УЛК 517.626

РЕКОНСТРУКЦИЯ ВХОДНОГО ВОЗДЕЙСТВИЯ ДИНАМИЧЕСКОЙ СИСТЕМЫ ПРИ ИЗМЕРЕНИИ ЧАСТИ КООРДИНАТ ФАЗОВОГО ВЕКТОРА

© 2019 г. В. И. Максимов

(620990 Екатеринбург, ул. С. Ковалевской, 16, Ин-т матем. и механ. УрО РАН, Россия; 620002 Екатеринбург, ул. Мира, 19, Уральский федеральный университет, Россия) e-mail: maksimov@imm.uran.ru

Поступила в редакцию 05.05.2018 г. Переработанный вариант 08.10.2018 г. Принята к публикации 11.03.2019 г.

Рассматривается задача реконструкции неизвестного входного воздействия в условиях измерения части фазовых координат системы нелинейных обыкновенных дифференциальных уравнений. Указывается устойчивый к информационным помехам и погрешностям вычислений алгоритм ее решения, который основан на конструкциях теории гарантированного управления. Библ. 11.

Ключевые слова: реконструкция, входное воздействие, измерение части координат, оценка погрешности.

DOI: 10.1134/S0044466919040124

1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

В статье рассматривается задача реконструкции входного воздействия системы нелинейных обыкновенных дифференциальных уравнений. Суть задачи состоит в построении алгоритма динамического восстановления входа (возмущения) по измерению части фазовых координат системы. Методы решения подобного типа задач хорошо известны. В настоящей работе мы исследуем задачу, которая имеет две особенности. Во-первых, предполагается, что измеряются (с ошибкой) в дискретные, достаточно частые, моменты времени не все, а только часть фазовых координат заданной динамической системы. Во-вторых, относительно неизвестного возмущения, действующего на систему, известно лишь, что оно является элементом пространства функций, ограниченных по существу. Указанные предположения ведут к невозможности точного восстановления входа. Учитывая данную особенность задачи, мы конструируем устойчивый к информационным помехам и погрешностям вычислений алгоритм решения, который основан на подходящей модификации известного в теории гарантированного управления метода экстремального сдвига.

Рассматривается нелинейная система дифференциальных уравнений

$$\dot{x}(t) = Ax(t) + B(y(t)) + Cu(t) + f_1(t), \quad t \in T = [0, \vartheta],$$

$$\dot{y}(t) = A_1 x(t) + B_1(y(t)) + f_2(t)$$
(1.1)

с начальным состоянием

$$x(0) = x_0, \quad y(0) = y_0,$$

где $0 < \vartheta < +\infty$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^r$, $u \in \mathbb{R}^q$, $f_1(\cdot) \in W^1_\infty(T;\mathbb{R}^n)$ и $f_2(\cdot) \in W^1_\infty(T;\mathbb{R}^r)$ — заданные функции, u — возмущение, A, A_1 и C — стационарные матрицы соответствующих размерностей, отображения $B: \mathbb{R}^r \to \mathbb{R}^n$ и $B_1: \mathbb{R}^r \to \mathbb{R}^r$ — удовлетворяют условиям Липшица. Здесь $W^1_\infty(T;\mathbb{R}^n)$ — пространство дифференцируемых n-мерных функций, производные которых ограничены по существу, т.е являются элементами пространства $L_\infty(T;\mathbb{R}^n)$.

Содержательно суть обсуждаемой в работе задачи состоит в следующем. На систему (1.1) действует неизвестное возмущение $u(\cdot) \in L_{\infty}(T;\mathbb{R}^q)$. В дискретные, достаточно частые, моменты времени

$$\begin{aligned} \tau_{i,j} \in \Delta &= \left\{ \tau_{i,j} \right\}_{i \in [0:m], j \in [0:m^{(1)}]} \quad \tau_{0,0} = 0, \quad \tau_{m,m^{(1)}} = \vartheta, \quad \tau_{i,j+1} = \tau_{i,j} + \delta_1, \\ &i \in [0:m-1], \quad j \in [0:m^{(1)}-1], \quad \tau_{i,m^{(1)}} = \tau_{i+1,0} \end{aligned}$$

измеряется часть фазовых состояний системы (1.1), а именно состояния $y(\tau_{i,j}) = y(\tau_{i,j}; z_0, u(\cdot))$, где $z_0 = \{x_0, y_0\}$ — начальное состояние системы (1.1), $z(\cdot; z_0, u(\cdot)) = \{x(\cdot; z_0, u(\cdot)), y(\cdot; z_0, u(\cdot))\}$ — решение системы (1.1), отвечающее этому начальному состоянию и возмущению $u(\cdot)$. Состояния $y(\tau_{i,j})$ измеряются с ошибкой. Результаты измерений — векторы $\xi_{i,j}^h \in \mathbb{R}^r$, $i \in [0:m-1]$, $j \in [0:m^{(1)}-1]$ — удовлетворяют неравенствам

$$\left| y(\tau_{i,j}) - \xi_{i,j}^h \right|_r \le h. \tag{1.2}$$

Здесь $h \in (0,1)$ — уровень погрешности измерения, символ $|\cdot|_r$ означает евклидову норму в пространстве \mathbb{R}^r . Предполагаем, что начальное состояние системы (1.1), т.е. вектор z_0 , известно с ошибкой. Именно, известен вектор $z_h^0 = \{\tilde{x}_0^h, \xi_{0,0}^h\}$, где $\xi_{0,0}^h$ удовлетворяет неравенству (1.2) при $i=0,\ j=0$, а \tilde{x}_0^h — неравенству $\left|x_0-\tilde{x}_0^h\right|_n \le h$. Обсуждаемая задача состоит в построении алгоритма приближенного восстановления (реконструкции) неизвестного возмущения $u(\cdot)$ по результатам неточных измерений состояний $y(\cdot)$.

