с известной тенденцией повышения симметрии вещества с ростом температуры. А характер термического расширения НТ-фазы обусловлен ее стремлением превратиться в ВТ-фазу [Филатов, 1990]. Уникальность этого полиморфного преврашения состоит, прежде всего, в том, что оно доходит до своего фактически полного завершения.

Видно (см. рис. 3), что для НТ-полиморфа зависимость параметра а является выпуклой кривой, в то время как для параметра c и объема Vвогнутой. Для ВТ-фазы зависимость параметра с и объема V выпуклая, а для параметра *а* наблюдается U-образная зависимость с минимумом при 620°С. Параметры и объем НТ-фазы аппроксимировали полиномами 2-й степени в интервале температур 30-475°С:

$$a = 5.591 + 0.206 \times 10^{-3}t - 0.110 \times 10^{-6}t^{2},$$

$$c = 7.17 - 0.013 \times 10^{-3}t + 1.288 \times 10^{-6}t^{2},$$

$$V = 194.235 + 13.177 \times 10^{-3}t + 29.900 \times 10^{-6}t^{2}.$$

Параметры и объем ВТ-фазы также аппроксимировали полиномами второй степени в интервале 475-800°C:

$$a = 5.756 - 0.347 \times 10^{-3}t + 0.287 \times 10^{-6}t^{2},$$

$$c = 6.064 + 3.720 \times 10^{-3}t - 0.966 \times 10^{-6}t^{2},$$

$$V = 176.055 + 75.442 \times 10^{-3}t - 3.884 \times 10^{-6}t^{2}.$$

С использованием коэффициентов аппроксимации вычисляли главные значения тензора расширения [Бубнова и др., 2013]. В табл. 2 приведены коэффициенты термического расширения для природного и синтетического образцов при некоторых температурах. Видно, что для НТ-фазы на порядок возрастает расширение вдоль оси с от 15 до 157×10^{-6°}С⁻¹, в то время как для ВТ-фазы существенно уменьшается расширение вдоль оси c от 370 до 270×10⁻⁶°C⁻¹. Объемный коэффициент термического расширения модификаций изменяется в интервалах их исследования для НТ-фазы от 80 до 200 (×10⁻⁶°С⁻¹), для ВТ-фазы – от 350 ло 300 (×10^{-6°}C⁻¹). Термическое расширение в обеих модификациях резко анизотропно, при полиморфном переходе объемное расширение возрастает в два раза, в целом расширение ВТ-модификации в 2-3 раза возрастает относительно расширения НТ-фазы.

Кристаллическая структура беломаринаита может быть описана в терминах псевдоплотнейших катионных упаковок [O'Keeffe, Hyde, 1985; Krivovichev, Filatov, 1999; Vegas, 2000]. Катионы калия и натрия формируют псевдоплотнейшую катионную упаковку с гексагональными слоями параллельными плоскости (001). Термическое расширение таких структур сходно с классическим термическим расширением слоистых соединений, что и объясняет максимальное термическое расширение беломаринаита вдоль оси с, т.е. перпендикулярно слоям псевдоплотнейшей гексагональной упаковки (рис. 4). По всей видимости, резкое увеличение термического расши-

Рис. 3. Зависимость параметров и объема элементарной ячейки беломаринаита от температуры. Вертикальной линией показана граница фазового перехода.

рения кристаллической структуры высокотемпературной модификации вдоль оси *с* связано с покачиванием, а затем и с вращением тетраэдров SO_4 . Это подтверждается расшифровкой кристаллических структур K_2SO_4 и $Na_2SO_4 - P6_3/mmc$ при высоких температурах по монокристальным данным [Arnold et al., 1981; Naruse et al., 1987].

ЗАКЛЮЧЕНИЕ

Для нового минерального вида вулканических эксгаляций беломаринаита KNaSO₄ (пр. гр. *P*3*m*1),

который является продуктом дегазации активного лавового потока трахиандезитового состава, изучено термическое поведение в интервале 30– 800°С на воздухе.

