ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

УДК 519.65

О ЛОКАЛЬНЫХ ПАРАБОЛИЧЕСКИХ ИНТЕРПОЛЯЦИОННЫХ СПЛАЙНАХ ФАВАРА С ДОПОЛНИТЕЛЬНЫМИ УЗЛАМИ¹⁾

© 2023 г. В. Т. Шевалдин^{1,*}

¹ 620108 Екатеринбург, ул. С. Ковалевской, 16, Институт математики и механики им. Н.Н. Красовского УрО РАН, Россия

*e-mail: Valerii.Shevaldin@imm.uran.ru Поступила в редакцию 19.04.2022 г.

Поступила в редакцию 19.04.2022 г. Переработанный вариант 13.12.2022 г. Принята к публикации 02.03.2023 г.

Приведены явные формулы для интерполяционных параболических сплайнов на отрезке числовой оси, построенных Ж. Фаваром в 1940 г. Установлены оценки для нормы второй производной и погрешности аппроксимации в равномерной метрике построенными сплай-

нами на соболевском классе W^2_{∞} дважды дифференцируемых функций. Библ. 18.

Ключевые слова: интерполяция, сплайны, равномерная метрика, разделенные разности, производная.

DOI: 10.31857/S0044466923060182, EDN: UYQYDE

1. ВВЕДЕНИЕ

В первых монографиях [1], [2] на русском языке по теории сплайнов отмечается, что теории интерполяции полиномиальными сплайнами и сам термин сплайн ведут свой отсчет со статьи И. Шёнберга [3], вышедшей в 1946 г. Однако еще раньше в своей статье 1940 г. локальные интерполяционные сплайны степени *п* появились (вероятно, впервые) в работе Ж. Фавара [4], посвяшенной решению одной экстремальной интерполяционной задачи о связи разделенных разностей *п*-го порядка и соответствующих производных. Развитие теории сплайнов происходило в различных направлениях. Например, они оказались экстремальными функциями во многих задачах по вычислению точных констант в теории приближения функций (см., например, [5–7]). Но самое главное применение сплайны и более общие конструкции (в частности, всплески) получили в вычислительной математике. В настоящее время трехмерные вычислительные схемы. построенные на основе одномерных сплайнов, используются для моделирования поверхностей летательных аппаратов, корпусов судов, гидротурбин, при описании различных геологических, физических и биологических явлений, а также при обработке изображений, в картографии, томографии, индустрии фильмов и т.д. При этом наиболее востребованы локальные сплайны. Понятие локальности означает, что значение сплайна в каждой точке зависит только от нескольких значений аппроксимируемой функции в окрестности этой точки, и для их построения не требуется решение систем линейных алгебраических уравнений с большим числом неизвестных. Локальные сплайны (начиная с работы Т. Лича и Л. Шумейкера [8]) обычно строились из условия сохранения сплайном многочленов заданной степени. Первые параболические интерполяционные локальные сплайны построил Б.И. Квасов (см. [9]). Развитием новых методов в теории локальных сплайнов занимались многие математики (см., например, [10-13], монографию автора [14] и имеющиеся там ссылки). Каждый год появляются десятки статей по применению локальных сплайнов в различных задачах геометрического моделирования.

В настоящей работе мы, следуя Ж. Фавару [4], для функций f, заданных поточечно на отрезке числовой оси, строим локальные интерполяционные параболические сплайны (т.е. при n = 2), отличные от сплайнов Б.И. Квасова (см. [9]). При произвольном $n \in \mathbb{N}$ подобное построение сплайнов Фавара (в работе Ж. Фавара описан только метод их получения) также возможно, и это

¹⁾Работа выполнена при финансовой поддержке Минобрнауки РФ (проект 075-02-2023-913) в рамках исследований, проводимых в Уральском математическом центре.

приводит к решению системы *n* линейных алгебраических уравнений относительно параметров этих сплайнов (значений *n*-й производной локального интерполяционного сплайна).

