УДК 517.929

МОДЕЛИРОВАНИЕ ДИНАМИЧЕСКИХ ПРОЦЕССОВ В ДЛИННЫХ ДЖОЗЕФСОНОВСКИХ ПЕРЕХОДАХ. ПРОБЛЕМА ВЫЧИСЛЕНИЯ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК. ОЦЕНКИ СКОРОСТИ РОСТА ОШИБОК ОКРУГЛЕНИЯ ДЛЯ РАЗНОСТНОЙ СХЕМЫ ВТОРОГО ПОРЯДКА ТОЧНОСТИ

© 2019 г. С. И. Сердюкова

141980 Дубна, М.о., ОИЯИ, ЛИТ, Россия e-mail: sis@jinr.ru Поступила в редакцию 01.07.2019 г. Переработанный вариант 01.07.2019 г. Принята к публикации 18.09.2019 г.

При численных расчетах вольт-амперных характеристик систем джозефсоновских переходов обычно используется схема Рунге-Кутты четвертого порядка точности. Расчеты проводятся для больших интервалов времени и на каждом шаге по времени проводится четырехкратный пересчет. Чтобы сократить расчетное время, в этой работе предлагается использовать вместо схемы Рунге-Кутты "явную" схему второго порядка точности. Получены хорошие результаты

на конкретных расчетах. В этой работе доказаны оценки $\|G^n\|$ для всех *n*, гарантирующие ограниченность роста ошибок округления, *G* – оператор перехода от слоя к слою. Неординарность рассматриваемой схемы состоит в том, что ее коэффициенты зависят не только от отношения шагов сетки $\gamma = \tau/h$, но и от τ (τ, h – шаги сетки по *t* и *x*). Доказано, что для всех $\gamma \leq 1$ собственные значения характеристической матрицы находятся в пределах единичного

круга $(|\lambda_j(e^{i\phi})| \le 1$ для всех $0 \le \phi \le 2\pi$), оставаясь при этом на расстоянии $O(\tau)$ от единичной окружности. Развитый метод оценок может быть использован при исследовании других численных методов. Библ. 7.

Ключевые слова: длинные джозефсоновские переходы, расчет вольт-амперных характеристик, конечно-разностные схемы, задача Коши, оценка скорости роста оператора перехода от слоя к слою.

DOI: 10.31857/S0044466919120184

ВВЕДЕНИЕ

Вычисление вольт-амперных характеристик систем *n* длинных джозефсоновских переходов (ДДП) связано (см. [1], (7)) с решением системы *n* существенно нелинейных дифференциальных уравнений. В работе [2] (см. параграф 2), был разработан алгоритм, позволяющий свести задачу к решению одного уравнения $u_{tt} = -\beta u_t + u_{xx} - \sin(u) + I$. Для решения последнего была успешно использована "явная" схема второго порядка точности. В этой работе исследуется разностная аппроксимации второго порядка точности:

$$\frac{u_{v}^{n+1}-2u_{v}^{n}+u_{v}^{n-1}}{\tau^{2}}=-\beta\frac{u_{v}^{n+1}-u_{v}^{n-1}}{2\tau}+\frac{u_{v+1}^{n}-2u_{v}^{n}+u_{v-1}^{n}}{h^{2}},$$

где τ , h — шаги сетки по t, x соответственно $\gamma = \tau/h$, далее $\delta = \beta \tau/2$.

Рассматриваемое разностное уравнение эквивалентно системе

$$u_{v}^{n+1} - u_{v}^{n} = v_{v}^{n+1},$$

$$\frac{v_{v}^{n+1} - v_{v}^{n}}{\tau^{2}} = -\beta \frac{v_{v}^{n+1} + v_{v}^{n}}{2\tau} + \frac{u_{v+1}^{n} - 2u_{v}^{n} + u_{v-1}^{n}}{h^{2}}.$$
(1)

Решается задача Коши, заданы начальные данные u_{y}^{0} , v_{y}^{0} . После преобразования Фурье

$$U^{n} = \sum_{\nu=-\infty}^{\infty} e^{i\nu\phi} \begin{bmatrix} u_{\nu}^{n} \\ v_{\nu}^{n} \end{bmatrix}$$