Показано существование высокотемпературной модификации этого минерала выше 470°С. Это позволяет ожидать, что при благоприятных условиях (вхождение примесей) высокотемпературная полиморфная модификация может быть встречена в природе в атмосферных условиях. Так было, например, в случае тенардита Na_2SO_4 (пр. гр. *Fddd*), для которого научной группой

Рис. 4. Сопоставление сечений тензора термического расширения с кристаллическими структурами беломаринаита (a) [Filatov et al., 2019] и α -K₂SO₄ (740°C) (б) [Arnold et al., 1981].

Таблица 2. Коэффициенты термического расширения беломаринаита и его синтетического аналога при некоторых температурах

æ	T oc	Природный образец/синтетический					
Фаза	<i>I</i> , °C	$\alpha_a (\times 10^{6\circ} \mathrm{C}^{-1})$	$\alpha_c (\times 10^{6\circ} \mathrm{C}^{-1})$	$\alpha_V(\times 10^{6\circ}\mathrm{C}^{-1})$			
<i>P</i> 3 <i>m</i> 1	30	35(1)/33(1)	9(5)/15(5)	80(5)/83(5)			
	100	33(1)/31(1)	34(2)/40(3)	100(2)/102(3)			
	200	28(1)/29(1)	69(2)/70(1)	127(2)/128(1)			
	300	24(1)/27 (1)	104(5)/100(2)	154(5)/153(2)			
	400	21(1)/24(1)	138(4)/129(4)	180(4)/178(5)			
	475	18(1)/22(1)	157(5)/151(5)	194(5)/196(5)			
<i>P</i> 6 ₃ / <i>mmc</i>	475	-13(1)/-14(2)	370(2)/374(2)	342(3)/345(3)			
	500	-10(1)/-12(2)	358(1)/365(2)	337(1)/340(3)			
	600	0(1)/1(1)	322(1)/325(2)	321(1)/326(2)			
	700	10(1)/13(1)	289(2)/287(1)	308(2)/314(2)			
	800	16(1)/26(2)	270(2)/256(2)	302(2)/305(3)			

проф. И.В. Пекова была обнаружена среди продуктов эксгаляций вулкана Толбачик высокотемпературная модификация, названная метатенардитом Na₂SO₄ (пр. гр. *P*6₃/*mmc*) [Pekov et al., 2020]. Обнаружение подобной высокотемпературной модификации было предсказано впервые в работе [Lacroix, 1910].

Выявлены причины резкой анизотропии термического расширения обеих модификаций. Объемное расширение α_V изменяется для низкотемпературной фазы в пределах 80-200×10^{-6°}C⁻¹, для высокотемпературной – 350–300×10^{-6°}С⁻¹ в температурных интервалах их исследования, т.е. расширение ВТ-фазы превышает расширение НТфазы в среднем в 2-2.5 раза. Направленность полиморфного тригонально-гексагонального превращения согласуется с известной тенденцией повышения симметрии вещества при его нагревании. Резко анизотропный характер НТ-фазы обусловлен стремлением величины ее параметров элементарной ячейки к параметрам ВТ-фазы. Однако, завершая полиморфный переход и не достигнув равенства, кристаллическая структура совершает незначительный скачок $\Delta V = 2.2$ Å³, т.е. полиморфный переход представляет собой фазовый переход первого рода.

Исследования проведены с использованием оборудования ресурсного центра СПБГУ "Рентгенодифракционные методы исследования". Терморентгенографическая съемка выполнялась в ресурсном центре "Рентгенодифракционные методы исследования" научного парка Санкт-Петербургского государственного университета доцентом М.Г. Кржижановской.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 18-29-12106).

СПИСОК ЛИТЕРАТУРЫ

Большое трещинное Толбачинское извержение, Камчатка. 1975–1976 / Ред. С.А. Федотов. М.: Наука, 1984. 637 с.

Бубнова Р.С., Фирсова В.А., Филатов С.К. Программа определения тензора термического расширения и графического представления его характеристической поверхности (Theta To Tensor – TTT) // Физика и химия стекла. 2013. Т. 39. С. 505–509.

Пеков И.В., Агаханов А.А., Зубкова Н.В. и др. Фумарольные системы окислительного типа на вулкане Толбачик — минералогический и геохимический уникум // Геология и геофизика. 2020. Т. 61. С. 826–843.

Филатов С.К. Высокотемпературная кристаллохимия. Л.: Недра, 1990. 288 с.