В разд. 2 мы решаем такую систему в случае n = 2 и затем исследуем простейшие свойства (оцениваем вторую производную и величину погрешности аппроксимации в равномерной метрике) интерполяционных параболических сплайнов, возникших в работе Ж. Фавара.

2. ЯВНЫЕ ФОРМУЛЫ ДЛЯ ИНТЕРПОЛЯЦИОННЫХ ПАРАБОЛИЧЕСКИХ СПЛАЙНОВ ФАВАРА

Рассмотрим сетку узлов $\Delta: x_0 < x_1 < ... < x_n$ на отрезке $[x_0; x_n], n \in \mathbb{N}, n \ge 2$, и пусть $h_k = x_{k+1} - x_k, x_{k+1/2} = 0.5(x_k + x_{k+1})$. Пусть $y = \{y_k\}_{k=0}^n$ – произвольная последовательность действительных чисел. Введем последовательность $\{P_k(x)\}_{k=0}^{n-1}$ линейных функций, удовлетворяющих условиям

$$P_k(x_k) = y_k, \quad P_k(x_{k+1}) = y_{k+1}.$$

Ясно, что каждая функция $P_k(x)$ может быть записана в виде

$$P_k(x) = \frac{y_{k+1}(x-x_k) + y_k(x_{k+1}-x)}{x_{k+1}-x_k}, \quad k = 0, 1, \dots, n-1.$$

Будем строить параболический сплайн $S \in C^1[x_0; x_n]$ с основными узлами в точках $\{y_k\}_{k=0}^n$ и дополнительными узлами в точках $\{x_{k+1/2}\}_{k=1}^{n-1}$, удовлетворяющий условиям интерполяции

$$S(x_k) = y_k, \quad k = 0, 1, \dots, n$$

Для этого на отрезке $[x_0; x_1]$ положим $S(x) = P_0(x)$. Тогда $S(x_0) = y_0$, $S(x_1) = y_1$. Пусть сплайн S(x) уже построен на отрезке $[x_{k-1}; x_k]$, $k \ge 1$. Тогда на следующем отрезке $[x_k; x_{k+1}]$ положим

$$S(x) = P_{k-1}(x) + \int_{x_k}^x (x-t)u(t)dt,$$
(2.1)

где функция u(t) = S''(t) подлежит дальнейшему определению. Продифференцируем обе части этой формулы. Получим

$$S'(x) = P'_{k-1}(x) + \int_{x_k}^x u(t) dt.$$
(2.2)

Разделенная разность второго порядка по узлам x_{k-1} , x_k , x_{k+1} определяется обычным образом с помощью равенства

$$[y_{k+1}, y_k, y_{k-1}] = \frac{y_{k+1}}{h_k(h_{k-1} + h_k)} - \frac{y_k}{h_{k-1}h_k} + \frac{y_{k-1}}{h_{k-1}(h_{k-1} + h_k)}, \quad k = 1, 2, \dots, n-1.$$

Функцию u(t) = S''(t) будем строить в виде

$$u(t) = \begin{cases} Z_1[y_{k+1}, y_k, y_{k-1}], & x_k \le t < x_{k+1/2}, \\ Z_2[y_{k+1}, y_k, y_{k-1}], & x_{k+1/2} \le t < x_{k+1} \end{cases}$$

где числа $Z_1 = Z_1^{(k)}$ и $Z_2 = Z_2^{(k)}$ определим, исходя из системы уравнений

$$S(x_{k+1}) = P_k(x_{k+1}), \quad S'(x_{k+1}) = P'_k(x_{k+1}).$$

Эта система уравнений с учетом (2.1) и (2.2) переписывается в виде

$$P_{k}(x_{k+1}) - P_{k-1}(x_{k+1}) = \int_{x_{k}}^{x_{k+1}} (x_{k+1} - t) u(t) dt,$$

$$P_{k}'(x_{k+1}) - P_{k-1}'(x_{k+1}) = \int_{x_{k}}^{x_{k+1}} u(t) dt.$$
(2.3)