и ряда простых алгебраических манипуляций, система (1) и решение задачи Коши принимают вид

$$U^{n+1} = A(e^{i\phi})U^n, \quad U^n = A^n(e^{i\phi})U^0.$$

Здесь $A(e^{i\phi})$ – характеристическая матрица:

$$A(e^{i\phi}) = \begin{bmatrix} (1 - (4\gamma^2 \sin^2(\phi/2))/(1+\delta) & (1-\delta)/(1+\delta) \\ -(4\gamma^2 \sin^2(\phi/2))/(1+\delta) & (1-\delta)/(1+\delta) \end{bmatrix}.$$

В случае $\tau = h$ в этой работе получены оценки норм $\left\|A^n(e^{i\phi})\right\|$ в L_2 для всех n:

$$\left|A^{n}(e^{i\phi})\right| \leq 6\sqrt{\frac{2}{\pi}}\sqrt{2+\frac{2.85}{\beta\tau}+O(\exp(-\beta\tau n))}, \quad t=\tau n.$$

Кроме того, доказано, что при больших βτ*n* норма степеней характеристической матрицы медленно убывает:

$$A^{n}(e^{i\phi}) \Big\| \leq 6\sqrt{\frac{2}{\pi}} \sqrt{2 + \frac{5.12}{\beta\tau\sqrt{\beta\tau n}} + O(\exp(-\beta\tau n))}.$$

Полученные оценки гарантируют ограниченность роста ошибок округления в норме L₂.

1. СПЕКТР $A(e^{i\phi})$ МАТРИЦЫ

Собственные значения матрицы А являются решениями уравнения

$$\lambda^2 - 2\frac{1 - 2\gamma^2 \sin^2(\phi/2)}{1 + \delta}\lambda + \frac{1 - \delta}{1 + \delta} = 0,$$
(2)

$$\lambda_{1,2} = \frac{1 - 2\gamma^2 \sin^2(\phi/2) \pm \sqrt{\delta^2 - 4\gamma^2 \sin^2(\phi/2) + 4\gamma^4 \sin^4(\phi/2)}}{1 + \delta}.$$
 (3)

Для устойчивости в L_2 необходимо, чтобы $|\lambda_1| \le 1$ и $|\lambda_2| \le 1$ для всех $0 \le \phi \le 2\pi$. Точка $\phi = \phi_0$ называется определяющей, если хотя бы одно из $\lambda_1(\phi_0)$, $\lambda_2(\phi_0)$ по модулю равно единице. Выполнение необходимых условий устойчивости не исключает неустойчивости степенного типа. При этом порядок степенной неустойчивости зависит от структуры канонического вида системы разностных уравнений в окрестности определяющих точек (подробнее см. [3], [4]). Заметим, что $\lambda_1(0) = 1$ и $\lambda_2(0) = (1 - \delta)/(1 + \delta) < 1$, следовательно, $\phi = 0$ является определяющей точкой. Что касается точки $\phi = \pi$, имеем

$$\lambda_{1,2}(\pi) = \frac{1-2\gamma^2 \pm \sqrt{\delta^2 - 4\gamma^2 + 4\gamma^4}}{1+\delta}.$$

Если $\gamma>1,$ то $2\gamma^2-1>1$ и $-4\gamma^2+4\gamma^4>0.$ Отсюда следует

$$\left|\lambda_{2}(\pi)\right| = \frac{2\gamma^{2} - 1 + \sqrt{\delta^{2} - 4\gamma^{2} + 4\gamma^{4}}}{1 + \delta} > 1$$

и, значит, $\gamma \leq 1$ есть необходимое условие устойчивости в L_2 . При $\gamma = 1$, $\lambda_2(\pi) = -1$. Появляется вторая определяющая точка $\phi = \pi$.

Замечание 1. Предполагается, что δ мало: в реальных расчетах вольт-амперных характеристик (ВАХ) джозефсоновских переходов максимальное значение было $\delta = 0.01$. Далее полагаем, что $0 < \delta < 1/2$.

Лемма 1. Если $\gamma \leq 1$, $|\lambda_1| \leq 1$ и $|\lambda_2| \leq 1$ при всех $0 \leq \phi \leq 2\pi$.

Доказательство. Так как $\sin^2(\phi/2) = \sin^2(2\pi - \phi)/2$, достаточно рассматривать $\phi \le \pi$. Напоминаем, что $\lambda_1(0) = 1$ и $\lambda_2(0) = (1 - \delta)/(1 + \delta) < 1$. Пусть

$$\gamma_{1,2} = \sqrt{(1 \mp \sqrt{1 - \delta^2})/2}.$$

Положим $\phi_1 = 2 \arcsin(\gamma_1/\gamma)$, для $\gamma \ge \gamma_1$; $\phi_2 = 2 \arcsin(\gamma_2/\gamma)$, для $\gamma \ge \gamma_2$.

