УЛК 519.26

ПРОБЛЕМЫ УСТОЙЧИВОСТИ И ЕДИНСТВЕННОСТИ СТОХАСТИЧЕСКОГО МАТРИЧНОГО РАЗЛОЖЕНИЯ¹⁾

© 2020 г. Р. Ю. Дербаносов^{1,*}, И. А. Ирхин^{2,**}

¹ 125319 Москва, ул. Кочновский проезд, 3, НИУ ВШЭ, Россия
² 141701 Долгопрудный, М.о., Институтский пер., 9, МФТИ, Россия
*e-mail: derbanosov@gmail.com
**e-mail: ilirhin@gmail.com
Поступила в редакцию 12.09.2018 г.
Переработанный вариант 05.10.2018 г.
Принята к публикации 18.11.2019 г.

Рассматриваются две близкие проблемы: устойчивости решения задачи тематического моделирования и единственности стохастического матричного разложения. Доказана теорема, описывающая аналитический способ понять по поставленной задаче стохастического матричного разложения, будет ли ее решение устойчивым. Применимость теоремы на практике исследуется в экспериментах на реальных данных. Библ. 21. Фиг. 1.

Ключевые слова: тематическое моделирование, неотрицательное матричное разложение, единственность матричного разложения.

DOI: 10.31857/S0044466920030084

1. ВВЕДЕНИЕ

Тематическое моделирование — один из популярных статистических методов анализа текстов. Результатом построения модели является набор тем, а также описание каждого документа в виде распределения над множеством тем. Тематическое моделирование применяют в задачах анализа аудио [1], текстов [2]—[5], изображений и видео [6]—[8], биоинформатике [9], [10], в задачах информационного поиска [11]—[13]. Тематическое моделирование может быть использовано для получения интерпретируемых векторных представлений слов, демонстрирующих сравнимое с векторными представлениями модели Skip-Gram Negative Sampling [14] качество на задачах сравнения семантически близких слов [15].

Сформулируем основную задачу тематического моделирования. *Темой* будем называть дискретное распределение над фиксированным множеством слов. Пусть известны параметры модели: *матрица слова-темы* Φ размера число слов на число тем, в которой по столбцам записаны распределения слов в темах, j-му столбцу матрицы Φ отвечает j-я тема, *матрица темы-документы* Θ размера число тем на число документов, в j-м столбце которой записано распределение тем для j-го документа, элемент Θ_{ij} равен весу i-й темы для j-го документа, а также для d-го документа известно числов слов n_d в нем. Предположим, что текстовая коллекция была получена в результате следующего процесса. Для d-го документа для каждого из n_d слов выбирается тема t согласно распределению, записанному в d-м столбце матрицы Θ , после чего выбирается очередное слово из распределения, записанного в t-м столбце матрицы Φ . Задача тематического моделирования заключается в восстановлении матриц Φ и Θ по таким образом сгенерированной текстовой коллекции. Обычно текстовая коллекция представляется в виде *матрицы слова-документы* F, элемент которой F_{ij} равен числу раз, которое i-е слово входит в j-й документ.

Современные методы тематического моделирования основаны на поиске представления матрицы слова-документы, нормированной по столбцам, в виде произведения стохастических мат-

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 17-07-01536).

риц Φ и Θ . Наиболее популярным подходом к построению тематических моделей является латентное размещение Дирихле (LDA) [2]. Модель LDA основана на предположении о том, что вектора распределений слов в темах и тем в документах порождены распределением Дирихле. Другим подходом является вероятностный латентный семантический анализ (PLSA) [16]. Основной гипотезой данной модели являются гипотеза условной независимости: вероятность слова в теме не зависит от документа. Развитием модели PLSA является аддитивная регуляризация тематических моделей (ARTM) [3], [5], [17]. Модель ARTM расширяет постановку задачи PLSA, добавляя к функции потерь различные регуляризаторы, формализующие требования к тематической модели.

Одной из проблем тематического моделирования является то, что точного разложения $F = \Phi\Theta$, как правило, не существует, поэтому строится разложение некоторого приближения изначальной матрицы \tilde{F} , которое является локальным экстремумом задачи максимизации правдоподобия. Таким образом, неединственность решения задачи тематического моделирования может возникать как из-за неоднозначности выбора \tilde{F} , так и из-за неединственности точного разложения \tilde{F} на Φ и Θ .

Проблема единственности неотрицательного матричного разложения исследовалась в работах [18]—[20], где, в частности, представлены различные достаточные либо необходимые условия единственности разложения. Однако до сих пор не сформулированы необходимые и достаточные условия единственности стохастического матричного разложения.