Описанная задача относится к классу задач динамического восстановления (реконструкции). Подобные задачи в последние годы вызывают пристальное внимание. Один из подходов к решению задач динамической реконструкции входа был развит в [1]—[7]. Подход основан на методах теории гарантированного управления [8] и методе сглаживающего функционала [9]. В случае, когда u(t) стеснено мгновенными ограничениями ($u(t) \in P$, где P — выпуклый компакт в соответствующем евклидовом пространстве) и измеряются все фазовые координаты системы (1.1), обсуждаемая задача может быть решена на основе конструкций работы [1]. В данной работе мы рассмотрим случай измерения части координат. Кроме того, будем предполагать, что мгновенные ограничения на вход отсутствуют. Именно, известно лишь, что $u(\cdot)$ является измеримой (по Лебегу) функцией, ограниченной по существу. При этом укажем алгоритм решения задачи, который основан на методе динамического обращения, а также известном в теории позиционного управления методе экстремального сдвига. Другие алгоритмы реконструкции входных воздействий систем обыкновенных дифференциальных уравнений при измерении части фазовых координат приведены в работах [1], [2], [4]—[7].

Для решения обсуждаемой задачи воспользуемся подходом, развитым в работах [1]—[7]. Согласно этому подходу задача реконструкции заменяется задачей управления некоторой новой системой (системами). Таким образом, необходимо а) подобрать вспомогательную систему (системы), б) указать алгоритм формирования управления (управлений) выбранной системой (системами). В нашем случае в качестве вспомогательных систем мы возьмем две системы. Первая система имеет вид

$$\dot{w}^h(t) = A_l C u^h(t), \quad t \in T. \tag{1.3}$$

Ее начальное состояние $w^h(0) = 0$ и управление $u^h = u^h(\cdot)$. Вторая система ($w_0^h \in \mathbb{R}^r$, $v_*^h \in \mathbb{R}^r$) следующего вида:

$$\dot{w}_0^h(t) = v_*^h(t) \tag{1.4}$$

с управлением $v_*^h = v_*^h(\cdot)$. Ее начальное состояние имеет вид

$$w_0^h(0) = \xi_0^h$$
.

Заметим, что один и тот же выход $y(\cdot)$ может порождаться целым семейством возмущений. Следуя принятому в теории некорректных задач подходу [9], мы будем восстанавливать элемент из этого семейства минимальной L_2 -нормы.

2. ВСПОМОГАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

Прежде, чем перейти к описанию алгоритма решения рассматриваемой задачи, приведем некоторые вспомогательные результаты, которые нам понадобятся в дальнейшем. Фиксируем два семейства разбиений интервала T. Семейство

$$\Delta_{m_i} = \{\tau_{i,h}\}_{i=0}^{m_h}, \quad \tau_{i+1,h} = \tau_{i,h} + \delta(h) \quad \text{c imagom} \quad \delta(h) = \vartheta/m_h$$

а также семейство

$$\Delta_{m_h,m_h^{(1)}} = \{\tau_{i,j,h}\}_{i \in [0:m_h], \ j \in [0:m_h^{(1)}]}, \quad \tau_{i,0,h} = \tau_{i,h}, \quad i \in [0:m_h],$$

$$\tau_{i,j+1,h} = \tau_{i,j,h} + \delta_1(h)$$
 с шагом $\delta_1(h) = \delta(h)/m_h^{(1)}$.

При этом второе семейство выбирается таким образом, что

$$\tau_{i m_{i}^{(1)} h} = \tau_{i+1,0,h} = \tau_{i+1,h}.$$

Ниже используем обозначение

$$\xi_i^h = \xi_{i,0}^h.$$

Заметим, что

$$\xi_{i,0}^h = \xi_{i-1 \, m_i^{(1)}}^h$$

Введем вспомогательную управляемую систему, описываемую векторным линейным дифференциальным уравнением (1.4) с управлением $v_*^h(\cdot)$. Пусть взята некоторая функция $\alpha = \alpha(h): (0, 1) \to (0, 1)$. Положим

$$v_*^h(t) = -\alpha^{-1}(h)[w_0^h(\tau_{i,j,h}) - \xi_{i,j}^h] \quad \text{при} \quad t \in \delta_{i,j} = [\tau_{i,j,h}, \tau_{i,j+1,h}),$$

$$i \in [0: m_h - 1], \quad j \in [0: m_h^{(1)} - 1].$$

$$(2.1)$$

Здесь и всюду ниже векторы $\xi_{i,j}^h \in \mathbb{R}^r$ таковы, что

$$\left| y(\tau_{i,j,h}) - \xi_{i,j}^h \right|_r \leq h.$$

В системе (1.4) управление $v_*^h(t)$ зададим по правилу (2.1). Следовательно, управление $v_*^h(\cdot)$ в системе (1.4) будет находиться по принципу обратной связи

$$v_*^h(t) = v_*^h(\tau_i; w_0^h(\tau_{i,j,h}), \xi_{i,j}^h)$$
 при п.в. $t \in \delta_{i,j}$.