На самом деле λ_1 , λ_2 являются функциями $z = 2\gamma^2 \sin^2(\phi/2) \le 2$:

$$\lambda_{1,2} = \frac{1 - z \pm \sqrt{\delta^2 - 2z + z^2}}{1 + \delta} = \frac{1 - z \pm \sqrt{\delta^2 - 1 + (1 - z)^2}}{1 + \delta}$$

При $(1 - z)^2 \le 1 - \delta^2$ собственные значения являются комплексно-сопряженными:

$$\lambda_{1,2}(\phi) = \sqrt{(1-\delta)/(1+\delta)} \exp(\pm i\theta),$$

аргумент θ определяется соотношением

$$\cos(\theta) = (1 - 2\gamma^2 \sin^2(\phi/2))/\sqrt{1 - \delta^2},$$
(4)

следовательно, $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=\sqrt{(1-\delta)/(1+\delta)}\leq1.$

Многочлен $p(z) = z^2 - 2z + \delta^2$ имеет два вещественных корня $z_{1,2} = 1 \mp \sqrt{1 - \delta^2}$. При $0 < z < z_1$ и $z > z_2$ собственные значения вещественные.

Если $\gamma < \gamma_1$, то $z < z_1$ при всех $0 \le \phi \le \pi$, а $1 - z \ge 1 - z_1 = \sqrt{1 - \delta^2}$. Отсюда следует, что при рассматриваемых z собственное значение $\lambda_1 > \sqrt{1 - \delta^2} > 0$. Так как $\lambda_1 \lambda_2 = (1 - \delta)/(1 + \delta) > 0$, при рассматриваемых z собственное значение λ_2 также положительное. Имеем $\lambda_2 = \lambda_1 - 2\sqrt{p(z)} < \lambda_1$. Собственное значение $\lambda_1(0) = 1$. С ростом ϕ от 0 до π собственное значение λ_1 монотонно убывает, оставаясь положительным. Тем самым установлена справедливость утверждения леммы 1 для $\gamma < \gamma_1$.

В случае $\gamma_1 < \gamma < \gamma_2$ собственные значения вещественные только при $\phi \leq \phi_1$: при возрастании ϕ от 0 до ϕ_1 величина λ_1 монотонно убывает от 1 до $\sqrt{(1-\delta)/(1+\delta)}$, а величина λ_2 монотонно возрастает от $(1-\delta)/(1+\delta)$ до $\sqrt{(1-\delta)/(1+\delta)}$. Следовательно, матрица $A(e^{i\phi_1})$ имеет при $\phi = \phi_1$ кратные собственные значения.

В случае $1 \ge \gamma \ge \gamma_2$ собственные значения являются вещественными при $0 \le \phi \le \phi_1$ и при $\phi_2 \le \phi \le \pi$.

Оценки $|\lambda_1(\phi)| \le 1$, $|\lambda_2(\phi)| \le 1$ для $0 \le \phi \le \phi_1$ были доказаны в предыдущем случае. Остается рассмотреть случай $\phi_2 < \phi \le \pi$.

Многочлен $p(z) = z^2 - 2z + \delta^2$ имеет два вещественных корня $z_{1,2} = 1 \mp \sqrt{1 - \delta^2}$. Если $z > z_2$, p(z) > 0, $1 - z \le 0$, в результате мы находим, что при $z > z_2$, $\lambda_2(z) < 0$. Так как $\lambda_1 \lambda_2 = (1 - \delta)/(1 + \delta) > 0$, оба корня являются отрицательными и, значит,

$$|\lambda_{1,2}| = (z - 1 \mp \sqrt{p(z)})/(1 + \delta).$$

При $z > z_2$ многочлен p(z) > 0, а $z - 1 \ge z_2 - 1 = \sqrt{1 - \delta^2}$. Отсюда следует, что при рассматриваемых z величина $-\lambda_2 = |\lambda_2| > \sqrt{1 - \delta^2} > 0$. Так как $\lambda_1 \lambda_2 = (1 - \delta)/(1 + \delta) > 0$, при рассматриваемых z величина $-\lambda_1$ также больше нуля. Отсюда следует, что $|\lambda_1| = |\lambda_2| - 2\sqrt{p(z)} < |\lambda_2|$. С ростом ϕ от ϕ_2 до π величина модуля собственного значения λ_2 монотонно возрастает от $\sqrt{(1 - \delta)/(1 + \delta)}$ до 1. Соответственно величина модуля собственного значения λ_1 монотонно убывает от $\sqrt{(1 - \delta)/(1 + \delta)}$ до $(1 - \delta)/(1 + \delta)$. Лемма 1 доказана.

