ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ, 2023, том 63, № 6, с. 881—890

_____ ОБЩИЕ ЧИСЛЕННЫЕ _____ МЕТОДЫ

УДК 517.968.2

ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ НЕКЛАССИЧЕСКИХ РАЗНОСТНЫХ СХЕМ ДЛЯ НЕЛИНЕЙНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ ВОЛЬТЕРРА II РОДА¹⁾

© 2023 г. М. Н. Ботороева^{1,2,*}, М. В. Булатов^{1,**}

¹ 664033 Иркутск, ул. Лермонтова, 134, Институт динамики систем и теории управления им. В.М. Матросова СО РАН, Россия

² 664003 Иркутск, ул. Карла Маркса, 1, Иркутский государственный университет, Россия

*e-mail: masha888888@mail.ru

**e-mail: mvbul@icc.ru

Поступила в редакцию 03.10.2022 г. Переработанный вариант 03.10.2022 г. Принята к публикации 20.01.2023 г.

В работе для решения систем нелинейных интегральных уравнений Вольтерра II рода сконструировано семейство безытерационных численных методов первого и второго порядка точности. Проведен анализ этих методов на *A*-, *L*-, *P*-устойчивость. Для иллюстрации полученных выводов представлены результаты численных расчетов модельных уравнений, содержащих жесткие и осциллирующие компоненты. Библ. 10. Фиг. 4. Табл. 4.

Ключевые слова: нелинейные интегральные уравнения Вольтерра II рода, разностные схемы, *А*-устойчивость, *L*-устойчивость, *P*-устойчивость.

DOI: 10.31857/S0044466923060054, EDN: TRLHZC

1. ВВЕДЕНИЕ

При решении ряда прикладных задач часто возникают нелинейные интегральные уравнения Вольтерра II рода (ИУВ II)

$$x(t) = \int_{0}^{t} F(t, s, x(s))ds + f(t), \quad 0 \le t \le 1,$$
(1)

где F(t, s, x(t)) и f(t) суть *n*-мерные вектор-функции с известными, достаточно гладкими элементами, x(t) – искомая *n*-мерная вектор-функция. Качественной теории и численным методам решения таких уравнений посвящены многочисленные работы (см., например, [1–4] и приведенную там библиографию).

Всюду в дальнейшем будем предполагать, что задача (1) имеет единственное решение, обладающее гладкостью, необходимой для проведения дальнейших выкладок.

К настоящему времени разработана достаточно полная теория численных методов решения задачи (1), это одношаговые методы типа Рунге–Кутты и их модификации (Бельтюкова–Вольтерра–Рунге–Кутты, Пузе–Вольтерра–Рунге–Кутты, коллокационные) [3], многошаговые, общие многошаговые методы, блочные методы и др. [2–4].

Формально все эти методы можно разделить на явные и неявные. При реализации явных методов на каждом шаге интегрирования приближенное решение находят из рекуррентных соотношений. Реализация неявных методов требует значительно больших вычислительных затрат: на каждом шаге интегрирования приходится решать системы линейных уравнений. Как правило, такие системы решают методом Ньютона, или его модификациями. При этом возникают следующие проблемы: выбор начального приближения для запуска итерационного процесса, выбор числа итераций и критерия остановки счета.

¹⁾Работа выполнена при финансовой поддержке РНФ (код проекта № 22-11-00173), https://rscf.ru/project/22-11-00173/.

Актуальным вопросом остается построение численных алгоритмов для решения уравнения (1) в случае, когда оно содержит быстро и медленно изменяющиеся компоненты — жесткие задачи. Использование явных методов для численного решения таких задач требует выбора очень малого шага интегрирования, что значительно затрудняет их использование.

В работе будут представлены безытерационные неклассические разностные схемы решения ИУВ II. Для обоснования их эффективности потребуется ряд вспомогательных сведений.

2. НЕОБХОДИМЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

На протяжении многих десятилетий для предсказания свойств численных методов решения задачи (1) используют тестовое уравнение [3], с. 469:

$$x(t) = \int_{0}^{t} (\lambda + \mu(t - s)) x(s) ds + \alpha_{1} + \alpha_{2} t,$$
(2)

где λ и μ – вещественные числа и $\lambda \ll 0, \mu \leq 0$.

На основе уравнения (2) могут быть построены различные тестовые задачи.

При $\mu = 0, \, \alpha_2 = 0, \, \alpha_1 = 1$ получим уравнение

$$x(t) = \lambda \int_{0}^{t} x(s)ds + 1, \qquad (3)$$

содержащее только жесткие компоненты. Его решением является функция $x(t) = e^{\lambda t}$.

В случае когда µ ≠ 0 уравнение (2) эквивалентно ОДУ второго порядка

$$x''(t) = \lambda x'(t) + \mu x(t), \quad x(0) = \alpha_1, \quad x'(t)|_{t=0} = \lambda \alpha_1 + \alpha_2,$$

которое при $\lambda^2 + 4\mu < 0$ содержит жесткие и осциллирующие компоненты.

Если полагать, что $\mu = -\omega^2$, $\alpha_1 = 0$, $\alpha_2 = \omega$, где ω – положительное действительное число, то получим уравнение

$$x(t) = -\omega^2 \int_0^t (t-s)x(s)ds + \omega t$$
(4)

с осциллирующим точным решением $x(t) = \sin \omega t$.

Введем на отрезке [0;1] равномерную сетку $t_i = ih$, i = 0, 1, 2, ..., N, h = 1/N, и обозначим $F_{i,i,k} = F(t_i, t_j, x(t_k)), j \le i, k \le j, f_i = f(t_i), x_i \approx x(t_i)$.

При анализе численных методов будем опираться на ряд следующих определений.

Любой одношаговый метод для уравнения (3) можно представить в виде $x_{i+1} = R(z)x_i$, где $z = \lambda h$ и R(z) принято называть функцией устойчивости [5] (полином или дробно рациональная функция).

Определение 1 (см. [5]). Множество всех точек комплексной плоскости, для которых $|R(z)| \le 1$, называется областью устойчивости численного метода. Если область устойчивости содержит всю левую полуплоскость z < 0, то метод называется *A*-устойчивым. Если при этом $\lim_{z\to\infty} R(z) = 0$, называется *L*-устойчивым.

Рассмотрим семейство одношаговых методов – θ-методы, которые для задачи (1) с точностью до обозначений имеют вид

$$x_{i+1} = h \left[a F_{i+1,i+1,i+1} + (1-a) F_{i+1,0,0} + \sum_{p=1}^{i} F_{i+1,p,p} \right] + f_{i+1},$$
(5)

где скалярный параметр $a: 0 \le a \le 1$.

Для уравнения (3) методы (5) при a = 1, a = 0, $a = \frac{1}{2}$ совпадают с неявным методом Эйлера, явным методом Эйлера и методом трапеций. Функция устойчивости в этом случае $R(z) = \frac{1 + (1 - a)z}{1 - az}$, т.е. методы (5) будут *А*-устойчивыми при $\frac{1}{2} \le a \le 1$ и *L*-устойчивым при a = 1.

Для тестового примера (2) данные методы дают рекуррентные соотношения:

$$x_{i+1} - 2x_i + x_{i-1} = z(x_{i+1} - x_i) + rx_i, \quad a = 0,$$
(6)

$$x_{i+1} - 2x_i + x_{i-1} = z(x_i - x_{i-1}) + rx_{i-1}, \quad a = 1,$$
(7)

$$x_{i+1} - 2x_i + x_{i-1} = \frac{z}{2}(x_{i+1} - x_{i-1}) + rx_i, \quad a = \frac{1}{2},$$
(8)

где $r = \mu h^2$.