В таком случае система (1.4) примет вид

$$\dot{w}_0^h(t) = -rac{1}{lpha(h)}[w_0^h(au_{i,j,h}) - \xi_{i,j}^h]$$
 при п.в. $t \in \delta_{i,j},$ $i \in [0:m_h-1], \quad j \in [0:m_h^{(1)}].$

Фиксируем число у ∈ (0,1). В дальнейшем нам понадобится

Условие 1. Выполнены следующие соотношения:

$$\delta_1 = \delta_1(h) \to 0, \quad \alpha = \alpha(h) \to 0, \quad \left\{h + \delta_1(h)\right\} \alpha(h)^{-1} \to 0,$$

$$\delta_1^{-\gamma}(h)\alpha(h) \to 0 \quad \text{при} \quad h \to 0.$$

Пусть

$$\tilde{v}^{h}(t) = \begin{cases} A_{1}\tilde{x}_{0}^{h} + B_{1}(\xi_{0}^{h}) + f_{2}(0), & \text{если} \quad t \in [0, \delta_{1}^{\gamma}), \\ v_{*}^{h}(t), & \text{если} \quad t \in [\delta_{1}^{\gamma}, \vartheta]. \end{cases}$$
(2.2)

Как видно из доказательства теоремы 5 (см. [10]), при t > 0 имеет место неравенство

$$\sup_{t \in T} \left| v_*^h(t) - \dot{y}(t) \right|_r \le d_1(\alpha + (h + \delta_1)\alpha^{-1}) + e^{-\frac{t}{\alpha}} \left| \dot{y}(0) \right|_r.$$

Кроме того,

$$\left|A_1\tilde{x}_0^h + B_1(\xi_0^h) + f_2(t) - \dot{y}(t)\right|_1 \le d_2\delta_1^\gamma$$
 при $t \in [0, \delta_1^\gamma]$.

Учитывая эти неравенства, заключаем, что справедлива

Лемма 1. Пусть выполнено условие 1. Тогда при всех $t \in T$ верно неравенство

$$\left|\tilde{v}^h(t) - \dot{y}(t)\right|_{L} \le \varphi_{\gamma}(\alpha, h, \delta_1) = d(\alpha + (h + \delta_1)\alpha^{-1} + \alpha\delta_1^{-\gamma} + \delta_1^{\gamma}).$$

При этом имеет место сходимость $\varphi_{\gamma}(\alpha(h), h, \delta_1(h)) \to 0$ при $h \to 0$.

Здесь и всюду ниже $d, d_0, d_1, ..., C_1, C_2, ...,$ а также $c, c_0, c_1, c_2 ...$ означают постоянные, которые могут быть выписаны в явном виде.

Лемма 2. Пусть $\alpha = \alpha(h) = \delta_1^{2/3}(h)$. Тогда имеет место неравенство

$$\sup_{t \in T} \left| \tilde{v}^h(t) - \dot{y}(t) \right|_{r} \le \tilde{\phi}(h, \delta_1) = d_0(\delta_1^{1/3} + h\delta_1^{-2/3}).$$

Доказательство. В силу леммы 1, каково бы ни было число $\gamma \in (0,1)$, имеет место соотношение

$$\sup_{t\in T} \left| \tilde{v}^h(t) - \dot{y}(t) \right|_{x} \le \phi_{\gamma}(\alpha, h, \delta_1).$$

Пусть $\delta_1 \alpha^{-1} = \alpha \delta_1^{-\gamma}$. Тогда $\alpha = \delta_1^{(1+\gamma)/2}$. В таком случае имеем

$$\delta_1 \alpha^{-1} = \delta_1^{1-(1+\gamma)/2} = \delta_1^{1/2-\gamma/2}$$

Значит,

$$\phi_{\gamma}(\alpha, h, \delta_1) \le d_0(\delta_1^{1/2 + \gamma/2} + \delta_1^{\gamma} + \delta_1^{1/2 - \gamma/2} + h\delta_1^{-(1 + \gamma)/2}). \tag{2.3}$$

Считаем $\delta_1^{\gamma}=\delta_1^{1/2-\gamma/2}$, т.е. $\gamma=1/3$. Тогда $\alpha=\delta_1^{2/3}$, $(1+\gamma)/2=2/3$, $1/2-\gamma/2=1/3$. Справедливость леммы вытекает из неравенства (2.3). Лемма доказана.