СЕРДЮКОВА

2. ВЫВОД ЯВНОГО ВИДА *А*^{*n*}(*e*^{*i*φ})

Так как λ_1 , λ_2 являются решениями уравнения (2), то согласно теореме Виета имеем

$$\lambda_1 + \lambda_2 = 2(1 - 2\gamma^2 \sin^2(\phi/2))/(1 + \delta), \quad \lambda_1 \lambda_2 = (1 - \delta)/(1 + \delta).$$

Используя эти соотношения, перепишем $A(e^{i\varphi)})$ в виде

$$A(e^{i\phi}) = \begin{bmatrix} \lambda_1 + \lambda_2 - \lambda_1\lambda_2 & \lambda_1\lambda_2 \\ \lambda_1 + \lambda_2 - \lambda_1\lambda_2 - 1 & \lambda_1\lambda_2 \end{bmatrix}.$$

Положим $E_1 = [\lambda_1, \lambda_1 - 1]^*$, $E_2 = [1,1]^*$ (знак * преобразует вектор-строку в вектор-столбец), $A(e^{i\phi})E_1 = \lambda_1E_1$, E_1 является собственным вектором матрицы $A(e^{i\phi})$. Вектор E_2 является присоединенным вектором матрицы $A(e^{i\phi})$, $A(e^{i\phi})E_2 = \lambda_2E_2 + E_1$. Матрица преобразования подобия T, столбцами которой являются векторы E_1 , E_2 , приводит матрицу $A(E^{i\phi})$ к треугольному виду: $T^{-1}A(e^{i\phi})T = B$,

$$B = \begin{bmatrix} \lambda_1 & 1 \\ 0 & \lambda_2 \end{bmatrix}, \quad T = \begin{bmatrix} \lambda_1 & 1 \\ \lambda_1 - 1 & 1 \end{bmatrix}, \quad T^{-1} = \begin{bmatrix} 1 & -1 \\ 1 - \lambda_1 & \lambda_1 \end{bmatrix}, \quad B^n = \begin{bmatrix} \lambda_1^n & D_n \\ 0 & \lambda_2^n \end{bmatrix}$$

где $D_n = (\lambda_1^n - \lambda_2^n)/(\lambda_1 - \lambda_2).$

Элементы матрицы $A^n(e^{i\phi})$ являются тригонометрическими многочленами

$$P(e^{i\phi}) = \sum_{k=-n}^{n} a_k e^{ki\phi}.$$

L₂ – норма многочлена *P* есть

$$\left\|P(e^{i\phi})\right\|^2 = \sum_{k=-n}^n |a_k|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |P(e^{i\phi})|^2 d\phi.$$

Соответствующая матричная норма есть

$$\left\|A(e^{i\phi})^{2}\right\|^{2} = \sum_{i,j} \left\|a_{i,j}^{n}\right\|^{2} = \sum_{i,j} \frac{1}{2\pi} \int_{-\pi}^{\pi} \left|a_{i,j}^{n}(e^{i\phi})\right|^{2} d\phi.$$

Для всех $\phi, |\phi| \le \pi |\lambda_1| \le 1$. Так как при $0 \le \phi \le \phi_1$ собственное значение λ_1 вещественное и положительное, имеем

$$(1 - \lambda_1)^2 + \lambda_1^2 = 1 - 2\lambda_1 + 2\lambda_1^2 = 1 - 2\lambda_1(1 - \lambda_1) \le 1,$$

а для

$$\phi_1 \leq \phi \leq \pi$$
, $\lambda_1 = \sqrt{(1-\delta)/(1+\delta)} \exp(i\theta)$.

Отсюда получаем

$$\left|1-\lambda_{1}\right|^{2}+\left|\lambda_{1}\right|^{2}=1-2\sqrt{1-\frac{\delta}{1+\delta}}\cos(\theta)+\frac{1-\delta}{1+\delta}\leq\left(1+\sqrt{\frac{1-\delta}{1+\delta}}\right)^{2}\leq4.$$

В результате имеем

$$\|T(e^{i\phi})\|^2 \le 6$$
, $\|T^{-1}(e^{i\phi})\|^2 \le 6$, $\|B^n(e^{i\phi})\|^2 \le 2 + \|D_n(e^{i\phi})\|^2$.