Левые части системы (2.3) могут быть записаны в виде

$$P_k(x_{k+1}) - P_{k-1}(x_{k+1}) = h_k(h_{k-1} + h_k)[y_{k+1}, y_k, y_{k-1}],$$
$$P'_k(x_{k+1}) - P'_{k-1}(x_{k+1}) = (h_{k-1} + h_k)[y_{k+1}, y_k, y_{k-1}],$$

а правые –

$$\int_{x_{k}}^{x_{k+1}} (x_{k+1} - t) u(t) dt = \frac{h_{k}^{2} (3Z_{1} + Z_{2})}{2} [y_{k+1}, y_{k}, y_{k-1}],$$
$$\int_{x_{k}}^{x_{k+1}} u(t) dt = \frac{h_{k} (Z_{1} + Z_{2})}{2} [y_{k+1}, y_{k}, y_{k-1}].$$

Тогда из системы (2.3) выводим следующие равенства:

$$Z_1 = \frac{3(h_{k-1} + h_k)}{h_k}, \quad Z_2 = -\frac{h_{k-1} + h_k}{h_k}.$$

Таким образом, параболический сплайн Фавара, т.е. функция S(x), построен на любом отрезке $[x_k; x_{k+1}], k = 0, 1, ..., n - 1$. При этом $S \in C^1[x_0; x_n]$ и выполнены условия интерполяции $S(x_k) = y_k$, k = 0, 1, ..., n. Этот сплайн является локальным. На каждом отрезке $[x_k; x_{k+1}], k \ge 1$, он зависит только от трех значений y_{k-1}, y_k, y_{k+1} интерполируемой последовательности $y = \{y_k\}_{k=0}^n$. Узлами этого сплайн являются точки $\{x_k\}_{k=0}^n$ и $\{x_{k+1/2}\}_{k=1}^{n-1}$. С учетом определения чисел $Z_1 = Z_1^{(k)}$ и $Z_2 = Z_2^{(k)}$ сплайн S(x) записывается в виде

$$S(x) = \frac{y_k(x - x_{k-1}) + y_{k-1}(x_k - x)}{h_{k-1}} + \frac{3(h_{k-1} + h_k)}{2h_k}(x - x_k)^2 [y_{k+1}, y_k, y_{k-1}], \quad x \in [x_k; x_{k+1/2}],$$

$$S(x) = \frac{y_k(x - x_{k-1}) + y_{k-1}(x_k - x)}{h_{k-1}} + \frac{h_{k-1} + h_k}{2h_k} (3(x - x_k)^2 - 4(x - x_{k+1/2})^2) [y_{k+1}, y_k, y_{k-1}], \quad (2.4)$$

$$x \in [x_{k+1/2}; x_{k+1}].$$

Пусть

$$W_{\infty}^{2} = W_{\infty}^{2}[x_{0}; x_{n}] = \left\{ f : f' \in AC[x_{0}; x_{n}], \left\| f'' \right\|_{L_{\infty}[x_{0}; x_{n}]} \le 1 \right\}$$

есть соболевский класс дважды дифференцируемых функций с обычным определением нормы в пространстве L_{∞} . Пусть $f \in W_{\infty}^2$ и $f(x_k) = y_k$, k = 0, 1, ..., n.