В дальнейшем нам потребуется следующее

Условие 2. Существует матрица A_* размерности $r \times r$ такая, что $A_!A = A_*A_!$.

Приведем примеры матриц, для которых выполняется условие 2:

- 1) r = n, матрицы A и A_1 перестановочные (коммутирующие);
- 2) r < n, матрицы A и A_1 имеют структуру:

$$A_{\rm l} = (A^{(1)} \ \ \mathbb{O}), \quad A = \begin{bmatrix} A^{(2)} \ \ \mathbb{O} \end{bmatrix}.$$

Здесь $A^{(1)}$, $A^{(2)}$ — матрицы размерности $r \times r$, \mathbb{O} — нулевая матрица размерности $r \times (n-r)$, $A^{(3)}$, $A^{(4)}$ — матрицы размерностей $(r-n) \times r$ и $(r-n) \times (r-n)$ соответственно, причем матрицы $A^{(1)}$ и $A^{(2)}$ — коммутирующие;

3) $A_1 = A_0'$ и $A_1A = A_0^+$, где A_0 — некоторая матрица, A_0^+ — псевдообратная для A_0 матрица, A_0' — транспонированная матрица.

Введем обозначения

$$\mu_{i}^{h} = \tilde{v}^{h}(\tau_{i,h}) - A_{1}\tilde{x}_{0}^{h} - A_{*}(\xi_{i}^{h} - \xi_{0}^{h}) - \delta_{1}\sum_{k=0}^{i-1} \sum_{j=0}^{m_{0}^{h}-1} \left\{ A_{1}B(\xi_{k,j}^{h}) + A_{1}f_{1}(\tau_{k,j,h}) - A_{*}B_{1}(\xi_{k,j}^{h}) - A_{*}f_{2}(\tau_{k,j,h}) \right\} - B_{1}(\xi_{i}^{h}) - f_{2}(\tau_{i,h}),$$

$$\Phi(t; x_{0}, y(\cdot)) = \dot{y}(t) - A_{1}x_{0} - A_{*}(y(t) - y_{0}) - B_{1}(y(t)) - f_{2}(t) - \int_{0}^{t} \left\{ A_{1}B(y(s)) + A_{1}f_{1}(s) - A_{*}B_{1}(y(s)) - A_{*}f_{2}(s) \right\} ds.$$

Лемма 3. Справедливы неравенства

$$\left|\Phi(\tau_{i,h};x_0,y(\cdot))-\mu_i^h\right|_r\leq \phi(h,\delta_1)=\tilde{\phi}(h,\delta_1)+d_1(h+\delta_1).$$

Доказательство. Заметим, что

$$\left| A_1 x_0 - A_1 \tilde{x}_0^h \right|_{\mathfrak{c}} \le ch. \tag{2.4}$$

В силу (1.2) верны неравенства

$$\left| A_*(\xi_i^h - \xi_0^h) - A_*(y(\tau_{i,h}) - y_0) \right| \le c_0 h, \tag{2.5}$$

$$\left| B_1(y(\tau_{i,h})) - B_1(\xi_i^h) \right|_r \le c_1 h.$$
 (2.6)

Учитывая условия $\dot{f}_1(\cdot) \in L_{\infty}(T;\mathbb{R}^n), \ \dot{f}_2(\cdot) \in L_{\infty}(T;\mathbb{R}^r)$ и $u(\cdot) \in L_{\infty}(T;\mathbb{R}^q)$ заключаем, что верны соотношения

$$\begin{aligned} \operatorname{vrai} \max_{t \in T} \left| \dot{y}(t) \right|_r < +\infty, \\ \left| f_1(t_1) - f_1(t_2) \right|_n &\leq c_2 \left| t_1 - t_2 \right|, \\ \left| f_2(t_1) - f_2(t_2) \right|_r &\leq c_3 \left| t_1 - t_1 \right| \quad \text{для любых} \quad t_1, t_2 \in T. \end{aligned}$$

В таком случае, нетрудно показать, что

$$\left| \int_{0}^{\tau_{i,h}} \left\{ B(y(\tau)) + f_{1}(\tau) - A_{*}B(y(\tau)) - A_{*}f_{1}(\tau) \right\} d\tau - \right.$$

$$\left. - \delta_{1} \sum_{k=0}^{i-1} \sum_{j=0}^{m_{h}^{(1)}-1} \left(B(\xi_{k,j}^{h}) + f_{1}(\tau_{k,j,h}) - A_{*}B_{1}(\xi_{k,j}^{h}) - A_{*}f_{2}(\tau_{k,j,h}) \right) \right|_{r} \le c_{4}(h + \delta_{1}).$$

$$(2.7)$$

Утверждение леммы вытекает из леммы 2, а также неравенств (2.4)—(2.7). Лемма доказана.