Определение 2 (см. [6]). Областью устойчивости методов (6)–(8) назовем те вещественные значения *z* и *r*, при которых корни *p* характеристических уравнений

$$(1-z)p^{2} - 2\left(1 - \frac{z}{2} + \frac{r}{2}\right)p + 1 = 0,$$

$$p^{2} - 2\left(1 + \frac{z}{2}\right)p + (1 + z - r) = 0,$$

$$\left(1 - \frac{z}{2}\right)p^{2} - 2\left(1 + \frac{r}{2}\right)p + \left(1 + \frac{z}{2}\right) = 0,$$

лежат в единичном круге.

Определение 3 (см. [7]). Если для модельного уравнения (4) численные методы дают симметричное характеристическое уравнение

$$P_m(\rho^2)p^2 - 2Q_t(\rho^2)p + P_m(\rho^2) = 0,$$

где $\rho = \omega h > 0$ и функция устойчивости метода $R_p(\rho) = \frac{Q_t(\rho^2)}{P_m(\rho^2)}$ принимает значения, меньшие единицы по модулю при любых значениях ω и любых длинах шагов за исключением, быть может, дискретного набора значений *h*, то численный метод называют *P*-устойчивым.

3. ЧИСЛЕННЫЕ АЛГОРИТМЫ

При применении неявных разностных схем для ОДУ получают систему нелинейных конечномерных уравнений. Для того чтобы облегчить вычислительный процесс, используют методы типа Розенброка [6], с. 121, предполагающие путем линеаризации схемы свести задачу к решению системы линейных алгебраических уравнений.

Ниже мы используем этот подход для создания безытерационных методов для задачи (1). Выпишем одноопорный вариант методов (5) для задачи (1)

$$x_{i+1} = h \sum_{p=0}^{i} F(t_{i+1}, t_{p+b}, (bx_{p+1} + (1-b)x_p)) + f_{i+1}.$$
(9)

Линеаризуем (5) и (9) и объединим получившиеся соотношения в переопределенную систему линейных алгебраических уравнений (СЛАУ) относительно x_{i+1}

$$\begin{pmatrix} E - haJ_{i+1} \\ E - hbJ_{i+b} \end{pmatrix} x_{i+1} = \begin{pmatrix} f_{i+1} \\ f_{i+1} \end{pmatrix} + h \begin{pmatrix} (1-a)F_{i+1,0,0} + aF_{i+1,i+1,i} - aJ_{i+1}x_i + \sum_{p=1}^{i}F_{i+1,p,p} \\ F_{i+1,i+b,i} - bJ_{i+b}x_i + \sum_{p=0}^{i-1}F(t_{i+1},t_{p+b},(bx_{p+1} + (1-b)x_p)) \end{pmatrix},$$
(10)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 63 № 6 2023

883

где E – единичная матрица порядка n, а для матрицы Якоби $J = \frac{\partial F(t, s, x)}{\partial x}$ введены обозначения $J(t_{i+1}, t_{i+1}, x(t_i)) = J_{i+1}, J(t_{i+1}, t_{i+b}, x(t_i)) = J_{i+b}.$

СЛАУ (10) в общем случае не имеет решения, поэтому умножим обе части системы слева на матрицу $(E - haJ_{i+1}|c(E - hbJ_{i+b}))$ размерности $(n \times 2n)$. В итоге получим систему *n* уравнений

$$\left[\left(E - haJ_{i+1}\right)^2 + c(E - hbJ_{i+b})^2 \right] x_{i+1} = \left(E - haJ_{i+1}\right) h \left[(1 - a)F_{i+1,0,0} + aF_{i+1,i+1,i} - aJ_{i+1}x_i + \sum_{p=1}^{i} F_{i+1,p,p} \right] + c(E - hbJ_{i+b}) h \left[F_{i+1,i+b,i} - bJ_{i+b}x_i + \sum_{p=0}^{i-1} F(t_{i+1}, t_{p+b}, bx_{p+1} + (1 - b)x_p) \right] + \left[E - ahJ_{i+1} + c(E - bhJ_{i+b}) \right] f_{i+1}.$$

$$(11)$$

Семейство методов (11) устойчиво и при любых значениях параметров *a*, *b*, *c* имеет как минимум первый порядок точности.