Теорема 1. Имеет место неравенство

$$\sup_{f\in W_{\infty}^2} \left\| S^{\prime\prime} \right\|_{L_{\infty}[x_0;x_n]} \leq 3.$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 63 № 6 2023

Доказательство теоремы 1 следует из (2.4), равенства $S''(x) = 0, x \in (x_0; x_1)$, и следующего соотношения (см., например, [3], с. 63):

$$\left[y_{k+1}, y_k, y_{k-1}\right] = \frac{1}{h_{k-1} + h_k} \left[\frac{1}{h_k} \int_{x_k}^{x_{k+1}} (x_{k+1} - t) f''(t) dt + \frac{1}{h_{k-1}} \int_{x_{k-1}}^{x_k} (t - x_{k-1}) f''(t) dt\right].$$
(2.5)

Теорема 2. При $k \ge 1$ имеет место неравенство

$$\sup_{f \in W_{\infty}^{2}} \left\| f - S \right\|_{L_{\infty}[x_{k};x_{k+1}]} \le 0.5 \max\left\{ h_{k-1}h_{k}, h_{k}^{2} \right\}.$$

Доказательство. Используя формулу Тейлора

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \int_{x_k}^x (x - t) f''(t) dt,$$

соотношение (2.5) и тот факт, что сплайн из формул (2.4) сохраняет линейные функции, получим

$$S(x) - f(x) = \int_{x_{k-1}}^{x_k} K_1^{(1)}(x,t) f''(t) dt + \int_{x_k}^{x} K_2^{(1)}(x,t) f''(t) dt + \int_{x}^{x_{k+1}} K_3^{(1)}(x,t) f''(t) dt, \quad x \in [x_k; x_{k+1/2}], \quad (2.6)$$

где

$$K_{1}^{(1)}(x,t) = \frac{(x_{k-1}-t)(x-x_{k})}{h_{k-1}} \left(1 - \frac{3(x-x_{k})}{2h_{k}}\right), \quad t \in [x_{k-1};x_{k}],$$

$$K_{2}^{(1)}(x,t) = \frac{3(x_{k+1}-t)(x-x_{k})^{2}}{2h_{k}^{2}} - x + t, \quad t \in [x_{k};x],$$

$$K_{3}^{(1)}(x,t) = \frac{3(x_{k+1}-t)(x-x_{k})^{2}}{2h_{k}^{2}}, \quad t \in [x;x_{k+1}];$$
(2.7)

$$S(x) - f(x) = \int_{x_{k-1}}^{x_k} K_1^{(2)}(x,t) f''(t) dt + \int_{x_k}^{x} K_2^{(2)}(x,t) f''(t) dt + \int_{x}^{x_{k+1}} K_3^{(2)}(x,t) f''(t) dt, \quad x \in [x_{k+1/2}; x_{k+1}],$$

где

$$\begin{split} K_{1}^{(2)}(x,t) &= \frac{x_{k-1} - t}{h_{k-1}} \left(x - x_{k} - \frac{3(x - x_{k})^{2} - 4(x - x_{k+1/2})^{2}}{2h_{k}} \right), \quad t \in [x_{k-1}; x_{k}], \\ K_{2}^{(2)}(x,t) &= \frac{(x_{k+1} - t) \left(3(x - x_{k})^{2} - 4(x - x_{k+1/2})^{2}\right)}{2h_{k}^{2}} - x + t , \quad t \in [x_{k}; x], \\ K_{3}^{(2)}(x,t) &= \frac{(x_{k+1} - t) \left(3(x - x_{k})^{2} - 4(x - x_{k+1/2})^{2}\right)}{2h_{k}^{2}}, \quad t \in [x; x_{k+1}]. \end{split}$$

Нетрудно установить, что при $x_k \le x \le x_{k+1/2}$

$$K_1^{(1)}(x,t) \le 0, \quad t \in [x_{k-1};x_k], \quad K_3^{(1)}(x,t) \ge 0, \quad t \in [x;x_{k+1}],$$

а функция $K_2^{(1)}(x,t)$ (как функция от переменной *t*) является линейной на отрезке $[x_k;x]$ и меняет знак на этом отрезке один раз с минуса на плюс. Аналогично при $x_{k+1/2} \le x \le x_{k+1}$ имеют место неравенства

$$K_1^{(2)}(x,t) \le 0, \quad t \in [x_{k-1};x_k], \quad K_3^{(2)}(x,t) \ge 0, \quad t \in [x;x_{k+1}],$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 63 № 6 2023