В первой части данной работы представлен результат, описывающий достаточные условия на матрицу F, гарантирующие единственность точного стохастического разложения полного ранга $F = \Phi\Theta, F \in \mathbb{R}^{n\times m}$, rank $F = k, \Phi \in \mathbb{R}^{n\times k}, \Theta \in \mathbb{R}^{k\times m}$ в терминах элементов матриц Φ и Θ , а также простое следствие этого результата, дающее критерий существования и единственности в терминах матрицы F, без заданного разложения.

Во второй части дается интерпретация теоремы из первой части работы в терминах тематического моделирования, а также исследуется выполнение условий теоремы в экспериментах на реальных данных.

Последующий текст устроен следующим образом. В разд. 2 формулируются задача и определения, требуемые для формулировки основной теоремы, после чего дается обзор предыдущих результатов. В разд. 3 формулируется и доказывается основная теорема. В разд. 4 описываются практические эксперименты, проверяющие выполнение условий основной теоремы на реальной текстовой коллекции.

2. ПОСТАНОВКА ЗАДАЧИ МАТРИЧНОГО РАЗЛОЖЕНИЯ

В этом разделе речь идет о представлении матрицы F в виде произведения двух стохастических матриц полного ранга Φ и Θ : $F = \Phi\Theta$. Обсуждается следующая задача. Пусть дана матрица F, $F \in \mathbb{R}^{n \times m}$, rank F = k, и некоторое ее разложение $F = \Phi\Theta$, $\Phi \in \mathbb{R}^{n \times k}$, $\Theta \in \mathbb{R}^{k \times m}$. Такое разложение всегда не единственно даже при фиксированных размерах матриц Φ и Θ . Поэтому обычно разложения рассматривают с точностью до добавления в разложение матрицы F перестановки S. В этом случае существуют матрицы F, для которых стохастическое разложение полного ранга единственно.

2.1. Стохастическое матричное разложение

Определение 1. Будем называть матрицу F неотрицательной, если $F_{ij} \geq 0 \ \forall i,j.$

Определение 2. Будем называть матрицу F *стохастической*, если она является неотрицательной и $\sum_i F_{ij} = 1 \ \forall j$.

Определение 3. *Неотрицательным (стохастическим) матричным разложением матрицы* $F \in \mathbb{R}^{n \times m}$ называют представление F в виде произведения двух неотрицательных (*стохастических*) *матриц* $F = \Phi \Theta$.

Определение 4. *Матричным разложением полного ранга матрицы* $F \in \mathbb{R}^{n \times m}$, rank F = k называют представление F в виде произведения двух матриц полного ранга $F = \Phi\Theta$, $\Phi \in \mathbb{R}^{n \times k}$, $\Theta \in \mathbb{R}^{k \times m}$.

Далее в этой работе для краткости *разложением матрицы* F называется стохастическое матричное разложение полного ранга, кроме тех случаев, в которых явно сказано, что это стохастическое разложение или неотрицательное разложение. Также будем предполагать, что в матрице F, для которой ищется неотрицательное, стохастическое или стохастическое полноранговое разложение, нет нулевых столбцов.

Из определения разложения матрицы сразу следует, что матрицы Φ и Θ имеют ранг k. Также можно заметить, что если у матрицы есть хотя бы одно разложение, то она является стохастической.

Заметим, что если дано разложение \Leftrightarrow и у матрицы Φ есть хотя бы два различных столбца или у матрицы Θ есть хотя бы две различных строки, то можно найти новое разложение $F = \Phi S S^{-1} \Theta$, где S — матрица перестановки. В связи с этим общепринятым является следующее определение единственности разложения.

Определение 5. Разложение $F = \Phi\Theta$ называется *единственным*, когда выполнено следующее условие: если нашлось некоторое другое разложение $F = \Phi'\Theta'$, то $\Phi' = \Phi S$, $\Theta' = S^{-1}\Theta$ для некоторой матрицы перестановки S.

Введем следующие вспомогательные обозначения:

supp(v) — множество позиций, на которых стоят нулевые элементы вектора v;

supp(v) — множество позиций, на которых стоят ненулевые элементы вектора v;

 X_i – есть j-й столбец матрицы X;

 $X[[i_1,...,i_n],[j_1,...,j_a]]$ — подматрица, состоящая из строк $i_1,...,i_n$ и столбцов $j_1,...,j_a$.