Филатов С.К., Карпов Г.А., Шаблинский А.П. и др. Ивсит, Na₃H(SO₄)₂ – новый минерал вулканических эксгаляций из фумарол Трещинного Толбачинского

извержения им. 50-летия ИВиС ДВО РАН // Докл. РАН. 2016. Т. 468. Р. 690-693.

Arnold H., Kurtz W., Richter-Zinnius A. et al. The phase transition of K_2SO_4 at about 850 K // Acta Crystallogr. 1981. V. B37. P. 1643–1651.

Belousov A., Belousova M., Edwards B., Volynets A., Melnikov D. Overview of the precursors and dynamics of the 2012–2013 basaltic fissure eruption of Tolbachik Volcano, Kamchatka, Russia // J. Volcan. Geotherm. Res. 2015. V. 307. P. 22–37.

Chukanov N.V., Aksenov S.M., Rastsvetaeva R.K. et al. Möhnite, $(NH_4)K_2Na(SO_4)_2$, a new guano mineral from Pabellón de Pica, Chile // Mineral. Petrol. 2015. V. 109. P. 643–648.

Eysel W., Hoefer H.H., Keester K.L. et al. Crystal chemistry and structure of Na₂SO₄ (I) and its solid solutions // Acta Crystallogr. 1985. V. B41. P. 5–11.

Gorelova L.A., Vergasova L.P., Krivovichev S.V. et al. Bubnovaite, $K_2Na_8Ca(SO_4)_6$, a new mineral species with modular structure from the Tolbachik Volcano, Kamchatka peninsula, Russia // Eur. J. Miner. 2016. V. 28. P. 677–686.

Filatov S.K., Shablinskii A.P., Krivovichev S.V. et al. Petrovite, $Na_{10}CaCu_2(SO_4)_8$, a new fumarolic sulfate from the Great Tolbachik fissure eruption, Kamchatka Peninsula, Russia // Mineral. Mag. 2020.

https://doi.org/10.1180/mgm.2020.53

Filatov S.K., Shablinskii A.P., Vergasova L.P. et al. Belomarinaite KNaSO₄: A new sulphate from 2012–2013 Tolbachik Fissure eruption, Kamchatka Peninsula, Russia // Mineral. Mag. 2019. V. 83. P. 569–575.

Kassem M.E., Abboudy S., Hamed A.E. et al. Stoichiometric ratio and doping effects on the thermal properties of sodium potassium sulphate crystals // J. Therm. Anal. 1993. V. 39. P. 301–308.

Kato K., Saalfield H. The crystal structure of hanksite, $KNa_{22}(Cl(CO_3)_2(SO_4)_9)$ and its relation to the K_2SO_4 I structure type // Acta Crystallogr. 1972. V. B28. P. 3614–3617.

Krivovichev S.V., Filatov S.K. Metal arrays in structural units based on anion-centered metal tetrahedral // Acta Crystallogr. 1999. V. B55. P. 664–676.

Kumari M., Secco Etalo A. Metal Order-disorder transitions and solid state reaction kinektics in Na₂SO₄–K₂SO₄ system // Canad. J. Chem. 1983. V. 61. P. 594–598.

Lacroix A. Mineralogie de la France (t. IV). Paris, France: Librairie Polytechnique, 1910.

Nazarchuk E.V., Siidra O.I., Agakhanov A.A. et al. Itelmenite, Na₂CuMg₂(SO₄)₄, a new anhydrous sulphate mineral from the Tolbachik volcano // Mineral. Mag. 2018. V 82. P. 1233–1241.

Naruse H., Tanaka K., Morikawa H. et al. Structure of Na₂SO₄(I) at 693 K // Acta Crystallogr. 1987. V. 43. P. 143–146.

Okada K., Osaka J. Structures of Potassium Sodium Sulphate // Acta Crystallogr. 1980. V. 36. P. 919–921.

O'Keeffe M., Hyde B.G. An alternative approach to crystal structures with emphasis on the arrangements of cations // Structure and Bonding. 1985. V. 61. P. 77–144.

