ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

УЛК 517.929

ON RANKS OF MATRICES OVER NONCOMMUTATIVE DOMAINS¹⁾

© 2023 r. S. A. Abramov^{1,*}, M. Petkovšek^{2,**}, A. A. Ryabenko^{1,***}

¹ 119333 Moscow, Vavilova str., 40, Federal Research Center "Computer Science and Control" of the Russian Academy of Science, Russia

² University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, SI-1000, Ljubljana, Slovenia *e-mail: sergeyabramov@mail.ru

**e-mail: Marko.Petkovsek@fmf.uni-lj.si

***e-mail: anna.ryabenko@gmail.com

Поступила в редакцию 30.08.2022 г.

Переработанный вариант 30.09.2022 г.

Принята к публикации 02.02.2023 г.

Рассматриваются матрицы над некоторой областью целостности R, т.е. над кольцом, не обязательно коммутативным, без делителей нуля. Обсуждаются понятия рангов по строкам и столбцам. (Коэффициенты линейных зависимостей принадлежат R; левые коэффициенты используются для строк, правые коэффициенты для столбцов.) Доказывается, что наличие ненулевых левых и правых общих кратных для произвольных ненулевых элементов R (условие Ope) является необходимым и достаточным условием равенства рангов по строкам и столбцам произвольной матрицы над R. Предлагается алгоритм вычисления ранга заданной матрицы. Наша реализация этого алгоритма в Maple охватывает области дифференциальных и (q-)разностных операторов как обычных, так и с частными производными и разностями. Библ. 8.

Ключевые слова: некоммутативная область, матрицы над областями, ранги по строкам и столбцам, компьютерная алгебра.

DOI: 10.31857/S0044466923050022, EDN: DXCTUA

О рангах матриц над некоммутативными областями. Ниже под областью всюду понимается кольцо, не обязательно коммутативное, не содержащее нетривиальных делителей нуля; везде далее R обозначает некоторую область.

Определение 1. Пусть A — матрица над R. Строки u_1, u_2, \ldots, u_r матрицы A линейно зависимы над R, если существуют такие не равные одновременно нулю $f_1, f_2, \ldots, f_r \in R$, что $f_1u_1 + f_2u_2 + \ldots + f_ru_r = 0$, в противном случае эти строки линейно независимы над R. Столбцы v_1, v_2, \ldots, v_s матрицы A линейно зависимы над R, если существуют такие не равные одновременно нулю $g_1, g_2, \ldots, g_s \in R$, что $v_1g_1 + v_2g_2 + \ldots + v_sg_s = 0$, в противном случае эти столбцы линейно независимы над R.

Наибольшее число линейно независимых строк (столбцов) матрицы A называется рангом по строкам или левым рангом (рангом по столбцам или правым рангом) матрицы A.

Определение ранга матрицы над некоторым полем как наибольшего числа ее линейно независимых строк и доказательство того, что это число равно ее наибольшему числу линейно независимых столбцов — это одно из начал классической линейной алгебры. Мы даем пример некоммутативной области, когда эти два ранга не совпадают, и естественно возникает вопрос о характеристике тех областей, над которыми совпадение имеет место. Мы показываем, что интересующие нас области суть те, которые удовлетворяют условиям Оре, т.е. области, в которых для любых ненулевых элементов существуют ненулевые левое и правое общие кратные.

В литературе можно найти различные подходы к определению ранга матрицы над областью. Выбор определения иногда диктуется удобством доказательства некоторой теоремы, что может вести к несовпадению с результатами, полученными при использовании других неэквивалентных определений. И даже для эквивалентных определений доказательство этой эквивалентно-

¹⁾Полный текст статьи печатается в английской версии журнала.

сти может оказаться довольно сложным. Например, в [1] ранг матрицы над кольцом полиномов Оре (см. [2] или [3]) определен как наибольшее число линейно независимых строк. Авторы статьи [1] отмечают, что их определение отличается от данного в [4], разд. 0.6, где ранг матрицы A над R определен как ранг левого модуля M, порожденного строками A над R. Теорема A.2 в [1] устанавливает, что для матриц над кольцом полиномов Оре одной переменной эти два числа совпадают, но доказательство этой теоремы выглядит очень непростым.