Если параметры удовлетворяют уравнению

$$1 + c = 2(a + bc), (12)$$

то разностная схема (11) будет иметь второй порядок точности. В этом легко убедиться, разложив разностную схему (11) в ряд в окрестности точки (x_i, t_i) .

Для модельной задачи (2) при $\mu = 0$, $a_2 = 0$ разностная схема (11) дает следующее рекуррентное соотношение

$$\left((1-az)^2 + c(1-bz)^2\right)x_{i+1} = \left(z(1-az+c(1-bz)) + (1-az)^2 + c(1-bz)^2\right)x_i.$$
(13)

Для дальнейшего исследования удобно представить функцию устойчивости рассматриваемых методов в следующем виде:

$$R(z) = \frac{1 + c + (1 - 2a + c - 2bc)z + (a^2 - a + cb^2 - cb)z^2}{1 + c - (2a + 2bc)z + (a^2 + cb^2)z^2}$$

Среди методов (11), параметры которых удовлетворяют условию (13), можно выделить *A*-устойчивые при $c \ge 0$ и *L*-устойчивые при одновременном выполнении условий

$$c \ge 0, \quad a^2 - a + cb^2 - cb = 0, \quad a^2 + cb^2 \ne 0.$$
 (14)

Для анализа характера разностных схем (11) удобно воспользоваться графическим представлением условий (12) и (14), например, в системе координат *aOb* при заданном конкретном значении параметра *c*. В таком случае уравнение (12) задает прямую, а условия (14) при c > 0 описывает эллипс с центром в точке (0.5;0.5). Точки пересечения этих кривых определяют коэффициенты (*a*, *b*) (при заранее заданном c > 0) *L*-устойчивого алгоритма второго порядка. Следует отметить, что при обозначенных ранее условиях $0 \le a, b \le 1$ *L*-устойчивый метод второго порядка единственный, его исследование было проведено в статье [8]. Допустим, что параметры *a*, *b* могут принимать значения, большие единицы, и станем исследовать вопрос поиска экстраполяционных *L*-устойчивых методов первого и второго порядков.

В качестве примера, на фиг. 1 приведен случай расположения кривых, заданных уравнениями (12) и (14) при c = 0.25. Отмеченные на фиг. 1 точки определяют параметры для численных методов, обладающих следующими характеристиками (см. табл. 1).

На фиг. 2 представлены области устойчивости для выделенных в табл. 1 численных методов.

Продолжим исследовать свойства семейства численных методов (11), для этого введем ряд обозначений:

$$r = \mu h^{2}, \quad A = (1 - az)^{2} + c(1 - bz - br(1 - b))^{2},$$

$$B(u) = (az - 1)(z + ur), \quad C(u) = (z + r(u - b))(1 - b) + b(z + r(u + 1 - b)).$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 63 № 6 2023

Фиг. 1. На данном рисунке в системе координат aOb приводится геометрическое представление условий второго порядка (12) и устойчивости (14) численных методов (11) при фиксированном значении c = 0.25. Здесь координаты точек, расположенных на эллипсе, задают параметры a, b L-устойчивых методов; координаты точек прямой определяют параметры методов второго порядка. Координаты точек, отмеченных черным, соответствуют параметрам методов, представленных в табл. 1.

Для модельного уравнения (2) запишем характеристическое уравнение:

$$A\rho^{2} + (B(1) - c(1 - bz - br(1 - b))C(1) - 2A)\rho + + B(2) - c(1 - bz - br(1 - b))(C(2) - 2C(1)) + 2B(1) - A = 0.$$

Таблица 1.	Сравнение	характеристик	численных	методов с	различными	наборами	параметров	(a,b,c)
------------	-----------	---------------	-----------	-----------	------------	----------	------------	---------

Упорядоченный набор параметров (<i>a</i> ; <i>b</i> ; <i>c</i>)	Порядок точности разностной схемы	Характеристика устойчивости
(0.4; 1.6; 0.25)	первый	L-устойчивость
(0.25; 1.5; 0.25)	второй	L-устойчивость
(0.4; 1.5; 0.25)	первый	А-устойчивость
(0.375; 1; 0.25)	второй	А-устойчивость

Фиг. 2. Области устойчивости для методов, выделенных в табл. 1.