2.2. Связь между неотрицательными и стохастическими матричными разложениями

Утверждение 1. Пусть $F \in \mathbb{R}^{n \times m}$ матрица без нулевых столбцов с неотрицательным разложением $F = \Phi\Theta, \ \Phi \in \mathbb{R}^{n \times k}, \ \Theta \in \mathbb{R}^{k \times m}$. Рассмотрим стохастическую матрицу \tilde{F} , $\tilde{F}_{ij} = \frac{F_{ij}}{\sum_i F_{ij}}$. Тогда $\tilde{F} = \tilde{\Phi}\tilde{\Theta}$ является стохастическим разложением матрицы \tilde{F} , где

$$\tilde{\Phi} = \Phi S, \quad \tilde{\Theta} = S^{-1}\Theta',$$

$$\Theta' = \frac{\Theta_{ij}}{\sum_{i} F_{ij}}, \quad S = \operatorname{diag}\left(\left(\sum_{i} \Phi_{i1}\right)^{-1}, ..., \left(\sum_{i} \Phi_{ik}\right)^{-1}\right).$$

Доказательство. Заметим, что матрицы S и Θ' определены корректно, т.е. деления на ноль произойти не может, благодаря предположению о том, что в матрице F нет нулевых столбцов.

Докажем, что $\tilde{F}=\tilde{\Phi}\tilde{\Theta}$ является стохастическим разложением матрицы \tilde{F} . Разделив j-й столбец левой и правой части равенства $F=\Phi SS^{-1}\Theta$ на $\sum_i F_{ij}$, мы получаем, что $\tilde{F}=\tilde{\Phi}\tilde{\Theta}$ является верным равенством. Матрица S подобрана таким образом, чтобы матрица $\tilde{\Phi}$ была стохастической, следовательно, верно равенство $e_n^T\tilde{\Phi}=e_k^T$, где $e_p\in\mathbb{R}^p$ — вектор-столбец из единиц. Воспользовавшись стохастичностью матрицы \tilde{F} , получаем

$$\boldsymbol{e}_{\scriptscriptstyle n}^{\mathsf{T}} \tilde{\boldsymbol{F}} = \boldsymbol{e}_{\scriptscriptstyle m}^{\mathsf{T}} \Longleftrightarrow \boldsymbol{e}_{\scriptscriptstyle n}^{\mathsf{T}} \tilde{\boldsymbol{\Phi}} \tilde{\boldsymbol{\Theta}} = \boldsymbol{e}_{\scriptscriptstyle m}^{\mathsf{T}} \Longleftrightarrow \boldsymbol{e}_{\scriptscriptstyle k}^{\mathsf{T}} \tilde{\boldsymbol{\Theta}} = \boldsymbol{e}_{\scriptscriptstyle m}^{\mathsf{T}}.$$

Значит, матрица $\tilde{\Theta}$ тоже стохастическая.

Если же матрица F изначально была стохастической и имела неотрицательное разложение, то, используя описанное выше утверждение, можно построить стохастическое разложение этой матрицы. В связи с этим фактом проблемы неотрицательных и стохастических разложений являются очень близкими между собой.

2.3. Обзор результатов

Во всех работах, исследующих единственность неотрицательного матричного разложения, формулируются необходимые либо достаточные условия единственности разложения.

В работе [18] вводится геометрическая интерпретация стохастического матричного разложения. Для матрицы X обозначим $C_X = \left\{ x | x = \sum_i a_i X_i, \, a_i \geq 0 \right\}$ симплициальный конус, порожденный векторами X_i . Геометрическая интерпретация заключается в сопоставлении каждому стохастическому разложению матрицы $F = \Phi \Theta$ симплициального конуса $G_\Phi \supset G_F$. Также в работе получены достаточные условия на матрицы-факторы (Lemma 4), гарантирующие единственность разложения, при этом достаточные условия выражаются в терминах симплициальных конусов G_Φ и G_F . Аналог этой геометрической интерпретации в терминах выпуклых многогранников активно используется в нашей работе (см. лемму 1).

В работе [19] получены необходимые условия единственности (Theorem 5) и достаточные условия единственности для неотрицательных матричных разложений. На примерах демонстрируется выполнение условий теорем и их ограничения. В экспериментах показывается, что в случае единственности разложения $F = \Phi\Theta$ добавление небольшого шума к исходным данным F влечет сходимость к тому же единственному решению (Φ , Θ) с небольшим шумом.

В работе [20] используется геометрическая интерпретация, введенная в работе [18], и доказывается достаточный критерий единственности (Theorem 6), при этом условия даются в терминах матрицы F. Описывается техника предобработки данных, приводящая к устойчивости и разреженности получаемой тематической модели. Демонстрируется эффективность техники на нескольких наборах изображений.