Используя неравенство Коши-Буняковского [5], легко проверить, что для любых двух квадратных матриц *А*, *В* порядка *l* справедлива оценка

$$\|AB\|^2 = \sum_{i,j} |\sum_{k=1}^l |a_{i,k}b_{k,j}|^2 \le \sum_{i,j} \sum_{k=1}^l |a_{i,k}|^2 \sum_{k=1}^l |b_{k,j}|^2 = \|A\|^2 \|B\|^2.$$

163

Используя эту оценку и только что полученные оценки $\|T\|$, $\|T^{-1}\|$ и $\|B^n\|$, получаем

$$\left\|A^{n}(e^{i\phi})\right\| \le 6\sqrt{2 + \left\|D_{n}(e^{i\phi})\right\|^{2}}.$$
 (5)

3. ОЦЕНКИ НЕКОТОРЫХ ИНТЕГРАЛОВ ОТ $\left\| D_n(e^{i\phi}) \right\|^2$

Неравенство (5) показывает, что оценка норм степеней характеристической матрицы свелась к оценке интеграла

$$\frac{1}{2\pi}\int_{0}^{2\pi}\left|\frac{(\lambda_{1}^{n}-\lambda_{2}^{n})}{(\lambda_{1}-\lambda_{2})}\right|^{2}d\phi$$

где λ_1 , λ_2 были определены выше (см. (3)).

Далее мы ограничимся случаем $\gamma = 1$, $\tau = 0.1$, $\beta = 0.2$, $\delta = 0.01$. При таких параметрах были получены хорошие результаты в реальных расчетах ВАХ длинных джозефсоновских переходов. С одной стороны, $\gamma = 1$ является границей устойчивости, с другой стороны, при $\gamma = 1$ расчетное время является минимальным. Разработанные оценки интегралов могут быть использованы при других параметрах и при исследовании других численных методов. Заметим, что при $\gamma = 1$ собственные значения имеют более компактный приятный вид:

$$\lambda_{1,2} = \frac{\cos(\phi) \pm \sqrt{\delta^2 - \sin^2(\phi)}}{(1+\delta)}.$$
(6)

Легко проверить, что при $\gamma = 1 \|D_n\|^2 = 2I/\pi$, где

$$I = \int_{0}^{\pi/2} \left| \frac{(\lambda_1^n - \lambda_2^n)}{(\lambda_1 - \lambda_2)} \right|^2 d\phi,$$
(7)

где λ_1 , λ_2 определяются (6). Но по мере надобности будем использовать и (3).

Если $0 \le \phi \le \arcsin(\delta)$, то собственные значения вещественные. Далее $\phi_1 = \arcsin(\delta)$. Заметим, что $\lambda_1(\phi_1) = \lambda_2(\phi_1) = \sqrt{(1-\delta)/(1+\delta)}$. Для $\phi_1 < \phi \le \pi/2$ собственные значения комплексно-сопряженные

$$\lambda_{1,2} = \sqrt{(1-\delta)/(1+\delta)} \exp(\pm i\theta), \quad \cos(\theta) = \cos(\phi)/\sqrt{1-\delta^2}, \quad \theta(\phi_1) = 0.$$

Интеграл *I* разбиваем на три интеграла по отрезкам: $[0, \phi_0]$, $[\phi_0, \phi_1]$, $[\phi_1, \pi/2]$ соответственно. Здесь и далее ϕ_0 определяется в виде

$$3\delta^2/4 - \sin^2(\phi) = 0, \quad \sin(\phi_0) = \sqrt{3\delta/2}.$$
 (8)

Отдельно получаем оценки для трех интегралов I_1, I_2, I_3 .

3.1. Оценка интеграла I₁

Теорема 1. Для всех $n, \delta \le 1/2$ верна следующая оценка:

$$I_1 = \int_0^{\varphi_0} \left| (\lambda_1^n - \lambda_2^n) / (\lambda_1 - \lambda_2) \right|^2 d\phi \le c(\delta) / (\beta \tau), \quad c(\delta) = 4(1+\delta)^2 / \sqrt{4-\delta^2}.$$

В реальных вычислениях использовались $\delta = 0.01$, c(0.01) = 2.042.