С помощью критерия Рауса-Гурвица (см., например, [9], с. 676) определим условия

$$-b^{2}cr^{2} + bczr + bcr^{2} + azr - cr - r \ge 0,$$

$$-2b^{2}czr + 2bcz^{2} + 2bczr + 2az^{2} - 2cz - 2z \ge 0,$$

$$b^{2}c(4b^{2}r^{2} - 8bzr - 8br^{2} + 4z^{2} + 10zr + 5r^{2} + 8r) + 4a^{2}z^{2} - bc(2z^{2} - 3zr - r^{2} - 8z - 8r) - 2az^{2} - azr - 8az + 2cz + cr + 4c + 2z + r + 4 \ge 0,$$

при выполнении которых корни характеристического уравнения будут лежать в единичном круге. На фиг. 3 приведена область устойчивости метода с параметрами a = 0.4, b = 1.6, c = 0.25.

Далее на основании определения 3 выявим условия на параметры, при которых методы (11) будут *P*-устойчивыми.

Методы (11) для уравнения (4) имеют следующую функцию устойчивости:

$$R_{p}(\rho) = \frac{\frac{\rho^{2}}{2}(1 + c(1 + \rho^{2}b(1 - b))) - 1 - c(1 + \rho^{2}b(1 - b))^{2}}{1 + c(1 + \rho^{2}b(1 - b))^{2}}.$$

Фиг. 3. Область устойчивости метода с параметрами a = 0.4, b = 1.6, c = 0.25.

Значения функции устойчивости будут заключены в интервале (-1;1) при

$$b = 0.5, \quad c > 1.$$
 (15)

Для частного случая уравнений (1) линейных ИУВ II (при F(t, s, x(t)) = K(t, s)x(t), $K(t, s) - (n \times n)$ матрица) можно записать аналогичные схемы

$$\begin{bmatrix} (E - haK_{i+1,i+1})^2 + c(E - hbK_{i+1,i+b})^2 \end{bmatrix} x_{i+1} = \\ = (E - haK_{i+1,i+1}) \begin{bmatrix} h(1-a)K_{i+1,0}x_0 + h\sum_{p=1}^i K_{i+1,p}x_p + f_{i+1} \end{bmatrix} + \\ + c(E - hbK_{i+1,i+b}) \begin{bmatrix} h\sum_{p=0}^{i-1} K_{i+1,p+b}(bx_{p+1} + (1-b)x_p) + hK_{i+1,i+b}(1-b)x_i + f_{i+1} \end{bmatrix},$$

где $K_{i,i} = K(t_i, t_i)$. Для данного семейства методов, очевидно, будут справедливы все выводы, сформулированные выше.

Приведем результаты численных экспериментов.

4. ЧИСЛЕННЫЕ ЭКСПЕРИМЕНТЫ

Для иллюстрации описанного выше аппарата описания характеристик численных схем из семейства методов (11) приведем результаты численных экспериментов для ряда модельных задач.

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 63 № 6 2023

(<i>a</i> ; <i>b</i> ; <i>c</i>)		h = 0.1	h = 0.05	h = 0.025	Характеристика
(0.4; 1.6; 0.25)	err _l	0.0056	0.0027	0.0013	<i>L</i> -уст.,
	err ₂	0.12	0.092	0.044	1 порядок точности
(0.25; 1.5; 0.25)	err _l	0.00057	0.00015	0.38×10^{-4}	<i>L</i> -уст.,
	err ₂	0.022	0.0093	0.0038	2 порядок точности
(0.4; 1.5; 0.25)	err _l	0.0020	0.00086	0.00040	А-уст.,
	err ₂	0.14	0.085	0.039	1 порядок точности
(0.375; 1; 0.25)	err _l	0.0043	0.30×10^{-4}	0.50×10^{-5}	А-уст.,
	err ₂	0.11	0.032	0.0081	2 порядок точности