982

а функция $K_2^{(2)}(x,t)$ (как функция от переменной t) является линейной на отрезке $[x_k;x]$ и тоже на этом отрезке меняет знак один раз с минуса на плюс. Эти соображения позволяют точно вычислить величину

$$\sup_{f\in W^2_{\infty}} \left| f(x) - S(x) \right|$$

при каждом фиксированном $x \in [x_k; x_{k+1}]$, но приводят к весьма громоздким выкладкам. Поэтому величину

$$\sup_{f \in W_{\infty}^{2}} \|f - S\|_{L_{\infty}[x_{k}; x_{k+1}]}, \quad k \ge 1,$$

в настоящей работе оценим сверху более простым способом. Непосредственно из определения функций $K_j^{(l)}(x,t), j = 1,2,3$, при $x \in [x_k; x_{k+1/2}]$ имеем

$$\begin{aligned} \left| K_1^{(1)}(x,t) \right| &\leq \frac{h_k}{2}, \quad t \in [x_{k-1}; x_k], \quad \left| K_2^{(1)}(x,t) \right| \leq \frac{h_k}{8}, \quad t \in [x_k; x], \\ \left| K_3^{(1)}(x,t) \right| &\leq \frac{3h_k}{8}, \quad t \in [x; x_{k+1}], \end{aligned}$$

а из определения функций $K_{j}^{(2)}(x,t), j = 1, 2, 3,$ при $x \in [x_{k+1/2}; x_{k+1}]$ следует, что

$$\begin{aligned} \left| K_1^{(2)}(x,t) \right| &\leq \frac{h_k}{8}, \quad t \in [x_{k-1};x_k], \quad \left| K_2^{(2)}(x,t) \right| &\leq \frac{h_k}{2}, \quad t \in [x_k;x], \\ \left| K_3^{(2)}(x,t) \right| &\leq \frac{h_k}{8}, \quad t \in [x;x_{k+1}]. \end{aligned}$$

Из этих оценок и формул (2.6), (2.7) следует утверждение теоремы 2.

Замечание 1. В [15] для функций *f*, заданных сеточно на числовой оси или на отрезке оси, предложен общий метод построения локальных параболических сплайнов с дополнительными узлами при произвольном расположении основных узлов сплайна. Частными случаями этой схемы являются сплайны Ю.Н. Субботина (см. [11], а также [16]) и Б.И. Квасова (см. [9]). Сплайны Субботина сохраняют линейные функции и обладают хорошими аппроксимативными свойствами (в периодическом случае для равномерной сетки узлов эти сплайны реализуют попереч-

ники по Колмогорову класса функций W_{∞}^2). В то же время они не являются интерполяционными $(S(x_k) \neq f(x_k))$, но сохраняют локально знак, монотонность и выпуклость исходных значений аппроксимируемой функции f (см. [11], [16]). Параболические сплайны Квасова (в статье автор называет их эрмитовыми) интерполируют значения аппроксимируемой функции в основных узлах $\{x_k\}$ и тоже имеют дополнительные узлы в точках $\{x_{k+1/2}\}$. Сравнение этих конструкций, проведенное в [15], показывает, что для прикладных исследований обе конструкции примерно равноценны. Интерполяционные параболические сплайны Квасова сохраняют квадратичные функции, но не обладают формосохраняющими свойствами. Рассмотренные в настоящей работе интерполяционные сплайны Фавара не совпадают со сплайнами Квасова, но тоже являются частным случаем общей схемы построения локальных параболических сплайнов (см. § 2, систе-

му (3.1) в [15]). Сплайны Фавара не сохраняют функцию $f(x) = x^2$ и реализуют на каждом отрезке $[x_k; x_{k+1}], k \ge 1$, трехточечную схему локальной аппроксимации функции f (в том смысле, что значения сплайна на отрезке зависят только от трех значений функции).