Для больших $T = \sqrt{dn\delta}, d = 1 - \delta^2/(4(1+\delta)),$ верна специальная оценка:

$$I_1 \le \tilde{c}(\delta)/(\beta \tau \sqrt{\beta \tau n}), \quad \tilde{c}(\delta) = 4\sqrt{2\pi}(1+\delta)^2/(\sqrt{d(4-\delta^2)}), \quad \tilde{c}(0.01) = 5.115.$$

Доказательство. По аналогии с оценкой $2\gamma^2 \sin^2(\phi_1/2)$ (см. замечание 2) получаем

$$\frac{3}{8} \left(\frac{\beta \tau}{2}\right)^2 \le 2 \sin^2 \left(\frac{\phi_0}{2}\right) \le \frac{6}{13} \left(\frac{\beta \tau}{2}\right)^2 \le \frac{\delta^2}{2}, \quad \sin(\phi_0/2) < \frac{\delta}{2}.$$
(9)

Оценка знаменателя

$$|\lambda_1 - \lambda_2|^2 = 4 \frac{\delta^2 - 4\sin^2(\phi/2) + 4\sin^4(\phi/2)}{(1+\delta)^2} \ge \frac{\delta^2}{(1+\delta)^2}, \quad \phi \le \phi_0,$$
(10)

является простым следствием определения ϕ_0 (см. (8)).

Оценка числителя при $\phi \leq \phi_0$ сводится к оценке λ_1^{2n} , так как $|\lambda_1^n - \lambda_2^n|^2 < \lambda_1^{2n}$. **Лемма 2.** *Справедлива оценка*

$$\begin{aligned} \left|\lambda_{1}(\phi)\right| &\leq 1 - d \, \frac{2 \sin^{2}(\phi/2)}{\delta}, \quad d = 1 - \frac{\delta^{2}}{3(1+\delta)} \quad \partial_{\mathcal{I}\mathcal{R}} \quad 0 \leq \phi \leq \phi_{1}. \\ A \, \partial_{\mathcal{I}\mathcal{R}} \quad 0 \leq \phi \leq \phi_{0} \quad \textit{получаем} \quad d = 1 - \frac{\delta^{2}}{4(1+\delta)}. \end{aligned}$$

Используя (3), перепишем $\lambda_1(\phi)$ в виде

$$\lambda_{1}(\phi) = \frac{1 - 2\sin^{2}(\phi/2)}{1 + \delta} + \frac{\delta}{1 + \delta}\sqrt{1 - f(\phi)}, \quad f(\phi) = (4\sin^{2}(\phi/2) - 4\sin^{4}(\phi/2))/\delta^{2}.$$

При рассматриваемых ф имеем $0 \le f(\phi) \le 1$. Так как $\sqrt{1 + x} \le 1 + x/2$ при $-1 \le x \le 0$, получаем

$$\begin{aligned} \left|\lambda_{1}(\varphi)\right| &< \frac{1 - 2\sin^{2}(\varphi/2)}{1 + \delta} + \frac{\delta}{1 + \delta} \left(1 - \frac{2\sin^{2}(\varphi/2) - 2\sin^{4}(\varphi/2)}{\delta^{2}}\right) = 1 - \frac{2\sin^{2}(\varphi/2)}{\delta} + \\ &+ \frac{2\sin^{4}(\varphi/2)}{\delta(1 + \delta)} \leq 1 - \frac{2\sin^{2}(\varphi/2)}{\delta} + \frac{2\sin^{2}(\varphi/2)}{\delta} \frac{\sin^{2}(\varphi/2)}{(1 + \delta)} \leq 1 - d\frac{2\sin^{2}(\varphi/2)}{\delta}, \quad d = 1 - \frac{\delta^{2}}{3(1 + \delta)} \end{aligned}$$

А при $0 \le \phi \le \phi_0$ имеем

$$\left|\lambda_{1}(\phi)\right| \leq 1 - \frac{2\sin^{2}(\phi/2)}{\delta} + \frac{2\sin^{2}(\phi/2)}{\delta} \frac{\sin^{2}(\phi_{0}/2)}{(1+\delta)} \leq 1 - d\frac{2\sin^{2}(\phi/2)}{\delta}, \quad d = 1 - \frac{\delta^{2}}{4(1+\delta)}.$$

Лемма 2 доказана.