Таблица 2. Результаты расчетов для примера 1

Таблица 3. Результаты расчетов для примера 3. В таблице указаны значения погрешностей $\max_{1 \le i \le N} |x(t_i) - x_i|$

(a;b;c)	λ	μ	h = 0.1	h = 0.05	h = 0.025	Характеристика
(0.4; 1.6; 0.25)	2	4	0.0093	0.0044	0.0021	<i>L</i> -уст.,
	100	10	0.012	0.0057	0.0026	1 порядок точности
(0.25; 1.5; 0.25)	2	4	0.0017	0.00053	0.00015	<i>L</i> -уст.,
	100	10	0.00087	0.00030	0.93×10^{-4}	2 порядок точности
(0.4; 1.5; 0.25)	2	4	0.0078	0.0037	0.0018	А-уст.,
	100	10	0.010	0.0049	0.0022	1 порядок точности
(0.375; 1; 0.25)	2	4	0.00036	0.55×10^{-4}	0.91×10^{-5}	А-уст.,
	100	10	0.0047	0.0013	0.00032	2 порядок точности

Пример 1. Рассмотрим жесткое ИУВ II относительно неизвестной вектор-функции $x(t) = (u(t) v(t))^{T}$, аналог жесткого ОДУ [3, с. 507], [10]:

$$\binom{u(t)}{v(t)} = \int_{0}^{t} \binom{-50 \, lu(s) - 500 v(s)}{3 \cos(t-s) v^{2}(s)} ds + \binom{0}{\cos t - \sin t - \sin 2t}, \quad t \in [0;1]$$

Точное решение: $u(t) = \exp(-t) - \exp(-1001t)$, $v(t) = \cos t$.

В табл. 2 и далее приведены значения погрешностей $\operatorname{err}_1 = \max_{1 \le i \le N} |u(t_i) - u_i|$ и $\operatorname{err}_2 = \max_{1 \le i \le N} |v(t_i) - v_i|$, где Nh = 1.

Пример 2. Для модельной задачи (4) со значением ω на фиг. 4 представлено сравнение графиков точного решения $x(t) = \sin 20t$ и восстановленных решений на отрезке $t \in [1,3]$ с помощью различных численных методов (параметры методов приведены на фиг. 4). Метод с параметрами a = 1, b = 0.5, c = 1.5 удовлетворяет условиям (15) и является *P*-устойчивым. На фиг. 4 видно, что график решения, восстановленного с помощью этого метода, практически совпадает с графиком точного решения. На прочих графиках видна рассогласованность в частотах колебания.

Пример 3. В табл. 3 представлены результаты расчетов для жесткого нелинейного ИУВ II (см. [3], с. 465):

$$x(t) = -\lambda \int_{0}^{t} \frac{1+t}{1+s} x^{2}(s) ds + f(t), \quad t \in [0;1],$$

$$f(t) = \sqrt{1 + (1+t)e^{-\mu t}} + \lambda(1+t) \left[\ln(1+t) - \frac{e^{-\mu t}}{\mu} + \frac{1}{\mu} \right]$$

Фиг. 4. Результаты численных расчетов для примера 4 при $\omega = 20$. Метод с параметрами a = 1, b = 0.5, c = 1.5 (нижний рисунок) является *P*-устойчивым и весьма точно улавливает частоту точного решения, в отличие от расчетов (три рисунка сверху) с помощью методов, не являющихся *P*-устойчивыми.

Точное решение: $x(t) = \sqrt{1 + (1+t)e^{-\mu t}}$.