Подчеркнем, что при практическом использовании локальных сплайнов Фавара вопрос о трудоемкости вычислений является излишним, поскольку формулы (2.4) представляют собой явные выражения для таких сплайнов в каждой точке $x \in [x_0; x_n]$.

3. ОБОБЩЕНИЕ НА ЭКСПОНЕНЦИАЛЬНЫЙ СЛУЧАЙ

В данном разделе мы по методу Фавара построим локальные интерполяционные экспоненциальные сплайны с произвольным расположением узлов, соответствующие линейному дифференциальному оператору второго порядка вида

$$\mathscr{L}_2 = \mathscr{L}_2(D) = D^2 - \beta^2, \quad \beta > 0.$$

Следуя § 1 в [17], построим разностный оператор $\Delta_{\mathscr{L}_2} y_k$, соответствующий дифференциальному оператору \mathscr{L}_2 , определенный на пространстве последовательностей $y = \{y_k\}_{k=0}^n$ и сетке $\Delta = \{x_k\}_{k=0}^n$, который является аналогом разделенной разности второго порядка. А именно, положим

$$\Delta_{\mathscr{L}_2} y_k = \operatorname{sh} \beta h_k y_{k+2} - \operatorname{sh} \beta (h_{k+1} + h_k) y_{k+1} + \operatorname{sh} \beta h_{k+1} y_k.$$

Нетрудно заметить, что разность $\Delta_{\pounds_2} y_k$ обращается в нуль на сеточных значениях $y_k = f(x + x_k)$, k = 0, 1, ..., n - 2, любой функции f из ядра оператора \pounds_2 при любом $x \in \mathbb{R}$. Отметим, что при $h_k = h, k \in \mathbb{Z}$ (т.е. для равномерной сетки), оператор обобщенной конечной разности в явном виде впервые был выписан в работе А. Шармы и И. Цимбаларио [18] для любого линейного дифференциального оператора произвольного порядка с постоянными коэффициентами, характеристический многочлен которого имеет только действительные корни.

Рассмотрим интерполяционные экспоненциальные многочлены вида

$$p_k(x) = C_1^{(k)} \operatorname{sh} \beta x + C_2^{(k)} \operatorname{ch} \beta x, \quad k = 0, 1, \dots, n-1,$$

удовлетворяющие условиям

$$p(x_k) = y_k, \quad p(x_{k+1}) = y_{k+1}.$$

Они могут быть записаны в виде

$$p_k(x) = \frac{y_{k+1} \operatorname{sh} \beta(x - x_k) + y_k \operatorname{sh} \beta(x_{k+1} - x)}{\operatorname{sh} \beta(x_{k+1} - x_k)}, \quad k = 0, 1, \dots, n-1.$$

На отрезке $[x_0; x_n]$ будем строить экспоненциальный сплайн S(x) второго порядка с основными узлами в точках $\{x_k\}_{k=0}^n$ и дополнительными — в точках $\{x_{k+1/2}\}_{k=1}^{n-1}$, удовлетворяющий условиям интерполяции

$$S(x_k) = y_k, \quad k = 0, 1, \dots, n$$

На отрезке $[x_0; x_1]$ положим $S(x) = p_0(x)$. Тогда $S(x_0) = y_0$ и $S(x_1) = y_1$. Далее, если сплайн S(x) уже построен на отрезке $[x_{k-1}; x_k]$, $k \ge 1$, то на следующем отрезке $[x_k; x_{k+1}]$ положим

$$S(x) = p_{k-1}(x) + \int_{x_k}^x \varphi_2(x-t)u(t)dt,$$
(3.1)

где $\varphi_2(t) = \frac{1}{\beta} \sinh \beta t$, и функция $u(t) = \mathcal{L}_2(D)S(t)$. При этом функцию u(t) будем искать в следующем виде:

$$u(t) = \begin{cases} Z_1 \Delta_{\mathcal{L}_2} y_{k-1}, & x_k \le t < x_{k+1/2}, \\ Z_2 \Delta_{\mathcal{L}_2} y_{k-1}, & x_{k+1/2} \le t < x_{k+1}, \end{cases}$$