Лемма 3. Для $0 \le \phi \le \phi_1$ получаем

$$\ln(\lambda_{1}(\phi)) \leq -d \frac{2\sin^{2}(\phi/2)}{\delta}, \quad \lambda_{1}^{2n}(\phi) \leq \exp\left(-\frac{4dn\sin^{2}(\phi/2)}{\delta}\right).$$
(11)

Справедливость этих оценок является прямым следствием леммы 2 и хорошо известного (см. [6, с. 58]) разложения

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k}, \quad |x| \le 1.$$

При отрицательных x все члены ряда отрицательные, следовательно, $\ln(1 + x) < x$.

Замечание 2 утверждает, что $\lambda_1 > \lambda_2$ при $0 \le \phi \le \phi_0$. Следовательно, при рассматриваемых ϕ справедлива оценка $|\lambda_1^n - \lambda_2^2|^2 \le \lambda_1^{2n}$. Используя эту оценку и неравенства (9)–(11), получаем

$$I_{1} \leq \frac{(1+\delta)^{2}}{\delta^{2}} \int_{0}^{\phi_{0}} \exp(-4dn\sin^{2}(\phi/2)/\delta) d\phi \leq \frac{(1+\delta)^{2}}{\delta^{2}} \frac{\sqrt{2}}{\sqrt{4-\delta^{2}}} \sqrt{\frac{\delta}{dn_{0}}} \exp(-t^{2}) dt.$$
(12)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 60 № 1 2020

164

По ходу доказательства была сделана замена переменных $t = 2\sqrt{dn/\delta}\sin(\phi/2)$ и использована оценка $1/\sqrt{1-\sin^2(\phi/2)} \le 1/\sqrt{1-\sin^2(\phi_0/2)}$. Заметим, что

$$T = 2\sqrt{\frac{dn}{\delta}}\sin(\phi_0/2).$$

Для завершения доказательства теоремы 1 достаточно воспользоваться первыми членами "обертывающих рядов" Лапласа для функции ошибок [7, с. 11].

3.2. Оценка интеграла I₂

Теорема 2. Для всех п справедлива оценка

$$I_2 \le \frac{\delta n^2 \exp(-c(n-1)\delta)}{2} = \frac{x^2 \exp(-x)}{2c^2 \delta} \le \frac{0.219...}{\beta \tau}, \quad c = 0.997524...,$$

для больших $n\beta\tau$ интеграл I_2 экспоненциально убывает с ростом n.

Доказательство. Пусть

$$I_{2} = \int_{\phi_{0}}^{\phi_{1}} \frac{\left| (\lambda_{1}^{n} - \lambda_{2}^{n}) \right|^{2}}{\left(\lambda_{1} - \lambda_{2} \right)^{2}} d\phi < (\phi_{1} - \phi_{0}) n^{2} (\lambda_{1}(\phi_{0}))^{2(n-1)}.$$
(13)

Используя разложение (см. [6, с. 65])

$$\arcsin(x) := \sum_{k=0}^{\infty} \frac{(2k!)x^{2k+1}}{2^{2k}(k!)^2(2k+1)} = x + \frac{1}{2 \cdot 3}x^3 + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5}x^5 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 5 \cdot 7}x^7 + \dots$$

получаем оценку $x \le \arcsin(x) \le x(1 + x^2/(6(1 - x^2)))$. Отсюда при $\delta \le 1/2$ имеем

$$\arcsin(\delta) \le \frac{19}{18}\delta, \quad \phi_1 - \phi_0 = \arcsin(\delta) - \arcsin\left(\frac{\sqrt{3}}{2}\delta\right) \le \left(\frac{19}{18} - \frac{\sqrt{3}}{2}\right)\delta \le \frac{\delta}{5}.$$
 (14)

Для $\phi_0 \le \phi \le \phi_1$, $\delta \le 1/2$ получаем

$$\lambda_{1}(\phi) \leq \frac{1 - 2\sin^{2}(\phi/2) + \delta/2}{(1 + \delta)} \leq 1 - c(\delta)\delta/2 \leq \exp(-c(\delta)\delta/2), \quad c(\delta) = \frac{1 + 0.75\delta}{1 + \delta}.$$
 (15)

Положим c = c(0.01) = 0.997524... Используя (14), (15), из (13) имеем

$$I_2 \le \frac{\delta n^2 \exp(-c(n-1)\delta)}{5} = \frac{x^2 \exp(-x)}{5c^2\delta} \le \frac{8\exp(-2+c\delta)}{5c^2\beta\tau} = \frac{0.21979400...}{\beta\tau}.$$

Теорема 2 доказана.