Пример 4. В качестве заключительного примера рассмотрим

$$\binom{u(t)}{v(t)} = \int_{0}^{t} \binom{-\sin(t+\ln v(s))}{\ln((t+1)\exp(-u(s)))} ds + \binom{1+t-\cos t}{\exp(-t)+\frac{t^{2}}{2}-t\ln(t+1)}, \quad t \in [0;1].$$

Точное решение: u(t) = t, $v(t) = \exp(-t)$.

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 63 № 6 2023

(a;b;c)		h = 0.1	h = 0.05	h = 0.025	Характеристика
(0.4; 1.6; 0.25)	err _l	0.024	0.014	0.0076	<i>L</i> -уст.,
	err ₂	0.021	0.012	0.0062	1 порядок точности
(0.25; 1.5; 0.25)	err _l	0.0094	0.0023	0.00058	<i>L</i> -уст.,
	err ₂	0.0056	0.0013	0.00032	2 порядок точности
(0.4; 1.5; 0.25)	err _l	0.021	0.012	0.0065	А-уст.,
	err ₂	0.018	0.010	0.0053	1 порядок точности
(0.375; 1; 0.25)	err _l	0.0027	0.00062	0.00015	А-уст.,
	err ₂	0.0016	0.00036	0.000084	2 порядок точности

Таблица 4. Результаты расчетов для примера 4

Результаты численных расчетов с помощью некоторых методов из семейства (11) приведены в табл. 4.

Замечание. Множественные численные эксперименты, проведенные для модельных интегральных уравнений Вольтерра II рода, содержащих жесткие и быстро осциллирующие компоненты (2), показали, что методы из семейства (11) дают весьма хороший результат в тех случаях,

когда параметры жесткости $z = \lambda h$ и осцилляции $r = \mu h^2$ удовлетворяют области устойчивости метода (см., например, фиг. 3). В других случаях требуется более тонкая настройка параметров *a*, *b*, *c* методов (11) или значительное уменьшение шага интегрирования *h*.

5. ЗАКЛЮЧЕНИЕ

В работе построено семейство безытерационных методов, содержащих три свободных параметра, для численного решения нелинейных интегральных уравнений Вольтерра II рода. Получены условия на параметры, что позволило конкретизировать семейства *A*- и *L*-устойчивых методов первого и второго порядка точности. Выделены условия для конструирования *P*-устойчивых методов. Все выводы хорошо согласуются с результатами численных экспериментов, проведенных для нелинейных интегральных уравнений Вольтерра II рода, содержащих жесткие или (и) осциллирующие компоненты.

СПИСОК ЛИТЕРАТУРЫ

- 1. Краснов М.Л. Интегральные уравнения. (Введение в теорию). М.: Наука, 1975. 301 с.
- 2. *Linz P.* Analitical and numerical methods for Volterra equations. Studies in applied mathematics. Philadelphia, 1985. 240 p.
- 3. *Brunner H., van der Houwen P.J.* The numerical solution of Volterra equations, CWI Monographs 3, North-Holland, Amsterdam, 1986. 588 p.
- 4. *Brunner H*. Collocation Methods for volterra integral and related funktional differential equations. Cambridge University Press, 2004.
- 5. *Деккер К., Вервер Я.* Устойчивость методов Рунге—Кутты для жестких нелинейных дифференциальных уравнений. М.: Мир, 1988. 334 с.
- 6. *Хайрер Э., Ваннер Г.* Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи. М.: Мир, 1999. 685 с.
- Coleman J.P., Ixaru L.Gr. P-stability and exponential-fitting methods for y = f (x, y) // J. Num. Anal. 1996. № 16. C. 179–199.
- 8. *Булатов М.В., Мачхина М.Н.* Некоторые особенности поведения численных методов решения интегральных уравнений Вольтерра II рода // Ж. вычисл. матем. и матем. физ. 2014. Т. 54. № 3. С. 496–502.
- 9. Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). М.: Наука, 1973. 832 с.
- 10. *Булатов М.В.* О построении неклассических разностных схем для обыкновенных дифференциальных уравнений // Дифференц. ур-ния. 2008. Т. 44. № 4. С. 546–557.