где $Z_1 = Z_1^{(k)}$ и $Z_2 = Z_2^{(k)}$ – действительные числа, подлежащие дальнейшему определению. Дифференцируя функцию S(x), имеем

$$S'(x) = p'_{k-1}(x) + \int_{x_k}^x \operatorname{ch} \beta(x-t) u(t) dt.$$
(3.2)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 63 № 6 2023

Положим $S(x_{k+1}) = p_k(x_{k+1}), S'(x_{k+1}) = p'_k(x_{k+1})$. Эти условия обеспечивают, что $S \in C^1[x_0; x_n]$. Тогда из (3.1), (3.2) получаем систему двух уравнений с двумя неизвестными для определения чисел Z_1 и Z_2 :

$$\frac{1}{\operatorname{sh}\beta h_{k}}\Delta_{\mathcal{L}_{2}}y_{k-1} = \frac{Z_{1}\left(\operatorname{ch}\beta h_{k} - \operatorname{ch}\frac{\beta h_{k}}{2}\right) + Z_{2}\left(\operatorname{ch}\frac{\beta h_{k}}{2} - 1\right)}{\beta^{2}}\Delta_{\mathcal{L}_{2}}y_{k-1},$$
$$\frac{\operatorname{ch}\beta h_{k}}{\operatorname{sh}\beta h_{k-1}}\operatorname{sh}\beta h_{k}}{\beta^{2}}\Delta_{\mathcal{L}_{2}}y_{k-1} = \frac{Z_{1}\left(\operatorname{sh}\beta h_{k} - \operatorname{sh}\frac{\beta h_{k}}{2}\right) + Z_{2}\operatorname{sh}\frac{\beta h_{k}}{2}}{\beta^{2}}\Delta_{\mathcal{L}_{2}}y_{k-1}.$$

Решая эту систему, окончательно получаем, что

$$Z_{1} = \frac{\beta^{2}}{2 \operatorname{sh}^{2} \frac{\beta h_{k}}{4}} \left(\frac{\operatorname{ch} \frac{\beta h_{k}}{4}}{\operatorname{sh} \beta h_{k-1}} - \frac{\operatorname{sh} \frac{\beta h_{k}}{4}}{\operatorname{sh} \beta h_{k}} \right), \quad Z_{2} = \frac{\beta^{2}}{2 \operatorname{sh}^{2} \frac{\beta h_{k}}{4}} \left(\frac{\operatorname{sh} \frac{\beta \beta h_{k}}{4}}{\operatorname{sh} \beta h_{k}} - \frac{\operatorname{ch} \frac{\beta \beta h_{k}}{4}}{\operatorname{sh} \beta h_{k-1}} \right).$$
(3.3)

Таким образом, интерполяционный экспоненциальный сплайн второго порядка (являющийся аналогом параболического сплайна Фавара) на любом отрезке $[x_k; x_{k+1}], k \ge 1$, может быть записан в следующем виде:

$$S(x) = \frac{y_k \operatorname{sh} \beta(x - x_{k-1}) + y_{k-1} \operatorname{sh} \beta(x_k - x)}{\operatorname{sh} \beta h_{k-1}} + \frac{1 - \operatorname{ch} \beta(x - x_k)}{\beta^2} Z_1 \Delta_{\mathcal{L}_2} y_{k-1}, \quad x \in [x_k; x_{k+1/2}],$$

$$S(x) = \frac{y_k \operatorname{sh} \beta(x - x_{k-1}) + y_{k-1} \operatorname{sh} \beta(x_k - x)}{\operatorname{sh} \beta h_{k-1}} + \frac{Z_1(\operatorname{ch} \beta(x - x_k) - \operatorname{ch} \beta(x - x_{k+1/2})) + Z_2(\operatorname{ch} \beta(x - x_{k+1/2}) - 1)}{\beta^2} \Delta_{\mathcal{L}_2} y_{k-1}, \quad x \in [x_{k+1/2}; x_{k+1}],$$

где числа $Z_1 = Z_1^{(k)}$ и $Z_2 = Z_2^{(k)}$ определены равенствами (3.3).