3.3. Оценка интеграла I₃

Теорема 3. Для всех п справедлива оценка

$$I_3 \leq \frac{\pi n(1+\delta)}{2(1-\delta)} \exp(-\beta \tau n) = \frac{\pi (1+\delta)}{2(1-\delta)\beta \tau} \qquad x \exp(-x) \leq \frac{\pi (1+\delta)}{2(1-\delta)\beta \tau e} \leq \frac{0.589537...}{\beta \tau}$$

При больших $x = n\beta \tau$ интеграл I_3 экспоненциально убывает с ростом n.

Доказательство. Пусть

$$I_3 = \int_{\phi_1}^{\pi/2} \left| \frac{(\lambda_1^n - \lambda_2^n)}{(\lambda_1 - \lambda_2)} \right|^2 d\phi$$

Для рассматриваемых ϕ собственные значения $\lambda_1(\phi)$, $\lambda_2(\phi)$ комплексно-сопряженные

$$\lambda_1 = \sqrt{(1-\delta)/(1+\delta)} \exp(i\theta), \quad \lambda_2 = \sqrt{(1-\delta)/(1+\delta)} \exp(-i\theta).$$

Используя дополнительно оценку $ln((1 - \delta)/(1 + \delta)) \le -2\delta = -\beta\tau$, находим

$$I_3 \leq \frac{1+\delta}{1-\delta} \exp(-\beta \tau n) \int_{\varphi_1}^{\pi/2} \frac{\sin^2(n\theta)}{\sin^2(\theta)} d\phi.$$

Имеем (см. (6))

$$\cos(\theta) = \cos(\phi)/\sqrt{1 - \delta^2},$$

$$\sin(\theta)d\theta = \left(\sin(\phi)/\sqrt{1 - \delta^2}\right)d\phi.$$

Заметим, что $\theta(\phi_1) = 0$, $\theta(\pi/2) = \pi/2$. В результате получаем

$$\int_{\phi_1}^{\pi/2} \frac{\sin^2(n\theta)}{\sin^2(\theta)} d\phi = \sqrt{1-\delta^2} \int_0^{\pi/2} \frac{\sin^2(n\theta)}{\sin^2(\theta)} \frac{\sin(\theta)}{\sin(\phi)} d\theta.$$

Кроме того, имеем $\sin^2(\phi) - \delta^2 = (1 - \delta^2) \sin^2(\theta)$, что обеспечивает $\sin(\theta) \sqrt{1 - \delta^2} \le \sin(\phi)$. В результате получаем

$$I_3 \leq \frac{1+\delta}{(1-\delta)}\exp(-\beta\tau n)\int_0^{\pi/2} \frac{\sin^2(n\theta)}{\sin^2(\theta)}d\theta = \frac{(1+\delta)n\pi}{2(1-\delta)}\exp(-\beta\tau n) \leq \frac{(1+\delta)\pi}{2(1-\delta)e\beta\tau} \leq \frac{0.589537...}{\beta\tau}.$$

На последних шагах доказательства была использована формула (см. [6, с. 385])

$$\int_{0}^{\pi/2} \frac{\sin^2(\alpha\theta)}{\sin^2(\theta)} d\theta = \frac{\alpha\pi}{2}.$$

Для больших $n\beta\tau$ интеграл I_3 экспоненциально убывает с ростом n. Теорема 3 доказана.

Выражаю благодарность Г.М. Кобелькову за полезные замечания.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шукринов Ю.М. и др. Вычислительная схема и параллельная реализация для моделирования системы длинных джозефсоновских переходов // Компьютерные исследования и моделирование. 2016. Т. 8. № 4. С. 597–604.
- 2. Serdyukova S.I. IVC Calculation Problem for Josephson Junction Stacks. On Asymptotic Construction near the Breakpoint // Вестник РУДН. Серия Математика. Информатика. Физика. 2017. Т. 25. № 4. С. 373–379.
- 3. *Урм В.Я*. О приведении систем разностных уравнений к каноническому виду // Докл. АН СССР. 1960. Т. 134. № 6. С. 1309–1312.
- 4. *Урм В.Я*. О необходимых и достаточных условиях устойчивости систем разностных уравнений // Докл. АН СССР. 1961. Т. 139. № 1. С. 40–43.
- 5. Шилов Г.Е. Математический анализ. Специальный курс. М.: Физматлит, 1960.
- 6. Градитейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Физматлит, 1963.
- 7. Копсон Э. Асимптотические разложения. М.: Мир, 1966.