Pekov I.V., Shchipalkina N.V., Zubkova N.V. et al. Alkali sulfates with aphthitalite-like structures from fumaroles of the Tolbachik volcano, Kamchatka, Russia. I. Metathénardite,

a natural high-temperature modification of Na_2SO_4 // Canadian Mineralogist. 2020. V. 57(6). P. 885–901.

Pekov I.V., Zubkova N.V., Agakhanov A.A. et al. Dravertite, $CuMg(SO_4)_2$, a new mineral species from the Tolbachik volcano, Kamchatka, Russia // Eur. J. Miner. 2017. V. 29. P. 323–330.

Shablinskii A.P., Filatov S.K., Vergasova L.P. et al. Dobrovolskyite, IMA 2019-106. CNMNC Newsletter 54 // Eur. J. Miner. 2020. V. 32. P. 275–283.

Shchipalkina N.V., Pekov I.V., Chukanov N.V. et al. Alkali sulfates with aphthitalite-like structures from fumaroles of the Tolbachik volcano, Kamchatka, Russia. II. A new mineral, natroaphthitalite, and new data on belomarinaite // Canadian Mineralogist. 2020. V. 58(2). P. 167–181.

Siidra O.I., Nazarchuk E.V., Lukina E.A. et al. Saranchinaite, Na₂Cu(SO₄)₂, A New Exhalative Mineral from Tolbachik Volcano, Kamchatka, Russia, and a product of the Reversible Dehydration of Kröhnkite, Na₂Cu(SO₄)₂(H₂O)₂// Mineral. Mag. 2018. V. 82. P. 257–274.

Siidra O.I., Nazarchuk E.V., Zaitsev A.N. et al. Copper oxosulphates from fumaroles of Tolbachik volcano: puninite, $Na_2Cu_3O(SO_4)_3 - a$ new mineral species and structure refinements of kamchatkite and alumoklyuchevskite // Eur. J. Miner. 2017. V. 29(3). P. 499–510.

Siidra O.I., Nazarchuk E.V., Zaitsev A.N. et al. Koryakite, NaKMg₂Al₂(SO₄)₆, a new NASICON-related anhydrous sulfate mineral from Tolbachik volcano, Kamchatka, Russia // Mineral. Mag. 2020. V. 83(2). P. 283–287.

Vegas A. Cations in inorganic solids // Crystallogr. Rev. 2000. V. 7. P. 189–283.

Thermal Study of the New Mineral Belomarinaite KNaSO₄

M. G. Belousova^{1,} *, O. Yu. Saprykina^{2, 3}, R. S. Bubnova², A. P. Shablinskii², L. P. Vergasova¹, A. B. Belousov¹, and S. K. Filatov^{3, **}

¹Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, Russian Academy of Sciences, bul'var Piipa, 9, Petropavlovsk-Kamchatsky, 683006 Russia

²Institute of Silicate Chemistry of the Russian Academy of Sciences, Makarova emb., 2, Saint Petersburg, 199034 Russia

³Institute of Earth Sciences, Saint Petersburg State University, University emb., 7/9, Saint Petersburg, 199034 Russia

*e-mail: chikurachki1@gmail.com **e-mail: filatov.stanislav@gmail.com

For the first time, the thermal behavior of a new mineral belomarinaite KNaSO₄ was studied on a natural sample and its synthetic analogue in the range of $30-800^{\circ}$ C. The mineral is stable up to a temperature of $475 \pm 10^{\circ}$ C, at which it has a polymorphic transformation into a high-temperature polymorphic modification (*P*6₃/*mmc*), stable up to 800°C. The thermal expansion of both modifications is sharply anisotropic, and in the case of the high-temperature phase it is also variable as a function of temperature – the dependence of the parameter *a* has a U-shape with a minimum at $T = 660^{\circ}$ C. The volumetric expansion of modifications varies in the intervals of their existence for the low-temperature phase from 80 to 200 ($10^{-6\circ}$ C⁻¹), for the high-temperature modification increases by a factor of 2–3 relative to the expansion of the low-temperature phase, the main increase is in the parameter *c* and is determined, apparently, by restructuring the structure along this direction.

Keywords: volcanic exhalations, new mineral, belomarinaite, Tolbachik volcano, 2012–2013 eruption, high-temperature anhydrous sulfate, thermal expansion