3. ТЕОРЕМА О ЕДИНСТВЕННОСТИ РАЗЛОЖЕНИЯ

3.1. Условия основной теоремы

Теорема 1. Пусть дано разложение $F = \Phi\Theta$, $F \in \mathbb{R}^{n \times m}$, rank F = k, $\Phi \in \mathbb{R}^{n \times k}$, $\Theta \in \mathbb{R}^{k \times m}$. Пусть выполнены следующие условия.

Условие 1. $\forall i \in \{1,...,k\} \; \exists j : \Theta_{ii} = 1, \; \forall i' \neq j\Theta_{i'i} = 0.$

Условие 2. $\forall j \text{ rank}(\Phi[\overline{\operatorname{supp}(\Phi_i)}, [1, ..., k] \setminus [j]]) = k - 1.$

Тогда разложение $F = \Phi\Theta$ единственно.

Первое условие требует наличия в матрице Θ k столбцов, из которых можно составить единичную матрицу $k \times k$.

Второе условие требует, чтобы для каждого столбца Φ_j матрицы Φ подматрица, соответствующая множеству строк, на которых в Φ_j стоят нули, имела ранг k-1. Тривиальным примером матрицы Φ , которая удовлетворяет этому условию, является матрица, из k строк которой можно составить единичную матрицу размера $k \times k$.

Простым следствием из этой теоремы является достаточное условие для единственности разложения стохастической матрицы F.

Следствие 1. Пусть у стохастической матрицы $F \in \mathbb{R}^{n \times m}$ ранга k нашлось k таких столбцов c номерами $\{j_1, ..., j_k\} := J$, что

(I)
$$\forall j \in J \text{ rank}(F[\overline{\operatorname{supp}(F_j)}, J \setminus [j]]) = k - 1,$$

(II) для любого $j\in J$, p=1,...,m, найдутся коэффициенты $a_{jp}\geq 0$ т.ч. $\sum_{j\in J}a_{jp}=1$, $F_p=\sum_{i\in J}a_{jp}F_j,\ \forall p$.

Тогда у F существует единственное разложение $F=\Phi\Theta$, где

$$\Phi = F[:, J],$$

$$\Theta[j, p] = a_{jp}.$$

Доказательство. Действительно, если выполнено условие 1, то k столбцов $F_{j_1},...,F_{j_k}$ можно взять в качестве матрицы Φ , подходящей под условия теоремы 1. Матрица Θ , дающая разложение $F = \Phi\Theta$, найдется благодаря условию 2.

Сравним это следствие с теоремой единственности, сформулированной в работе [20]. Паттерном разреженности (англ. sparsity pattern) вектора v называется множество $\{i|v_i=0\}$. Например, паттерн разреженности вектора (4,0,0,2,0) есть $\{1,2,4\}$. Неотрицательным рангом матрицы F назовем такое минимальное r, что существует неотрицательное разложение матрицы $F = \Phi\Theta$, $\Phi \in \mathbb{R}^{n \times r}$, $\Theta \in \mathbb{R}^{r \times m}$.

Теорема 2 ([20, теорема 6]). Пусть дана стохастическая матрица F с рангом, совпадающим с неотрицательным рангом и равным k. Если у матрицы F есть k ненулевых столбцов, каждый из которых имеет k-1 нулей таких, что в соответствующих этим нулям строкам паттерны разреженности различны, то матрица F имеет единственное разложение.

Ниже приведен пример матрицы F, которая имеет единственное разложение, удовлетворяет условиям следствия теоремы 1, описанного выше, но не удовлетворяет условиям теоремы 6 статьи [20].

Пример 1.

$$F = \begin{pmatrix} 0 & \frac{1}{6} & \frac{2}{6} \\ 0 & \frac{2}{6} & \frac{1}{6} \\ \frac{1}{6} & 0 & \frac{2}{6} \\ \frac{2}{6} & 0 & \frac{1}{6} \\ \frac{1}{2} & \frac{2}{6} & 0 \\ \frac{2}{6} & \frac{1}{6} & 0 \end{pmatrix}$$

У этой матрицы F есть единственное разложение F = FE, но условия теоремы [20, Theorem 6] не выполнены, потому что для каждого столбца у множества строк, в которых этот столбец зануляется, одинаковые паттерны разреженности. При этом легко понять, что условия следствия теоремы 1 выполнены.