Пусть $\delta_1 = h$, $\delta = h[h^{-3/4}]$. Здесь символ [a] означает целую часть числа a. Тогда имеем

$$h^{-3/4} - 1 \le [h^{-3/4}] \le h^{-3/4}$$

Значит,

$$h^{1/4} - h \le \delta \le h^{1/4}.$$

Поэтому

$$\delta^{-2} \le (h^{1/4} - h)^{-2}.$$

Учитывая последнее неравенство, в силу леммы 3, имеем

$$\delta^{-1} \sum_{i=1}^{m_h} \phi^2(h, \delta_1) \le \vartheta \delta^{-2} (\delta_1^{1/3} + h \delta_1^{-2/3})^2 \le c_5 h^{2/3} / (h^{1/4} - h)^2.$$

Таким образом, верна

Лемма 4. Пусть $\delta_1 = h$, $\delta = h[h^{-3/4}]$. Тогда справедливо неравенство

$$\delta^{-1} \sum_{i=1}^{m_h} \phi^2(h, \delta_1) \le c_5 h^{2/3} / (h^{1/4} - h)^2.$$

Пусть $(H,|\cdot|_H)$ — гильбертово пространство со скалярным произведением $(\cdot,\cdot)_H$, s — элемент пространства H, c и ϵ — некоторые числа, из которых ϵ положительно.

Лемма 5. Пусть a) элемент $v \in H$ удовлетворяет неравенству

$$|(s,v)_H-c|\leq \varepsilon,$$

б) $u \in H$ элемент минимальной нормы, удовлетворяющий неравенству

$$(s,u)_H \le c + \varepsilon. \tag{2.8}$$

Тогда верны неравенства

$$|u|_H \le |v|_H$$
,
 $(s,u)_H - (s,v)_H \le 2\varepsilon$.

Доказательство леммы тривиально.

3. АЛГОРИТМ РЕШЕНИЯ

Перейдем к описанию алгоритма решения рассматриваемой задачи. При этом мы организуем процесс синхронного управления системами (1.1), (1.3) и (1.4).

До начала работы алгоритма фиксируем величину h, числа $\gamma \in (0,1)$ и $\alpha = \alpha(h)$, а также разбиения Δ_{m_h} и $\Delta_{m_m,m_n^{(1)}}$. Работу алгоритма разобьем на однотипные шаги.

Управления в системе (1.3) будем корректировать в узлах первого разбиения. При $t \in [\tau_{0,h}, \tau_{1,h})$ полагаем $u_0^h = 0$. Далее, сначала, в момент $\tau_{i+1,h}$ (i-й шаг, $0 \le i \le m_h - 2$), вычислим вектор u_{i+1}^h по формуле

$$u_{i+1}^{h} = \begin{cases} 0, & \text{если} \quad 0 \le a_{i} \quad \text{или} \quad |b_{i}|_{r} = 0, \\ \delta^{-1}b_{i}/|b_{i}|_{r}^{2}, & \text{в противном случае,} \end{cases}$$
(3.1)

где

$$a_i = 2|s_i|_r \phi(h, \delta_1) + (s_i, \mu_{i+1}^h - \mu_i^h), \quad b_i = (A_1C)'s_i, \quad s_i = 2(w^h(\tau_{i+1,h}) - \mu_i^h),$$

символ (\cdot,\cdot) означает скалярное произведение в соответствующем конечномерном евклидовом пространстве. Затем на вход системы (1.3) в течение промежутка $\delta_i = [\tau_{i+1,h}, \tau_{i+2,h})$ будем подавать постоянное управление $u^h(t) = u^h_{i+1}$. В результате под действием этого управления система (1.3) переходит из состояния $w^h(\tau_{i+1,h})$ в состояние $w^h(\tau_{i+2,h})$. На следующем, (i+1)-м шаге, аналогичные действия повторяются.

Управления в системе (1.4) будем корректировать в узлах второго разбиения. В моменты $\tau_{i,j,h}$ будем вычислять функции $v_*^h(t)$ и $\tilde{v}^h(t)$, $t \in \delta_{i,j,h} = [\tau_{i,j,h}, \tau_{i,j+1,h})$ по формулам (2.1) и (2.2) соответственно. Первую функцию будем подавать на вход системы (1.4) в течение всего промежутка $\delta_{i,j,h}$. Под действием этого управления система (1.4) перейдет из состояния $w_0^h(\tau_{i,j,h})$ в состояние $w_0^h(\tau_{i+1,j,h})$. В свою очередь вторую функцию будем использовать для вычисления векторов μ_i^h .

Работа алгоритма заканчивается в момент එ.

Теорема 1. Пусть $\gamma = 1/3$, $\alpha(h) = \delta_1^{2/3}(h)$, $\delta_1 = h$, $\delta = h[h^{-3/4}]$, $u(\cdot)$ — неизвестное возмущение, действующее на систему (1.1). Пусть также выполнены условия 1 и 2. Тогда при всех $\tau_{i,h} \in \Delta_h$ верны неравенства

$$\varepsilon(\tau_{i,h}) \le v(h) = d_1 \{h^{2/3}/(h^{1/4} - h)^2 + h^{1/4}\},$$

$$\left|u^{h}(\cdot)\right|_{L_{2}(T;\mathbb{R}^{q})}^{2} \leq \left|u(\cdot)\right|_{L_{2}(T;\mathbb{R}^{q})}^{2},$$