Замечание 2. Локальные экспоненциальные и тригонометрические сплайны второго порядка, соответствующие операторам $\mathscr{L}_2(D) = D^2 - \beta^2$, $\beta > 0$, и $\mathscr{L}_2(D) = D^2 + \alpha^2$, $\alpha > 0$, изучались в монографии [14]. Там же (в комментариях и в списке литературы) приведена вся необходимая библиография. Но все сплайны, рассмотренные в [14], были неинтерполяционными.

СПИСОК ЛИТЕРАТУРЫ

- 1. Алберг Дж., Нильсон Э., Уолш Дж. Теория сплайнов и ее приложения. М.: Мир, 1972.
- 2. Стечкин С.Б., Субботин Ю.Н. Сплайны в вычислительной математике. М.: Наука, 1976.
- 3. *Schoenberg I.J.* Contributions to problem of approximation of equidistant data by analytic functions // Quart. Appl. Math. 1946. № 4. P. 45–99.
- 4. Favard J. Sur I[,]interpolation // J. Math. Pures Appl. 1940. V. 19. № 9. P. 281–306.
- 5. Тихомиров В.М. Некоторые вопросы теории приближений. М.: МГУ, 1976.
- 6. Корнейчук Н.П. Сплайны в теории приближений. М.: Наука, 1984.
- 7. Корнейчук Н.П. Точные константы в теории приближения. М.: Наука, 1987.
- 8. *Lyche T., Schumaker L.L.* Local spline approximation methods // J. Approx. Theory. 1975. V. 15. № 4. P. 294–325.
- 9. *Квасов Б.И.* Интерполяция эрмитовыми параболическими сплайнами // Изв. вузов. Математика. 1984. Т. 28. № 5. С. 25–32.
- 10. Завьялов Ю.С., Квасов Б.И., Мирошниченко В.Л. Методы сплайн-функций. М.: Наука, 1980.
- 11. *Субботин Ю.Н.* Наследование свойств монотонности и выпуклости при локальной аппроксимации // Ж. вычисл. матем. и матем. физ. 1993. Т. 33. № 7. С. 996–1003.

- 12. Шевалдина Е.В. Аппроксимация локальными параболическими сплайнами функций по их значениям в среднем // Тр. Ин-та матем. и механ. УрО РАН. 2007. Т. 13. № 4. С. 169–189.
- 13. Волков Ю.С., Богданов В.В. О погрешности приближения простейшей локальной аппроксимацией сплайнами // Сиб. матем. ж. 2020. Т. 61. № 5. С. 795–802.
- 14. Шевалдин В.Т. Аппроксимация локальными сплайнами. Екатеринбург: Изд-во УрО РАН, 2014.
- 15. *Субботин Ю.Н., Шевалдин В.Т.* Об одном методе построения локальных параболических сплайнов с дополнительными узлами // Тр. Ин-та матем. и механ. УрО РАН. 2019. Т. 25. № 2. С. 205–219.
- 16. *Шевалдин В.Т.* Аппроксимация локальными параболическими сплайнами с произвольным расположением узлов // Сиб. журнал вычисл. матем. 2005. Т. 8. № 1. С. 77–88.
- 17. *Шевалдина Е.В.* Аппроксимация локальными экспоненциальными сплайнами с произвольными узлами // Сиб. журнал вычисл. матем. 2006. Т. 9. № 4. С. 391–402.
- 18. Шарма А., Цимбаларио И. Некоторые линейные дифференциальные операторы и обобщенные разности // Матем. заметки. 1977. Т. 21. № 2. С. 161–173.