Определение 6. Стандартным (n-1)-мерным симплексом называется множество

$$\Delta_{n-1} = \left\{ x \in \mathbb{R}^n | \sum_{i=1}^n x^{(i)} = 1, \forall i \ x^{(i)} \ge 0 \right\}.$$

Далее линейной оболочкой матрицы X будем называть линейную оболочку множества ее столбцов $\{X_i\}$ и обозначать span(X). Аналогично выпуклой оболочкой матрицы X будем называть выпуклую оболочку ее столбцов и обозначать conv(X).

Определение 7. Точку v выпуклого многогранника M называют вершиной M, если не существует такого отрезка $[u_1,u_2]\subset M$, что v является внутренней точкой отрезка $[u_1,u_2]$.

Лемма 1. Пусть дана стохастическая матрица $F \in \mathbb{R}^{n \times m}$, rank F = k. Каждый выпуклый многогранник $M \subset \Delta_{n-1}$ с k вершинами, m.4. $\operatorname{conv}(F) \subset M$, биективно соответствует некоторому семейству разложений $F = \Phi\Theta$, которое определяется условием $\operatorname{conv}(\Phi) = M$.

Доказательство аналогичного утверждения можно найти в [18, лемма 4]. В этой работе доказательство проводится в терминах симплициальных конусов. Каждый симплициальный конус в формулировке работы [18] соответствует некоторому многограннику в приведенной выше формулировке. Соответствие 'многогранник' \rightarrow 'конус' восстанавливается путем взятия всех возможных положительных линейных комбинаций точек из многогранника. Соответствие 'конус' \rightarrow 'многогранник' получается путем пересечения конуса со стандартным симплексом.

Следствие 2. Пусть разложение $F = \Phi\Theta$ таково, что $conv(F) = conv(\Phi)$. Тогда, если каждая вершина $conv(\Phi)$ является вершиной $span(\Phi) \cap \Delta_{n-1}$, то разложение $F = \Phi\Theta$ единственно.

Доказательство этого следствия можно найти в [20, лемма 4].

3.2. Доказательство теоремы 3

Целью этого подраздела является доказательство теоремы 3. Основой доказательства является лемма 3 о необходимых и достаточных условиях на то, чтобы точка Φ_i являлась вершиной многогранника span(Φ) $\cap \Delta_{n-1}$.

Для начала докажем несколько вспомогательных лемм.

Лемма 2. Пусть многогранник М задан системой

$$\pi_i(x) \ge 0, \quad i = 1, ..., m,$$

$$\sum_{s} x^{(s)} = 1,$$

где π_i являются линейными функциями. Точка v является вершиной M тогда и только тогда, когда система

$$\pi_i(x) = 0, \quad i \in I,$$
 $\pi_i(x) > 0, \quad i \notin I,$

$$\sum_s x^{(s)} = 1$$
(3.1)

имеет единственное решение, где

$$I = \{i \mid \pi_i(v) = 0\}.$$

Доказательство. Единственность решения системы $(3.1) \Rightarrow v$ — вершина.

Предположим, что v не вершина, тогда, т.к. она удовлетворяет набору условий $\pi_i(x) \ge 0$, $i=1,\ldots,m$, значит, точка v лежит в многограннике M, и следовательно, она является серединой некоторого отрезка L с концами u_1 и u_2 . Заметим, что в силу симметрии u_1 и u_2 относительно v выполнено $\forall i \in I$ $\pi_i(u_1) = -\pi_i(u_2)$. При этом $\forall x \in M$ $\pi_i(x) \ge 0$ и $\sum_s x^s = 1$. Значит, $\forall i \in I$ $\pi_i(u_1) = \pi_i(u_2) = 0$. Но тогда $\forall x \in L$ x является решением системы (3.1), получаем противоречие с тем фактом, что v является единственным решением системы (3.1).

Таким образом, V — вершина \Rightarrow единственность решения системы (3.1).

Предположим, что нашлось еще одно решение системы (3.1). Значит, система $\pi_i(x) = 0$, $i \in I$ имеет пространство решений размерности больше 0, а пересечение этого пространства решений с системой

$$\pi_i(x) > 0, \quad i \notin I,$$
$$\sum_{s} x^{(s)} = 1$$

является многогранником M' размерности больше 0. Отметим, что точка v обязана по определению I быть внутренней для M', в противном случае на ней бы затуплялась некоторая линейная функция π_i для некоторого индекса $i \notin I$. Поэтому точка v представляется как средняя точка некоторого отрезка $[u_1, u_2] \subset M' \subset M$, а значит, не является вершиной M.