В книге Я.Б. Лопатинского [5] подчеркивается важность концепции ранга для исследования интегральных многообразий систем линейных дифференциальных уравнений с частными производными, и в этой книге дается доказательство равенства левого и правого рангов именно для дифференциальных операторов, при этом ранг понимается так же, как в определении 1.

В [1] дается доказательство равенства рангов для матриц над кольцом (некоммутативных) полиномов Оре, оснащенном автоморфизмом σ и отображением на себя δ , являющимся дифференцированием по отношению к σ (см., например, [2] или [3]). Абстракция таких полиномов одной переменной не покрывает, например, дифференциальных операторов с частными производными. Рассмотренные в [1] кольца таких полиномов одной переменной над коммутативными полями коэффициентов являются евклидовыми и соответствуют очень специальному случаю.

В нашем доказательстве мы исходим из более общего предположения — считаем, что область R удовлетворяет условиям Оре. Эти условия выполняются для полиномов Оре многих переменных (в частности, для дифференциальных операторов с частными производными), что доказано в [6].

Не очевидно, что предложенная в [7] теория левых и правых определителей позволяет получить короткое доказательство левого и правого рангов матрицы A над R в смысле определения 1, хотя и позволяет установить, что строки A линейно зависимы если и только если линейно зависимы ее столбиы.

Представляется, что в доступной литературе отсутствует полное доказательство равенства рангов (в смысле определения 1) по строкам и столбцам для матриц над удовлетворяющей условиям Оре областью R.

В нашей статье доказано, что рассмотрение вместе с областью R ее тела (т.е. поля, возможно, некоммутативного) частных, скажем, тела F "дробей" вида $p^{-1}q$, $p,q \in R$, $p \neq 0$, дает совпадение левого и правого рангов над F с левым и правым рангами над R. Естественно, что вычисление ранга над полем, пусть и некоммутативным, удобнее, чем над областью. Мы показываем, что если имеется алгоритм вычисления ненулевого левого общего кратного произвольных ненулевых элементов области, то с помощью гауссовых исключений возможно вычисление ранга заданной матрицы. Вычисление над телом F мы проводим без дробей. В компьютерно-алгебраической среде Марlе выполнена реализация этого подхода, она ориентирована на матрицы с элементами, являющимися линейными дифференциальными, разностными и q-разностными операторами с частными производными, сдвигами или q-сдвигами. Предлагается команда

OreAlgebraGaussianElimination,

доступная в

http://www.ccas.ru/ca/orealgebragaussianelimination.

Даются иллюстративные примеры.

Предварительная версия статьи опубликована в докладах конференции ISSAC'22 [8], где вместо условий Оре рассмотрены другие условия: для любого положительного целого n как строки произвольной матрицы из $R^{(n+1)\times n}$, так и столбцы произвольной матрицы из $R^{(n+1)\times n}$ линейно зависимы над R. В полной статье этот результат усилен: достаточно рассмотреть единственное значение n=1.

Авторы признательны А.Э. Гутерману, А.И. Зобнину, Дж. Лабану, В. Левандовскому, А.А. Михалеву, А.В. Михалеву, Ф. Шизаку за полезные советы.

СПИСОК ЛИТЕРАТУРЫ

1. Beckermann B., Cheng H., Labahn G. Fraction-free row reduction of matrices of Ore polynomials // J. Symbolic Comput. 2006. V. 41. P. 513–543.

- 2. Ore O. Theory of non-commutative polynomials // Ann. of Math. (2). 1933. V. 34. P. 480–508.
- 3. Bronstein M., Petkovšek M. An introduction to pseudo-linear algebra // Theoret. Comput. Sci. 1996. V. 157. P. 3–33.
- 4. *Кон П.М.* Свободные кольца и их связи. М.: Мир, 1975.
- 5. Лопатинский Я.Б. Теория общих граничных задач. Киев: Наукова Думка, 1984.
- 6. Chyzak F., Salvy B. Non-commutative elimination in Ore algebras proves multivariate identities // J. Symbolic Comput. 1998. V. 26. P. 187–227.
- 7. Ore O. Linear equations in non-commutative fields // Ann. of Math. (2). 1931. V. 32. P. 463–477.
- 8. *Abramov S., Petkovšek M., Ryabenko A.*, On linear dependence of rows and columns in matrices over non-commutative domains // Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, ACM. 2022. P. 39–43.