 $r\partial e \ d_1 > 0$ — некоторая постоянная,

$$\varepsilon(t) = \left| \int_{0}^{t} A_{i}C(u^{h}(t+\delta) - u(t))dt \right|^{2}.$$

Доказательство. Из первого равенства в (1.1) вытекает

$$x(t) = x_0 + \int_0^t \left\{ Ax(s) + B(y(s)) + Cu(s) + f_1(s) \right\} ds.$$

Поэтому

$$\dot{y}(t) = A_1 \{x_0 + \int_0^t \left\{ Ax(s) + B(y(s)) + Cu(s) + f_1(s) \right\} ds + B_1(y(t)) + f_2(t).$$

В свою очередь из второго равенства в (1.1) имеем

$$A_*A_1x(t) = A_*\dot{y}(t) - A_*B_1(y(t)) - A_*f_2(t).$$

Из первой подсистемы в (1.1) получаем

$$\int_{0}^{t} A_{1}Cu(s)ds = A_{1}x(t) - A_{1}x_{0} - \int_{0}^{t} A_{1}Ax(s)ds - \int_{0}^{t} A_{1}\left\{B(y(s)) + f_{1}(s)\right\}ds.$$
(3.2)

В свою очередь из второй подсистемы в (1.1) следует равенство

$$A_1 x(t) = \dot{y}(t) - B_1(y(t)) - f_2(t). \tag{3.3}$$

Поэтому в силу условия 2 имеем

$$\int_{0}^{t} A_{1} Ax(s) ds = A_{*} \int_{0}^{t} A_{1} x(s) ds.$$
 (3.4)

Следовательно,

$$\int_{0}^{t} A_{1}Ax(s)ds = A_{*}(y(t) - y_{0}) - A_{*}\int_{0}^{t} \{B_{1}(y(s))ds + f_{2}(s)\}ds.$$
(3.5)

Из (3.2), учитывая (3.3)—(3.5), заключаем, что справедливо равенство

$$\Phi(t;x_0,y(\cdot))=\int\limits_0^tA_{\rm l}Cu(s)ds,\quad t\in T.$$

Оценим изменение величины ε(·). Заметим, что

$$\varepsilon(t) = \left| w^h(t+\delta) - \int_0^t A_1 Cu(t) dt \right|_r^2.$$

Нетрудно видеть также, что имеет место равенство

$$\varepsilon(\tau_{i+1}) = \varepsilon(\tau_i) + \lambda_i + \lambda_i^{(1)}, \quad \tau_i = \tau_{i,h}, \tag{3.6}$$

где

$$\lambda_i^{(1)} = \left| \int_{\tau_i}^{\tau_{i+1}} A_1 C(u^h(t+\delta) - u(t)) dt \right|_{\tau_i}^2,$$

$$\lambda_i = 2 \left(\int_0^{\tau_i} A_l C(u^h(t+\delta) - u(t)) dt, \int_{\tau_i}^{\tau_{i+1}} A_l C(u^h(t+\delta) - u(t)) dt \right).$$

В силу леммы 3 верна оценка

$$\left|\int_{0}^{\tau_{i}} A_{l}Cu(t)dt - \mu_{i}^{h}\right|_{r} \leq \phi(h, \delta_{1}).$$

Поэтому справедливо неравенство

$$\lambda_i \le \Lambda_i + \tilde{\Lambda}_i, \tag{3.7}$$

где

$$\Lambda_i = \left(s_i, \int_{\tau_i}^{\tau_{i+1}} A_1 C(u^h(t+\delta) - u(t)) dt\right),\tag{3.8}$$

$$\tilde{\Lambda}_i = 2\phi(h, \delta_1) \int_{\tau_i}^{\tau_{i+1}} \left| A_1 C(u^h(t+\delta) - u(t)) \right|_r dt.$$

Кроме того, в силу уже упоминавшейся леммы

$$\left| \int_{\tau_{i}}^{\tau_{i+1}} A_{1} Cu(t) dt - (\mu_{i+1}^{h} - \mu_{i}^{h}) \right|_{\tau} \le 2\phi(h, \delta_{1}). \tag{3.9}$$

Далее, имеем

$$\left| s_{i} \right|_{r} \leq 2\varepsilon^{1/2}(\tau_{i}) + 2\int_{0}^{\tau_{i}} \left| A_{i}Cu(t)dt - \mu_{i}^{h} \right|_{r} \leq 2\varepsilon^{1/2}(\tau_{i}) + 2\phi(h, \delta_{1}). \tag{3.10}$$

Из (3.9) следует неравенство

$$-2|s_{i}|_{r} \phi(h, \delta_{1}) + (s_{i}, \mu_{i+1}^{h} - \mu_{i}^{h}) \leq \int_{\tau_{i}}^{\tau_{i+1}} (s_{i}, A_{1}Cu(t))dt \leq 2|s_{i}|_{r} \phi(h, \delta_{1}) + (s_{i}, \mu_{i+1}^{h} - \mu_{i}^{h}).$$
(3.11)