Лемма 3. Пусть дано разложение $F = \Phi\Theta$, $F \in \mathbb{R}^{n \times m}$. Тогда вершина Φ_j многогранника $\operatorname{conv}(\Phi)$ является вершиной $\operatorname{span}(\Phi) \cap \Delta_{n-1}$ тогда и только тогда, когда

$$\operatorname{rank}(\Phi[\overline{\operatorname{supp}(\Phi_k)}, [1, ..., k] \setminus [j]]) = k - 1.$$

Доказательство. Без ограничения общности будем считать, что j = k.

Далее будет доказано, что следующие утверждения являются эквивалентными:

(I) Φ_k является вершиной многогранника span(Φ) $\cap \Delta_{n-1}$;

(II) ∃! решение системы

$$\sum_{s=1}^{k} \Phi_{is} x^{(s)} = 0, \quad i \in \overline{\operatorname{supp}}(\Phi_{k}),$$

$$\sum_{s=1}^{k} \Phi_{is} x^{(s)} = 0, \quad i \in \operatorname{supp}(\Phi_{k}),$$

$$\sum_{s=1}^{k} x^{(s)} = 1;$$
(3.2)

(III) ∃! решение системы уравнений

$$\sum_{s=1}^{k-1} \Phi_{is} x^{(s)} = 0, \quad i \in \overline{\operatorname{supp}(\Phi_k)};$$
(3.3)

(IV) $\operatorname{rank}(\Phi[\overline{\operatorname{supp}(\Phi_k)}, [1, ..., k] \setminus [k]]) = k - 1;$

$$(III) \Leftrightarrow (IV)$$

Система (3.3) всегда имеет нулевое решение. То, что это решение единственно, равносильно тому, что ядро отображения, задаваемого матрицей $\Phi[\overline{\sup}(\Phi_k), [1,...,k]\setminus [k]]$, нулевое, что равносильно (IV).

$$(III) \Rightarrow (II)$$

Заметим, что при $i \in \overline{\operatorname{supp}(\Phi_k)}\Phi_{ik} = 0$, поэтому

$$\sum_{s=1}^{k} \Phi_{is} x^{(s)} = 0, \quad i \in \overline{\operatorname{supp}(\Phi_k)} \Leftrightarrow \sum_{s=1}^{k-1} \Phi_{is} x^{(s)} = 0, \quad i \in \overline{\operatorname{supp}(\Phi_k)}.$$

Пусть система (3.3) имеет единственное решение, тогда система (3.2) имеет не более одного решения, потому что в ней больше условий. При этом система (3.2) всегда имеет решение $e_k = (0, ..., 0, 1)$, которое соответствует точке Φ_k , $\Phi_k = \Phi e_k$. Значит, и система (3.2) имеет единственное решение.

$$(II) \Rightarrow (III)$$

Пусть у системы (3.2) существует единственное решение. Тогда оно равно e_k (вектор размера k), потому что такое решение всегда существует. Также 0 (только в данном случае это уже вектор размера k-1) является решением системы (3.3). Предположим, что у системы (3.3) нашлось еще одно решение $u \neq 0$. Тогда мы можем определить новое решение \overline{u} системы (3.2), подобрав константу c в векторе $\tilde{u} = (u^{(1)}, ..., u^{(k-1)}, c)$ и отнормировав его:

$$\overline{u} = \begin{cases} norm(\tilde{u}), & \sum_{s} \tilde{u}^{(s)} \neq 0, \\ norm((\tilde{u}^{(1)}, \dots, \tilde{u}^{(k-1)}, \tilde{u}^{(k)} + 1)), & \sum_{s} \tilde{u}^{s} = 0, \end{cases}$$

где

$$norm(x)^{(i)} = \frac{x^{(i)}}{\sum_{s} x^{(s)}}, \quad c = \max(0, \tilde{c} + 1),$$

$$\sum_{s} \Phi_{w} u^{(s)}$$

$$\tilde{c} = -\min_{w \in \operatorname{supp}\Phi_k} \frac{\displaystyle\sum_{s=1}^{k-1} \Phi_{ws} u^{(s)}}{\Phi_{wk}}.$$

$$(I) \Leftrightarrow (II)$$

Следует из леммы 2. Заметим, что система

$$\sum_{s=1}^{k} \Phi_{is} x^{(s)} \ge 0,$$
$$\sum_{s=1}^{k} x^{(s)} = 1$$

задает в точности многогранник span(Φ) $\cap \Delta_n$ в пространстве span(Φ) в координатах Φ_i , который соответствует многограннику M из леммы 2. Множеству I из леммы 2 соответствует $\sup_i (\Phi_i)$.

Теперь есть все необходимое, чтобы доказать теорему 1.

Доказательство. Из условия

$$\forall i \in [1,...,k] \quad \exists j : \Theta_{ii} = 1 \quad \forall i' \neq j, \quad \Theta_{i'i} = 0,$$

следует, что k точек F совпадают с вершинами $conv(\Phi)$, а значит, $conv(F) = conv(\Phi)$.

Условие же на ранги

$$\forall j \quad \text{rank}(\Phi[\text{supp}(\Phi_i), [1, ..., k] \setminus [j]]) = k - 1$$

по лемме 3 равносильно тому, что каждая вершина $conv(\Phi)$ является вершиной многогранника $span(\Phi) \cap \Delta_{n-1}$. Значит, теорема 1 следует из следствия 2.

4. ЭКСПЕРИМЕНТЫ

4.1. Интерпретация условий теоремы

Проинтерпретируем в терминах тематического моделирования условия теоремы 1.

Условие 1, заключающееся в наличии в матрице темы-документы Θ столбцов, из которых можно составить единичную матрицу $k \times k$, говорит о наличии k унитематических документов, то есть таких, в которых вероятности встретить любую тему, кроме одной, нулевые. Выполнение этого условия можно гарантировать, добавив в коллекцию k искусственно созданных унитематических документов, слова для которых подбираются, например, экспертами.

Условие 2 говорит о том, что для любого j матрицы

$$\Phi[\overline{\operatorname{supp}(\Phi_j)}, [1,...,k]\setminus[j]],$$

 $\Theta[[1,...,k]\setminus[j],:]$

задают неотрицательное разложение полного ранга матрицы $F[\text{supp}(\Phi_j),:]$. Это означает, что матрица Φ , из которой убрали j-ю тему-столбец и все слова, вероятность которых ненулевая в этой теме, и матрица Θ , из которой убрали j-ю тему-строку, задают тематическую модель для матрицы слова-документы F, из которой убрали все слова, встречающиеся в j-й теме.

Для проверки выполнения второго условия на реальной текстовой коллеции был проведен эксперимент.

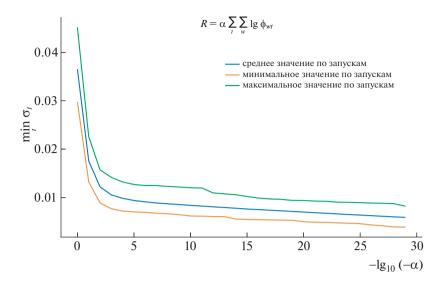
4.2. Описание эксперимента

Эксперимент проводился на лемматизированной коллекции 20newsgroups [21]. Тематическая модель строилась алгоритмом оптимизации ARTM (см. [3], [4]) с регуляризатором разреживания $R(\Phi) = \alpha \sum_t \sum_w \ln \phi_{wt}$ с коэффициентом регуляризации α . В использованной реализации алгоритма ARTM по умолчанию матрица Φ не может содержать нулей. Регуляризатор разреживания позволяет добиться зануления малых значений в этой матрице и контролировать количество нулей.

Для проверки второго условия теоремы требовалось для каждой темы t проверять полноту ранга матрицы $\Phi[\overline{\sup}(\Phi_t), [1, ..., T]\setminus[t]]$. Эффективный вычислительный способ сделать это — нахождение минимального сингулярного значения матрицы $\Phi[\overline{\sup}(\Phi_t), [1, ..., T]\setminus[t]]$ и сравнение его с нулем. Далее будем обозначать это минимальное сингулярное значение σ , для темы t.

4.3. Результаты

Как показывает фиг. 1, даже незначительного разреживания ($\alpha = -10^{-25}$) достаточно, чтобы обеспечить единственность разложения. Однако, если запустить исходный алгоритм PLSA без какого либо разреживания, то условия теоремы не будут выполняться из-за отсутствия нулей в матрице Φ .



Фиг 1. Изменение $\min_t \sigma_t$ при стремлении коэффициента α к нулю в регуляризаторе $R(\Phi) = \alpha \sum_t \sum_w \ln \phi_{wt}$, т.е. при уменьшении силы разреживания.

5. ЗАКЛЮЧЕНИЕ

Была описана проблема неединственности решения в задаче тематического моделирования, которая декомпозируется на неоднозначность выбора локального экстремума \tilde{F} оптимизируемого функционала и неединственность разложения \tilde{F} на Φ и Θ .

Был сформулирован ранее неизвестный результат (теорема 1), дающий достаточные условия для единственности решения задачи стохастического матричного разложения. Также был реализован эксперимент, в котором подтвердилось выполнение условий теоремы 1 на реальной текстовой коллекции. Таким образом, было показано, что неединственность решения в задаче тематического моделирования возникает в основном из-за неоднозначности выбора \tilde{F} .