Далее, в силу леммы 5, учитывая (3.11), а также правило выбора управления $u^h(\cdot)$ (см.(3.1)), получаем

$$\left| u^{h}(\cdot) \right|_{L_{2}([\tau_{i}, \tau_{i+1}]; \mathbb{R}^{q})}^{2} \leq \left| u(\cdot) \right|_{L_{2}([\tau_{i}, \tau_{i+1}]; \mathbb{R}^{q})}^{2}, \tag{3.12}$$

$$\int_{\tau_i}^{\tau_{i+1}} ((A_l C)' s_i, u^h(t+\delta)) dt \le \int_{\tau_i}^{\tau_{i+1}} ((A_l C)' s_i, u(t)) dt + 4 |s_i|_r \phi(h, \delta_1).$$
(3.13)

При выводе (3.12), (3.13) мы полагали $\varepsilon = 2|s_i|_r \phi(h, \delta_1)$, $H = L_2([\tau_i, \tau_{i+1}]; \mathbb{R}^r)$, $s(\tau) = (A_i C)' s_i$ при п. в. $\tau \in [\tau_i, \tau_{i+1}]$, $c = (s_i, \mu_{i+1}^h - \mu_i^h)$. В силу (3.10), (3.13), верно неравенство

$$\Lambda_{i} \le 4|s_{i}|_{r} \phi(h, \delta_{1}) \le 8\phi(h, \delta_{1})(\varepsilon^{1/2}(\tau_{i}) + \phi(h, \delta_{1})). \tag{3.14}$$

Кроме того, имеем

$$\tilde{\Lambda}_i \le C_1 \phi(h, \delta_1) \int_{\tau_i}^{\tau_{i+1}} \left\{ \left| u^h(t+\delta) \right|_q + \left| u(t) \right|_q \right\} dt. \tag{3.15}$$

Заметим, что

$$\lambda_i^{(1)} \le C_2 \delta v^{(i)}(u^h, u).$$

760

Здесь

$$V^{(i)}(u^h, u) = \int_{t_-}^{\tau_{i+1}} \left\{ \left| u^h(t+\delta) \right|_q^2 + \left| u(t) \right|_q^2 \right\} dt.$$

Из (3.6), (3.7), (3.14), (3.15) и последнего неравенства выводим

$$\varepsilon(\tau_{i+1}) \le \varepsilon(\tau_i) + C_3 \phi(h, \delta_1) \{ \varepsilon^{1/2}(\tau_i) + \phi(h, \delta_1) + v_i(u^h, u) \} + C_2 \delta v^{(i)}(u^h, u), \tag{3.16}$$

где

$$V_i(u^h, u) = \int_{\tau_i}^{\tau_{i+1}} \left\{ \left| u^h(t+\delta) \right|_q + \left| u(t) \right|_q \right\} dt.$$

Из (3.16) при $\delta \in (0,1)$ получаем

$$\varepsilon(\tau_{i+1}) \le (1+\delta)\varepsilon(\tau_i) + C_4\{\delta^{-1}\phi^2(h,\delta_1) + \phi(h,\delta_1)v_i(u^h,u)\} + C_2\delta v^{(i)}(u^h,u).$$
 Воспользовавшись леммой из работы [11], а также неравенством (3.17), будем иметь

$$\varepsilon(\tau_i) \le \left\{ \varepsilon(0) + C_4 \sum_{j=0}^{i} [\phi^2(h, \delta_1) \delta^{-1} + \phi(h, \delta_1) v_j(u^h, u)] + C_2 \delta \int_0^{\tau_{i+1}} \left\{ \left| u^h(t + \delta) \right|_q^2 + \left| u(t) \right|_q^2 \right\} dt \right\} \exp \tau_i.$$
 (3.18)

Заметим, что

$$\phi(h, \delta_1) \le C_4 h^{1/3}, \quad \delta \le h^{1/4}.$$

В силу леммы 4, учитывая (3.12), из (3.18), получаем при всех $i = 0, 1, ..., m_h - 1$ оценку $\varepsilon(\tau_i) \leq v(h)$.

Теорема доказана.

Введем множество

$$U(y(\cdot)) = \{u(\cdot) \in L_2(T; \mathbb{R}^q) : A_tCu(t) = d\Phi(t; x_0, y(\cdot))/dt$$
 при п.в. $t \in T\}$.

Пусть

$$v_*(\cdot) = \operatorname{argmin}\left\{\left|v(\cdot)\right|_{L_2(T;\mathbb{R}^q)} : v(\cdot) \in U(y(\cdot))\right\}.$$

Нетрудно видеть, что такой элемент существует и единственен.

Имеет место

Теорема 2. Пусть $A_1C \neq 0$ и $v_*(\cdot) \in L_m(T; \mathbb{R}^q)$. Тогда имеет место сходимость

$$u^h(\cdot) \to v_*(\cdot)$$
 ϵ $L_2(T; R^q)$ npu $h \to 0$.

Доказательство теоремы проводится по стандартной схеме (см., например, [1]-[3]) и опирается на теорему 1.