СПИСОК ЛИТЕРАТУРЫ

- 1. Wenwu Wang. Instantaneous Versus Convolutive Non-Negative Matrix Factorization. P. 353-370.
- 2. David M. Blei, Andrew Y. Ng, Michael I. Jordan, John Lafferty. Latent dirichlet allocation // J. of Machine Learning Research. 2003. V. 3. P. 993–1022.
- 3. *Vorontsov K.V.* Additive regularization for topic models of text collections // Doklady Mathematics. 2014. V. 89. № 3. P. 301–304.
- 4. Vorontsov K., Potapenko A. Tutorial on Probabilistic Topic Modeling: Additive Regularization for Stochastic Matrix Factorization. 2014. P. 29–46.
- 5. *Vorontsov K.*, *Potapenko A*. Additive regularization of topic models // Machine Learning. 2014. V. 101. № 1–3. P. 303–323.
- 6. *Feng, Yansong, Lapata, Mirella*. Topic Models for Image Annotation and Text Illustration. Stroudsburg, PA, USA, 2010. P. 831–839.
- 7. *Timothy Hospedales, Shaogang Gong, Tao Xiang.* Video Behaviour Mining Using a Dynamic Topic Model // International Journal of Computer Vision. 2011. V. 98. № 3. P. 303–323.
- 8. *Xiao-xu Li, Chao-bo Sun, Peng Lu, Xiao-jie Wang, Yi-xin Zhong*. Simultaneous image classification and annotation based on probabilistic model // The Journal of China Universities of Posts and Telecommunications. 2012. V. 19. № 2. P. 107–115.
- 9. *Pritchard J.K.*, *Stephens M.*, *Donnelly P.* Inference of population structure using multilocus genotype data // Genetics. 2000. V. 155. P. 945–959.
- 10. Shivashankar S., Srivathsan S., Ravindran B., Tendulkar A.V. Multi-view methods for protein structure comparison using latent dirichlet allocation // Bioinformatics. 2011. V. 27. № 13. P. i61–i68.
- 11. *Vulić I., Wim De Smet, Marie-Francine Moens*. Cross-language information retrieval models based on latent topic models trained with document-aligned comparable corpora // Information Retrieval. 2012. V. 16. № 3. P. 331–368.

- 12. *Vulić I., Wim De Smet, Jie Tang, Marie-Francine Moens*. Probabilistic topic modeling in multilingual settings: An overview of its methodology and applications // Information Processing & Management. 2015. V. 51. № 1. P. 111–147.
- 13. *Ianina A., Golitsyn L., Vorontsov K.* Multi-objective Topic Modeling for Exploratory Search in Tech News // Communications in Computer and Information Science. Springer International Publishing. 2017. P. 181–193.
- 14. *Mikolov T., Sutskever I., Chen K., Corrado. G.S., Dean J.* Distributed Representations of Words and Phrases and their Compositionality // Advances in Neural Information Processing Systems 26 / Red. by C.J.C. Burges, L. Bottou, M. Welling et al. Curran Associates, Inc., 2013. P. 3111–3119.
- 15. *Potapenko A., Popov A., Vorontsov K.* Interpretable Probabilistic Embeddings: Bridging the Gap Between Topic Models and Neural Networks // Communications in Computer and Information Science. Springer International Publishing, 2017. P. 167–180.
- 16. *Hofmann T*. Probabilistic latent semantic indexing // Proc. of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval SIGIR 99. ACM Press, 1999.
- 17. *Kochedykov D., Apishev M., Golitsyn L., Vorontsov K.* Fast and modular regularized topic modelling // 2017 21st Conference of Open Innovations Association (FRUCT). IEEE, 2017.
- 18. Donoho D., Stodden V. When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts? 2004. P. 1141–1148.
- 19. Hans Laurberg, Mads Græsbøll Christensen, Mark D. Plumbley, Lars Kai Hansen, Søren Holdt Jensen. Theorems on Positive Data: On the Uniqueness of NMF // Comput. Intelligence and Neuroscience. 2008. V. 2008. P. 1–9.
- 20. Gillis N. Sparse and unique nonnegative matrix factorization through data preprocessing // The Journal of Machine Learning Research. 2012. V. 13. № 1. P. 3349–3386.
- 21. *Ken Lang.* 20 Newsgroups. 2008. Data retrieved from the dataset's official website, http://qwone.com/~jason/20Newsgroups/.