4. ОЦЕНКА СКОРОСТИ СХОДИМОСТИ АЛГОРИТМА

При некоторых дополнительных условиях может быть выписана оценка скорости сходимости (см. ниже теорему 3). Установим эту оценку. Для этого нам понадобится следующая

Лемма 6 (см. [2, с. 29]). Пусть
$$u(\cdot) \in L_{\infty}(T_*; \mathbb{R}^n)$$
, $v(\cdot) \in W(T_*; \mathbb{R}^n)$, $T_* = [a, b]$, $-\infty < a < b < +\infty$,

$$\left| \int_{a}^{t} u(\tau) d\tau \right|_{n} \le \varepsilon, \quad |v(t)|_{n} \le K \quad \forall t \in T_{*}.$$

Тогда при всех $t ∈ T_*$ верно неравенство

$$\left| \int_{a}^{t} (u(\tau), v(\tau)) d\tau \right| \leq \varepsilon (K + \operatorname{var} (T_*; v(\cdot))).$$

Здесь символ $var(T_*; v(\cdot))$ означает вариацию функции $v(\cdot)$ на отрезке T_* , а символ $W(T_*; \mathbb{R}^n)$ множество функций $y(\cdot): T_* \to \mathbb{R}^n$ с ограниченной вариацией.

Теорема 3. Пусть выполнены условия теоремы 1, q=r, $\mathrm{rank}(A_{l}C)=r$, $v_{*}(\cdot)\in W(T;\mathbb{R}^{r})$ и vrai $\max_{t\in T}|v^{*}(t)|_{\cdot}\leq d$. Тогда справедлива оценка

$$\left|v_*(\cdot)-u^h(\cdot)\right|^2_{L_2(T;\mathbb{R}^r)}\leq K(h),$$

где

$$K(h) = Cv_*(h), \quad v_*(h) = v^{1/2}(h) + (h[h^{-3/4}])^{1/2}.$$

постоянная C зависит от d и $var(T; v_*(\cdot))$ и не зависит от $h, m_h, m_h^{(1)}, \xi_{i,i}^h$

Доказательство. Воспользовавшись неравенством (3.12), а также теоремой 1, нетрудно видеть, что для любых $t_1, t_2 \in T_*, t_1 < t_2$, верно неравенство

$$\left| \int_{t_1}^{t_2} A_1 C(v_*(t) - u^h(t)) dt \right| \le C_6 v_*(h),$$

где $v(h) = d_1 \{h^{2/3}/(h^{1/4} - h)^2 + h^{1/4}\}$ (см. формулировку теоремы 1). Далее, снова воспользовавшись неравенством (3.12), имеем

$$\left|v_{*}(\cdot) - u^{h}(\cdot)\right|_{L_{2}(T;\mathbb{R}^{r})}^{2} \leq \left|2v_{*}(\cdot)\right|_{L_{2}(T;\mathbb{R}^{r})}^{2} - 2\int_{0}^{\vartheta} (v_{*}(\tau), u^{h}(\tau))d\tau = 2\int_{0}^{\vartheta} \left((A_{l}C)^{-1}v_{*}(\tau), A_{l}C(v_{*}(\tau) - u^{h}(\tau)) \right)d\tau. \tag{4.1}$$

Утверждение теоремы следует из (4.1) и леммы 6. Теорема доказана.

СПИСОК ЛИТЕРАТУРЫ

- 1. Osipov Yu.S., Kryazhimskii A.V. Inverse problems for ordinary differential equations: dynamical solutions. Amsterdam: Gordon and Breach, 1995.
- 2. Осипов Ю.С., Кряжимский А.В., Максимов В.И. Методы динамического восстановления входов управляемых систем. Екатеринбург: УрО РАН, 2011.
- 3. *Осипов Ю.С.*, *Васильев Ф.П.*, *Потапов М.М*. Основы метода динамической регуляризации. М.: МГУ, 1999.
- 4. *Максимов В.И*. О реконструкции управлений в экспоненциально устойчивых линейных системах, подверженных малым возмущениям // Прикл. матем. и механ. 2007. Т. 71. № 6. С. 945—955.
- 5. *Максимов В.И*. Об одном алгоритме реконструкции входных воздействий в линейных системах // Изв. РАН. Теория и системы управления 2004. № 5. С. 11—20.
- 6. *Осипов Ю.С., Кряжимский А.В., Максимов В.И.* Некоторые алгоритмы динамического восстановления входов // Тр. Ин-та матем. и мех. УрО РАН. 2011. Т. 17. № 1. С. 129—161.
- 7. *Близорукова М.С.*, *Максимов В.И*. О одном алгоритме динамической реконструкции входных воздействий при измерении части координат // Ж. вычисл. матем. и матем. физ. 2011. Т. 51. № 6. С. 1007—1017.
- 8. Красовский Н.Н., Субботин А.И. Позиционные дифференциальные игры. М.: Наука, 1974.
- 9. Васильев Ф.П. Методы решения экстремальных задач. М.: Наука, 1981.
- 10. Максимов В.И. О вычислении производной функции, заданной неточно, с помощью законов обратной связи // Тр. МИРАН им. В.А. Стеклова. 2015. Т. 291. С. 231–243.
- 11. *Максимов В.И.* Об отслеживании траектории динамической системы // Прикл. матем. и механ. 2011. Т. 75. № 6. С. 993—1002.